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BIOPHYSICAL MODEL OF MULTIPLE-ITEM WORKING MEMORY:

COMPUTATIONAL AND NEUROIMAGING STUDY
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bstract—Biophysically based computational models have
uccessfully accounted for the persistent neural activity un-
erlying the maintenance of single items of information in
orking memory. The aim of the present study was to extend
revious models in order to retain multiple items, in agree-
ent with the observed human storage capacity. This was
one by implementing cellular mechanisms known to occur
uring the childhood development of working memory, such
s an increased synaptic strength and improved contrast and
pecificity of the neural response. Our computational study
hows that these mechanisms are sufficient to create a neu-
al network which can store information about multiple items
hrough sustained neural activity. Furthermore, by using
unctional magnetic resonance imaging, we found that the
nformation-activity curve predicted by the model corre-
ponds to that in the human posterior parietal cortex during
erformance of working memory tasks, which is consistent
ith previous studies of brain activity related to working
emory capacity in humans. © 2006 IBRO. Published by
lsevier Ltd. All rights reserved.

ey words: neural network models, parietal lobe, develop-
ental mechanisms.

orking memory (WM) is the ability to maintain and ma-
ipulate information during brief periods of time. This ability
lays a critical role in the execution of complex behavioral
asks (Baddeley and Hitch, 1974). The putative neural
orrelate of WM is a stimulus selective persistent neural
ctivity observed in prefrontal and posterior parietal corti-
al areas (Goldman-Rakic, 1995; Wang, 2001). Sustained
eural activity in absence of external stimuli was first dem-
nstrated using electrophysiological methods in monkeys
erforming visuo-spatial working memory (vsWM) tasks
Fuster, 1973; Funahashi et al., 1989). Biophysical net-
ork models of spiking neurons have successfully been
sed to capture the central features of the observed neural
ctivity during vsWM tasks (Tegnér et al., 2002; Wang
t al., 2004). This class of models can account for several
xperimental observations such as spontaneous firing,

Corresponding author. Tel: �46-8-517-761-76; fax: �46-8-517-732-66.
-mail address: julian.macoveanu@ki.se (J. Macoveanu).
bbreviations: BOLD, blood oxygen level-dependent; E cell, excitatory
d
ell; fMRI, functional magnetic resonance imaging; vsWM, visuo-spa-
ial working memory; WM, working memory.

306-4522/06$30.00�0.00 © 2006 IBRO. Published by Elsevier Ltd. All rights reser
oi:10.1016/j.neuroscience.2006.04.080
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ersistent activity with physiological firing rates and realis-
ic shape of neuronal tuning curves as measured in mon-
eys (Constantinidis and Goldman-Rakic, 2002). In con-
ensus with previous findings (Kilner et al., 2005), the
etwork activation during memory maintenance, as re-
ealed by local field potential measurements, is positively
orrelated with the expression of EEG frequencies within
he gamma band and negatively correlated with alpha
and frequencies. However, current models have several

imitations e.g. low storage capacity, memory drift and
ensitivity to distractors (Wang, 2001; Constantinidis and
ang, 2004). In particular, the models can at most retain

nformation about the spatial location of two stimuli
Tanaka, 2002), which is not consistent with the fact that
umans retain information about the location of at least
our items in vsWM at the same time (Luck and Vogel,
997; Cowan, 2001). Being based on recurrent connectiv-

ty, these models store the memories through self-sus-
ained stable states of persistent activity, also known as
ump attractors. However, due to network dynamics bal-
nced by excitatory and inhibitory feedback, recurrent net-
orks have difficulties maintaining more than two concur-

ent bump attractors. Additional cues will amplify the fast
nhibitory feedback and suppress further excitatory activity.

A few other studies have explored the multiple-item
bility of WM models in different contexts. Jensen and
isman (1996) explained the limited capacity of short-term
emory with the fixed number of gamma cycles within a

heta cycle. Memories were represented by subsets of
ells firing in synchrony. Different items are firing during
ifferent gamma cycles. In this way a list of maximum
even items can be activated sequentially within a theta
ycle. In the framework of strongly recurrent neural net-
orks, Amit and coworkers (2003) encoded distinct cues
y an arbitrary number of separate functional neuronal
opulations respectively.

The aim of the present study was to investigate how
everal items can be stored in a neural network based on
ecurrent connectivity. The model stores information about
pecific stimuli through selective persistent states of neural
ctivity. Similar models have successfully simulated one-

tem WM in networks of integrate-and-fire neurons (Amit
nd Brunel, 1997; Wang, 1999; Compte et al., 2000) and
ave later been extended by Tegnér et al. (2002) to incor-
orate biophysical mechanisms. It is known that the ability
o hold multiple items in WM increases during childhood
evelopment (Luna et al., 2004). We therefore imple-
ented putative cellular changes that occur during WM

evelopment in the computational WM model studied by

ved.
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egnér et al. (2002), to test if these could increase the
torage capacity of the model.

Synaptic remodeling is considered to be a dominant
evelopmental mechanism during childhood (Huttenlocher,
979). This process is responsible for both the selective
trengthening of the inter-neuronal connections between
unctional related cells and weakening between function-
lly unrelated cells (Hubel and Wiesel, 1963; Rainer and
iller, 2000). These structural and connectivity changes

an be explained by a few hypothetical mechanisms: in-
reased overall excitatory synaptic strength (A), higher
ontrast of the neuronal response (B), and increased spec-
ficity of the neuronal response (C). We implemented these
utative cellular changes during development in a biophys-

cal network model and we made qualitative and quantita-
ive evaluations of the generated network responses cor-
esponding to modes A, B and C. Furthermore, the rela-
ionship between the stored information and neural activity
redicted by the network was tested against data collected
uring a functional magnetic resonance imaging (fMRI)
xperiment. The test was performed in order to assess
hether there exist areas in the brain that show similar

elation between information load and brain activity and to
ocalize these areas.

EXPERIMENTAL PROCEDURES

he computational model

Neurons. The vsWM model, previously described by Teg-
ér et al. (2002), integrates electrophysiological data about the
timulus specific persistent activity and neuronal firing rates from
culomotor delayed-response tasks (Funahashi et al., 1989; Gold-
an-Rakic, 1995). The neuron models followed the Hodgkin-
uxley formalism for the membrane conductance and had a re-
listic action potential profile and neuronal input–output relation-
hip in accordance with cortical-slice studies (McCormick et al.,
985; Markram et al., 1997). The excitatory postsynaptic currents
ollowed the gating kinetics of the NMDA and AMPA receptors
Hestrin et al., 1990; Jahr and Stevens, 1990; Spruston et al.,
995). The inhibitory currents were mediated by the fast GABAA

eceptors (Amari, 1977; Salin and Prince, 1996; Xiang et al.,
002). Synaptic currents were modeled according to Isyn�

syns(V�Esyn), where gsyn represents the synaptic conductance,
syn the synaptic reversal potential and s is the gating variable
hich decides the fraction of open synaptic ion channels. A com-
lete description of the neuronal model can be found in Tegnér
t al. (2002).

Network connectivity. The network represents a local corti-
al circuit with two populations of cells, 256 Excitatory (E) of
yramidal type and 64 Inhibitory (I) of fast-spiking type (Amit and
runel, 1997; Wang, 1999; Compte et al., 2000; Tegnér et al.,
002). The neurons were spatially distributed in a ring in accor-
ance with their preferred stimulus location (Fig. 1A) resembling
revious oculomotor delayed-response task experiments (Fu-
ahashi et al., 1989; Goldman-Rakic, 1995). The synaptic con-
ection strength between neurons decreases with the angle be-
ween their preferred stimuli location (Fig. 1B). The connectivity W
etween neuron i and j follows:

W(�i��j)�J��(J��J�)exp
�(�i��j)

2

2�2
Compte et al., 2000) a
(�i��j) represents the normalized connectivity. J� is the
trength of the weak distant connections, J� the strength of the
trong adjacent connections and � the connectivity footprint.
ccordingly, the synaptic conductance is given by: gsyn,ij�
(�i��j)Gsyn.

Network modes. Several modes of the network were eval-
ated: a reference low capacity mode (Low), three modes with
ne developmental mechanisms implemented, increased overall
xcitatory synaptic strength (A), higher contrast of the neuronal
esponse (B), and increased specificity of the neuronal response
C), a mode with the highest achievable storage capacity (High),

ig. 1. The recurrent network model. (A) One population of Excitatory
E) and one of Inhibitory (I) cells with all-to-all connections both within
nd between the populations (illustration not to scale). (B) Connectivity
urves between E cells. The initial connectivity for the Low mode,
haded area, and after the implemented developmental changes A, B
nd C. The connectivity strength between E cells depended on their
roximity, represented by the angle between them (�i��j). (C) The
OLD signal generated by the network (red curve) is calculated by
onvolving the total synaptic activity (black trace) with a standard
emodynamic response (HR) function (inset).
nd a mode with storage capacity tuned to behavioral data from a
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sWM delay-response task (Behavioral). The modifications of the
etwork model according to A, B and C were performed by altering
he connectivity structure as shown in Fig. 1B. A constant
trengthening of the excitatory connections (A) was achieved by

ncreasing the synaptic conductance (GEE) between all excitatory
eurons. The contrast of the neural response was increased by

ncreasing the height of the connectivity curve (J�) resulting in a
elective strengthening of proximate connections and weakening
f distant connections (B). Reducing the connectivity footprint (�),

ncreased the specificity of the neural response leading to
aster decrease of the connectivity strength with the inter-neuro-
al distance (C). The simulation parameters are presented in
able 1.

Simulation of the blood oxygen level-dependent (BOLD)
esponse. The BOLD signal measured with fMRI reflects the
otal synaptic activity in a brain area (Attwell and Iadecola, 2002).
n order to relate simulated neural activity with experimentally
easured brain activity, we evaluated a BOLD signal by convolv-

ng the total synaptic activity (Isyn) of the network model with an
xperimentally measured canonical hemodynamic response func-

able 1. Simulation parameters for all network modes

E¡E (NMDA) All modes

Ga J� � Ga J� �

ow 1.55 8 0.16 E¡I(NMDA) 1.16 2 0.5
1.71 — — I¡E(GABA) 0.47 2 0.7
— 15 — I¡I(GABA) 0.65
— — 0.07 Eext¡E(AMPA)

b 0.0104
igh 1.71 15 0.07 Eext¡I(AMPA)

b 0.0024
ehavioral 1.63 13 0.09

Conductances are in mS/cm2.
The external excitation (Eext) from other cortical areas was modeled
s uncorrelated Poisson spike trains of 1000 Hz per cell.

ig. 2. Schematic representation of the memory and control trials. Fo
n a screen, at random locations on the periphery of a circle. The part
nd of the delay, participants responded using a computer mouse by c
he stimuli were back-projected on a screen which the participant vie

esponded by pressing ‘yes’ and ‘no’ buttons if the dot appeared at the same l
he control trials, the stimuli always appeared at the same locations and remai
ion modeled by h(t), Fig. 1C. The convolution equation used to
valuate the bold signal b(t) was given by:

b(t)��
0

� h(1�t′)Isyn(t′)dt′

The experimental hemodynamic response was fitted by h(t):

h(t)�
�1

s1 ts1�1

(s1�1)!
e��1t�

�2
s2 ts2�1

r(s2�1)!
e��2t

Friston et al., 1998)
here t is time and s1�6, s2�16, �1��2,�1/8, r�6 are parame-

ers that calibrate the function for the best fit. Isyn was calculated
s the sum of the absolute values of the recurrent excitatory
urrents mediated by NMDA receptors, external excitation through
MPA receptors and the GABA-ergic inhibitory currents (Deco
t al., 2004; Deco and Rolls, 2005).

sWM task protocol: behavior and simulation

hree healthy participants (age 30–32) performed a vsWM task in
hich they remembered the spatial location of one to six items

Fig. 2). The task was first performed outside (six levels with 10
emory trials for each level) and later in the MR scanner (6�10
emory�6�10 control trials).

The simulation trials followed a similar protocol to the memory
rials of the vsWM task. The network model was stimulated by one
o six cues given at random locations on the ring, with a minimum
f 22.5° between them. The cues consisted of a 0.8 �A/cm2

xcitatory current injected in 10 adjacent excitatory cells for 1.3 s.
he activity traces induced by the cues lasted beyond the stimu-

ation time. The number of bump attractors found at the end of the
elay phase represented ‘remembered cues.’

he fMRI experiment

n fMRI experiment was performed in order to measure the BOLD
esponse of the three tested participants while they were perform-

ory trials, between one and six dots were presented simultaneously
ried to remember the location of the dots during a delay phase. At the
all remembered locations. For the trials performed in the MR scanner,
ugh a mirror. A dot appeared during the response phase and they
r the mem
icipants t
licking at
wed thro
ocation as a dot presented in the beginning of the trial (½ trials). For
ned visible during the rest of the trial.
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ng a vsWM task (Fig. 2). The functional images were acquired by
2*-weighted echo-planar MRI at 1.5 T (TE 40 ms, TR 2000 ms,
ip angle 76°, field of view 22 cm, 64�64 matrix). Twenty-two
.5 mm thick slices were taken with 0.1 mm skip between slices.

The fMRI data were analyzed with SPM2 (www.fil.ion.ucl.
c.uk/spm). The processing included realignment to the first im-
ge, correction for movement artifacts, slice-time correction by

nterpolation to the middle slice, co-registration of the anatomical
mages to the mean functional image, normalization of the ana-
omical images to a T2-template and spatial smoothing with an
sotropic Gaussian kernel of 8 mm. The general linear model of
MRI time-series (Friston et al., 1995) was applied to analyze the
MRI data with separate conditions for cue presentation, delay,
nd response selection. Delay-related activity was estimated by
ontrasting the activity in the six-second delay phase of the WM
ask and that in the control task.

odel testing

he calculated BOLD values from the simulation experiment were
sed as covariates in the statistical analyses of the fMRI data in
rder to find cortical areas that presented a similar pattern of
ctivation as predicted by the computational model.

RESULTS

ur study addresses the limited capability of previous WM
etwork models to explain the experimentally observed
M performance. We have explored the multiple-item ca-

acity of a biophysical WM model by integrating three
utative developmental mechanisms. The storage capac-

ty of the network was tuned using behavioral data from a
sWM delay-response task performed by three partici-
ants. The same participants performed a similar task in
n fMRI experiment and their BOLD signal was measured.
he relationship between stored information and neural
ctivity predicted by the WM model was tested against the
MRI data collected, allowing the identification of brain
reas that presented similar activation patterns.

imulated developmental changes

he capacity and BOLD signal of the reference mode

able 2. (A) Qualitative analyses of the implemented network modes

GEE JEE
�

Low — —
A 1 —
B — 1
A�B 1 1
C — —
High 1 1

Capacity (# items) BOLD (%)

Low 2 0.28
2 2 2

High 6 0.57

‘Capacity’ is the maximum number of items that could be held simul
tems were presented. ‘Distractibility’ is the least current (induced at 3
s the average drift of a bump attractor after a 6 s delay. ‘Firing rate’
Low) were compared with the modes that integrated de- b
elopmental changes: A, B, A�B, C and High (A�B�C).
able 2A shows simulation results for the six tested net-
ork modes. Independent network simulations according

o modes A or B increased the BOLD response and dou-
led the storage capacity of the network from two to four

tems. Implementing simultaneously A and B, further in-
reased the BOLD response but the storage capacity re-
ained at four items, a constraint imposed by the limited
xcitation level in the network. A narrower connectivity
urve (mode C) lowers the excitatory activity reflected by a
ower BOLD signal but maintains the storage capacity. In
rder to achieve the maximum storage capacity of the
etwork, we combined the three tested developmental
hanges A, B, and C (High). Compared with Low, the High
ode had a higher BOLD signal for equal number of
resented cues and showed a considerable storage ca-
acity increase (six items). Table 2B summarizes the
uantitative differences between the Low and High modes.
he information maintained by the High network was both
ore accurate (lower memory drift) and significantly more

esistant to distraction. The higher generated BOLD signal
f the High mode is related to both a higher number of
aintained bump attractors but also to higher firing rate of

he bump attractor neurons.
Fig. 3A and B left, shows the spatio-temporal firing

attern of the Low and High network modes and the cal-
ulated BOLD signal (right). Only the High mode was
apable of maintaining bump activity for all four presented
ues until the end of the delay phase.

etwork tuning using behavioral data

he average performance, as measured by the number of
emembered items (�S.E.M.), for the vsWM task per-
ormed outside the MR scanner was 1.0�0.0, 2.0�0.0,
.7�0.5, 3.5�0.8, 4.0�0.8, and 3.7�1.0 when the set size

ncreased from one to six presented cues (Fig. 4). The
ariance between individual performances was low. The
verage maximum capacity of approximately four remem-

quantitative differences between the Low and High modes

Capacity BOLD

— —
1 1
1 1
1 11
¡ 2
11 1

tractibility (�A) Memory drift Firing rate (Hz)

3° 19
2 2
2° 26

during a 6 s delay. ‘BOLD’ is the maximum signal change when four
e from the cue) needed to suppress the bump activity. ‘Memory drift’
k firing rate of the bump neurons (��0.09).
and (B)

�EE

—
—
—
—
2
2

Dis

1.1
2
3.6

taneously
3° distanc
ered cues was attained for a presentation set of five cues.

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
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he behavioral values were used to tune the storage per-
ormance of the network model. Modifying the connectivity
tructure according to the A, B, and C developmental
hanges but to a lesser extent than in High, we obtained a
etwork mode that exhibited similar performance to the
verage performance of the tested participants. The BOLD
ignal of the network mode proved to be highly correlated
ith the behavioral performance irrespective of the size of

he presentation set.

MRI experiment

ig. 5 shows areas in which the delay-phase BOLD re-
ponses for the three individuals significantly correlated
ith the simulated BOLD signal, and thus might be inferred
s the capacity-related areas (P�0.05, corrected for mul-
iple comparisons). The stereotaxic coordinates of the sig-
ificantly activated clusters are shown in Table 3. The

ntraparietal part of posterior parietal cortex showed the
ighest activation for all tested participants. Additionally,

ig. 3. Network simulations. Left, spatiotemporal firing pattern of Low
yramidal cells. Both simulations were performed under the same co
hase. Right, calculated BOLD responses.
ig. 4. Behavioral performance and the behaviorally tuned network capacity w
tandard deviation.
ne participant showed significant right activation and a
econd participant bilateral activations of the dorsolateral
refrontal cortex. The location of these areas are consis-
ent with previous studies identifying visuo-spatial WM ca-
acity to the intraparietal cortex (Klingberg et al., 2002;
lesen et al., 2003; Todd and Marois, 2004).

DISCUSSION

n general, biophysically realistic vsWM models that inte-
rate experimental data represent a new generation of
omputational tools essential for understanding the neural
echanism underlying vsWM and its capacity limitations

Jensen and Lisman, 1996; Amit and Brunel, 1997; Compte
t al., 2000; Tegnér et al., 2002; Tanaka, 2002; Amit et al.,
003; Deco et al., 2004; Wang et al., 2004). Our study
emonstrates the utility of these models by generating
xperimentally testable predictions.

High (b) network modes. The dots correspond to action potentials of
The four presented cues induce bump attractors through the delay
(a) and
nditions.
ith corresponding BOLD response function. The bars represent the
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In particular, we showed that implementing putative
ellular changes during development in a biophysical
sWM model resulted in a substantially increased storage
apacity together with a more robust stimuli encoding. The
ehaviorally measured vsWM performance could be ac-
ounted for if all tested changes, increased synaptic
trength and improved contrast and specificity of the neu-
onal response, were implemented simultaneously. The
orrelation between stored information and neural activity
redicted by the network was tested against data collected
uring an fMRI experiment. We found cortical areas that
resented a similar information-activity curve during the
elay period of a vsWM task. Both the parietal and frontal
reas that were activated by the tested group have previ-
usly been associated with vsWM capacity (Klingberg
t al., 2002; Olesen et al., 2003; Todd and Marois, 2004).
urthermore, our results (Table 2B) support the correlation
etween a higher storage capacity, resistance to distrac-
ors, mnemonic accuracy, BOLD response and average
ring rate of the neuronal populations responsible for the
emory maintenance.

ig. 5. Correlation maps (P�0.05 corrected) for three individuals sup
imilar relationship between stored information and neural activity as
ctivations (T-values).

able 3. Individual delay-phase activations

rain area MNI coordinates T
score

Size
(cm3)

x y z

ubject 1
Intraparietal sulcus R 38 �44 64 7.3 7.49
Intraparietal sulcus L �30 �54 70 5.8 6.99
Superior parietal lobe R 18 �70 64 6.1 5.05

ubject 2
Superior parietal lobea L �8 �54 72 7.3 29.79
Intraparietal sulcusa R 42 �38 44 6.1 29.79
Middle frontal gyrus R 42 42 24 6.3 8.07
Superior frontal sulcus R 26 0 66 5.4 3.60

ubject 3
Superior parietal lobeb R 22 �64 60 8.2 46.72
Intraparietal sulcusb L �8 �76 66 7.7 46.72
Middle fontal gyrus R 58 10 26 5.8 6.60
Middle fontal gyrus L �54 �4 38 6.9 5.42

Significant clusters (P�0.05 corrected for multiple comparisons).

t,b The same cluster.
xperimental support for the modeled developmental
echanisms

he implemented changes of the connectivity structure
nd inter-neuronal connection strengths may serve as a
ypothetical model of the developmental changes during
hildhood. The qualitative differences between the Low
nd High network modes can be related to experimental
tudies of the WM development. Both the WM capacity
nd the resistance to distractors were found to increase
uring development (Hale et al., 1997). Development of
sWM has also been related to higher activity of the WM-
elated areas in the frontal and parietal cortex (Klingberg et
l., 2002; Kwon et al., 2002; Olesen et al., 2003). Addition-
lly, a recent fMRI study reported lasting increase of both
sWM capacity and delay-related BOLD response follow-

ng vsWM training (Olesen et al., 2004). Thus, the struc-
ural and connectivity changes integrated in the High and
ehavioral network modes may also be responsible for the
bserved vsWM training-related changes.

apacity limits of WM

he vsWM capacity for passive retention of information is
enerally considered to be of approximately four items
Luck and Vogel, 1997; Cowan, 2001), a limit which is also
upported by the behavioral analyses in the present study.
owever, vsWM performance may also depend on re-
earsal and active, attention-based maintenance pro-
esses (Awh and Jonides, 2001). The total storage capac-

ty could therefore be constrained not only by the neuronal
nd synaptic properties within the cortical network but also
y the additional top-down processes related to attention
Marois and Ivanoff, 2005). The exclusive maintenance of
isuo-spatial information by the network model without

ntegration of attentional mechanisms could therefore be a
otential limitation of the present study.

The posterior parietal cortex has recently been pro-
osed as the neurophysiologic correlate of vsWM storage

imitation (Todd and Marois, 2004; Vogel and Machizawa,
004). In agreement with recently reported results (Todd
nd Marois, 2004), the present fMRI data show that the
OLD response induced in this area was correlated with

he amount of information stored in vsWM. This study adds

d on a standard anatomical template. Images show brain areas with
by the vsWM model. The scale bar indicates the significance of the
erimpose
predicted
o previous knowledge by proposing a mechanistic expla-
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ation for the close relationship between BOLD response
nd information storage. However, it is possible that future
tudies could implement interventions or manipulations of
he system that make the predicted BOLD response devi-
te from the amount of stored information.

he neuronal mechanisms underlying vsWM
apacity limit

he developmental mechanisms implemented in the net-
ork have distinct contribution to the total storage capacity

ncrease observed in the model. A higher overall connec-
ivity, GEE (A), allows a higher excitation level in the net-
ork thus increasing the total percentage of the E cells that
an be simultaneously active. Increasing the contrast,

EE
� (B), increases the signal-to-noise ratio by strength-

ning the connectivity between neurons with similar pre-
erred cues and lowering the connectivity strength to dis-
ant neurons. Lowering �EE (C) decreases the number of
ctive neurons in a bump attractor allowing a higher num-
er of bump states before the highest excitation level is
eached. However, the network’s dynamic stability re-
uires a finely tuned balance between excitatory activity
nd inhibitory feedback, a fact that will constrain the pa-
ameter ranges. A system that reached its higher limit of
xcitation is marked by the spontaneous appearance of
ump attractors induced by noise. Below the lower limit,
he recurrent excitation will not be sufficiently strong to
ustain bump activity. Thus, for a given population size, the
imited excitation level will constrain the number of cues
han can be simultaneously maintained by the network.
lthough there is no theoretical capacity limit with in-
reased network size, the number of items maintained by
he cortical circuitry underlying WM will be constrained by
he available number of recruited neurons together with
iophysiological factors like the maximal synaptic strength
etween neurons and synaptic specificity which both need
o increase for higher capacity (higher J� and lower � in
he model). J� proved to be a key factor determining the
ultiple-item capacity of the model. Although the corre-

ponding experimental value is yet to be determined, the
alue used for the behavioral mode (J��13) can be con-
rasted with the values (J��1.62–5.25) used in previous
heoretical studies of one-item models (Compte et al.,
000; Tegnér et al., 2002; Wang et al., 2004). Electrophys-

ological measurements in monkey prefrontal cortex report
width (�) of the neuronal tuning curves in the range of

.12–0.15 (Constantinidis and Goldman-Rakic, 2002). As-
uming a lower WM capacity for monkeys than humans,
ower � values should be expected for the human neuronal
ircuitry. The corresponding values for the Behavioral
ode were calculated to 0.08–0.10, similar to the � value
sed for the connectivity curves (0.09).

CONCLUSIONS

he structural and connectivity changes implemented in
biophysical vsWM model resulted in a significantly

igher storage capacity and more robust information

aintenance. Brain areas presenting similar relationship
etween stored information and neural activity as pre-
icted by the network model were identified in a group of
articipants performing a vsWM task. This activity was

ocalized to the posterior parietal cortex, an area that
as previously been associated with the limited informa-

ion stored in vsWM (Todd and Marois, 2004; Vogel and
achizawa, 2004).
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