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Support  vector  machines  (SVMs)  are  learning  algorithms  that  have  many
applications  in  pattern  recognition  and  nonlinear  regression.  Being  very
popular,  SVM  software  is  available  in  many versions.  Still,  existing  imple-
mentations,  usually in low-level  languages  such as  C,  are often difficult  to
understand and adapt  to specific research tasks. In this article,  we present
a  compact  and  yet  flexible  implementation  of  SVMs  in  Mathematica,
traditionally  named  MathSVM.  This  software  is  designed  to  be  easy  to
extend  and  modify,  drawing  on  the  powerful  high-level  language  of
Mathematica.

‡ Background
A  pattern  recognition  problem  amounts  to  learning  how  to  discriminate  between
data points xi  belonging to two classes, defined by class labels yi œ 8+1, -1<, when
given only  a  set  of examples  Hxi , yi L  from each class.  These  problems  are found
in  various  applications,  from  automated  handwriting  recognition  to  medical
expert  systems,  and  pattern  recognition  or  machine  learning  algorithms  are
routinely applied to solve them.

It  may  be  helpful  for  newcomers  to  relate  this  to  a  more  familiar  problem:
standard  statistical  hypothesis  testing  for  one-dimensional  xi ,  such  as  Student’s
t-test  [1,  ch. 8],  can  be  viewed  as  a  very  simple  kind  of  pattern  recognition
problem. Here, the hypotheses H0  and H1  correspond to classes +1, -1, and the
familiar

gHxL =
lom
no

H0, if x < xêê

H1 , if x > xêê
y
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where xêê is the mean of within-class means,
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lc = » 8i : y1 = c< »  and H0 < H1 , is called the decision rule  or sometimes simply the
classifier.  We  say  that  the  decision  rule  g  is  induced  from  data  xi ,  in  this  case
determined by computing xêê.

However,  real  pattern  recognition  problems  usually  involve  high-dimensional
data (such as image data) and unknown underlying distributions. In this situation,
it  is  nearly  impossible  to  develop  statistical  tests  like  the  preceding  one.  These
problems are typically attacked with algorithms, such as artificial neural networks
[2],  decisions  trees  [3,  ch. 18],  Bayesian  models  [4],  and  recently  SVMs  [5],  to
which we will devote the rest of this article. Here we will only consider data that
can  be  represented  as  vectors  x œ Rn ;  other  kinds  of  information  can  usually  be
changed to this form in some appropriate manner.

‡ Support Vector Machines
SVMs attempt to find a hyperplane Pw,b = w.x + b = 0, x œ Rn  that  separates the
data  points  xi  (meaning  that  all  xi  in  a  given  class  are  on  the  same  side  of  the
plane), corresponding to a decision rule

gHxL = signHw.x + bL.
In SVM literature, w is often referred to as the weight vector; b is called the bias (a
term adopted from neural  networks).  This  idea is  not  new; it dates  back at least
to R.A. Fisher and the theory of linear discriminants [6]. The novelty of SVMs lies
in  how  this  plane  is  determined:  SVMs  choose  the  separating  hyperplane
w.x + b = 0 that is furthest away from the data points xi , that is, that has maximal
margin  (Figure  1).  The  underlying  idea  is  that  a  hyperplane  far  from  any
observed  data  points  should  minimize  the risk  of  making  wrong  decisions  when
classifying  new  data.  To  be  precise,  in  SVMs  we  maximize  the  distance  to  the
closest data points. We solve

(1)maxHw,bL Hmini dHPw,b , xi LL,
where dHPw,b , xi L = » w.xi + b » ê »» w »» is the distance between data point i and the
plane Pw ,  subject to the constraint that  this plane still  separates  the classes.  The
plane  Pw  that  solves  (1)  is  called  the  optimal  separating  hyperplane  and  is  unique
[5]. MathSVM provides algorithms for determining this plane from data.
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Figure  1.  Two-class  data  (black  and  grey  dots),  their  optimal  separating  hyperplane
(continuous line),  and support vectors (circled in blue). This is an example output of the
SVMPlot  function  in  MathSVM.  The  width  of  the  “corridor”  defined  by  the  two  dotted
lines connecting the support vectors is the margin of the optimal separating hyperplane.

‡ Solving the Optimization Problem
· The Primal Problem

It  turns  out  that  the  optimal  separating  hyperplane  solving  (1)  can  be  found  as
the solution to the equivalent optimization problem 

(2)
minw,b

1
ÅÅÅÅÅÅ
2

»» w »»2

subject to yi HwT  xi + bL ¥ 1,

referred  to  as  the  primal  problem.  Typically,  only  a  small  subset  of  the  data
points will attain  equality in the constraint;  these are termed support vectors  since
they  are  “supporting”  (constraining)  the  hyperplane  (Figure  1).  In  fact,  the
solution Hw, bL depends only on these specific points. Therefore, the method also
is a scheme for data compression, in the sense that the support vectors contain all
the information necessary to derive the decision rule.

· The Dual Problem
For reasons that will become clear later, w often has very high dimension,  which
makes the primal problem (2)  intractable. Therefore,  we attack (2) indirectly,  by
solving the dual problem

(3)
mina aT  Qa - a

subject to ai ¥ 0, yT  a = 0,

where  Q = Hqi j L = Hyi  y j  x j  xi L.  This  is  a  quadratic  programming  (QP)  problem,
which  has  a  unique  solution  whenever  Q  is  positive  semidefinite  (as  is  the  case
here).  It  is  solved  numerically  in  MathSVM  by  the  function  QPSolve.  (At  this
point we need to load the MathSVM package; see Additional Material.)
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In[1]:= �� MathSVM‘
�� Statistics‘NormalDistribution‘

In[3]:= ? QPSolve

QPSolve�Q,p,a,b,c,y,Τ� solves the quadratic programming problem min
Α.Q.Α�p.Α, subject to a�Α�b and y.Α�c. QPSolve uses the GSMO
algorithm described by Keerthi et al. Τ is a solution tolerance
parameter �0.01 or so is usually good enough for SVMs�. Q must
be a positive semidefinite matrix to guarantee convergence.

The variable  a  has  dim a = l,  the number  of data  points,  so the matrix  Q  has  l2

elements,  which  may  be  quite  large  for  large  problems.  Therefore,  QPSolve
employs  a divide-and-conquer  approach [7]  that  allows for solving (3)  efficiently
without storing the full matrix Q in memory.

Having  solved  the  dual  problem  for  a  using  QPSolve,  we  obtain  the  optimal
weight vector  w  and bias term b,  that  is,  the solution  to the primal  problem (2),
using the identities

(4)w = ‚
i

ai  yi  xi

(5)b = -
1
ÅÅÅÅÅÅ
2

 HwT  x+ + wT  x- L,

where  in  (5)  x+ , x-  are  any  two  support  vectors  belonging  to  class  +1  and  -1,
respectively (there always exist at least two such support vectors) [5].

· A Simple SVM Example
Enough  theory—let  us  generate  some  data  and  solve  a  simple  SVM  problem
using MathSVM.

In[4]:= len � 20;
X � Join�

RandomArray�NormalDistribution��2, 1�, �len�2, 2��,
RandomArray�NormalDistribution�2, 1�, �len�2, 2���;

y � Join�Table�1, �len�2��, Table��1, �len�2���;

For  this  elementary  problem,  we  use  the  simple  SVM  formulation  (2)  provided
in MathSVM by the SeparableSVM function.

In[7]:= Τ � 0.01;
Α � SeparableSVM�X, y, Τ�

Out[8]= �0.405345, 0, 0, 0, 0, 0, 0, 0, 0,
0.102479, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.507824�
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The returned vector a is the solution found by QPSolve for the dual formulation
(3) of the SVM problem we just  constructed.  For this specific  problem, the dual
formulation used is exactly that described by (3), that is

Q = Hqi j L = Hyi  y j  x j  xi L
p = H-1, … , -1L
a = H0, … , 0L, b = H0, … , 0L
c = 0

The  support  vectors  are  immediately  identifiable  as  the  nonzero  ai .  (4)  and  (5)
are implemented as

In[9]:= WeightVector�Α, X, y�

Out[9]= ��0.73531, �0.692296�

In[10]:= Bias�Α, X, y�

Out[10]= �0.973496

A plot  similar  to Figure  1 is  produced by  the SVMPlot  function.  As in Figure 1,
the  solid  line marks  the optimal  hyperplane,  and dotted lines  mark the width  of
the corridor that joins support vectors (highlighted in blue).

In[11]:= SVMPlot�Α, X, y�
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· Nonseparable Data
Often  the  assumption  of  separable  training  data  is  not  reasonable  (it  may  fail
even for the preceding simple example). In such cases, NonseparableSVM should
be used. This SVM variant takes a parameter C  that determines how hard points
violating the constraint in (2) should be penalized. This parameter appears in the
objective function of the primal problem, which now is formulated as [5]

minw,b,x
1
ÅÅÅÅÅÅ
2

»» w.w »» +C  ‚
i

xi

subject to yi Hxi .w + bL ¥ 1 - xi , xi ¥ 0.

Large C means high penalty, and in the limit C Ø ¶ we obtain the separable case.
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In[12]:= Τ � 0.01;
Α � NonseparableSVM�X, y, 0.5, Τ�

Out[13]= �0.3991, 0, 0, 0, 0, 0, 0, 0, 0, 0.1009, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.5�

In[14]:= SVMPlot�Α, X, y�

-3 -2 -1 1 2 3

-4

-3

-2

-1

1

2

3

· Getting QP Formulations
Sometimes  it  is  interesting  to  examine  what  the  QP  problem  looks  like  for  a
given SVM formulation. Using the option FormulationOnly, we can inspect the
various  parameters  instead  of actually  solving the QP. This can, for example,  be
used to study expressions analytically.

In[15]:= Clear�X, y, Α, len�

In[16]:= Τ � 0.01;
NonseparableSVM�Array�x, �2, 2��,
Array�y, �2��, C, Τ, FormulationOnly � True�

Out[17]= ����x�1, 1�2 � x�1, 2�2	 y�1�2,

�x�1, 1� x�2, 1� � x�1, 2� x�2, 2�� y�1� y�2�
,

��x�1, 1� x�2, 1� � x�1, 2� x�2, 2�� y�1� y�2�,

�x�2, 1�2 � x�2, 2�2	 y�2�2

,

��1, �1�, �0, 0�, �C, C�, 0, �y�1�, y�2��, 0.01


The  parameters  are  given  in  the  order  corresponding  to  the  arguments  of
QPSolve.

‡ Feature Space and Kernels
In all of the preceding examples, the separating surface is assumed to be linear (a
hyperplane).  This  is  often  a  serious  limitation,  as  many  pattern  recognition
problems  are  inherently  nonlinear  in  the  input  data  and  require  nonlinear
separating  surfaces.  To  overcome  this  obstacle,  for  each  specific  problem  we
devise  some  appropriate  transformation  fHxL  from  input  space  X  (the  domain  of
the original  data) to a feature space  H.  The function f is  chosen so that  a hyper-
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plane  in H  corresponds  to some  desirable  class  of  surfaces  in X .  (Choosing this
function for a specific problem is something of an art, but we can always try a few
different  f  known  to  have  been  successful  in  similar  problems  and  simply  hope
for the best.)

As an example,  consider a second-degree  polynomial  surface in R2 , described by
w1 + w2  x1 + w3  x2 + w4  x1

2 + w5  x1  x2 + w6  x2
2 = 0.  We  may  represent  such  a

surface by choosing a mapping X Ø H  as

(6)fHx1 , x2 L = H1, x1,  x2 , x1
2 , x1  x2 , x2  x1,  x2

2 L
and forming a hyperplane in H  defined by w.z + b = 0, where z = fHxL. If we now
solve the problem in the new variables z, we obtain a wide-margin hyperplane in
H corresponding to a second-degree surface in X .

The  problem  with  this  approach  is  that  nonlinear  f-transformations  may  have
huge  dimensions.  Even  for  the  simple  quadratic  surface  considered  here,  we
obtain  dim H = 1 + n + n2  when  dim X = n.  For  increasing  polynomial  degree,
this  number  grows quickly,  and there are even nonlinear  functions that  result  in
infinite-dimensional  H .  This  is  why  we  do  not  solve  the  primal  problem  (2)
directly: w may not be a finite vector, but a always is.

This  problem  is  elegantly  solved  by  kernels.  It  turns  out  that  there  are  many
functions  f  for  which we can  compute  scalar  products  fHxL.fHyL  in  H  implicitly,
without  actually  calculating  f.  And  in  fact,  this  is  all  we  need  for  solving  the
SVM formulation (1). Thus we define the kernel function as

K Hx, yL = fHxL.fH yL

In the case of example (6), it turns out that KHx, yL = fHxL.fH yL = H1 + x. yL2 , which
is why  we chose that  specific  form of f  (explaining  the two separate  terms x1  x2
and  x2  x1 ).  It  is  not  difficult  to  prove  that  this  result  holds  for  any  polynomial
degree d; therefore, using the polynomial kernel

Kd Hx, yL = H1 + x. yLd

we can obtain any polynomial separating surfaces.

· A Nonlinear Example: Using Kernels
Let  us  see  how  kernels  are  handled  in  MathSVM  to  solve  nonlinear  problems.
The second-degree kernel in (6) is provided by

In[18]:= PolynomialKernel�x, y, 2�

Out[18]= �1 � x.y�2

Here is some data a linear classifier cannot possibly cope with.

120 Roland Nilsson, Johan Björkegren, and Jesper Tegnér

The Mathematica  Journal 10:1 © 2006 Wolfram  Media, Inc.



In[19]:= len � 50;

X � Join�
RandomArray�NormalDistribution�0, 0.03�, �len�2, 2��,
Table�

�Random�NormalDistribution�i�len � 1� 4, 0.01��,

Random�NormalDistribution��2 i�len � 1� 2	2 � 1 �6, 0.01

�,

�i, len�2�

;
y � Join�Table�1, �len�2��, Table��1, �len�2���;
SVMDataPlot�X, y, PlotRange � All�
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Let us solve this problem using the polynomial kernel. This is done as before, by
supplying  the  desired  kernel  (which  can  be  any  function  accepting  two  argu-
ments) using the KernelFunction option.

In[23]:= Τ � 0.01;
pk � PolynomialKernel�#1, #2, 2� &;
Α � SeparableSVM�X, y, Τ, KernelFunction � pk�

Out[25]= �0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 3826.52, 0, 0, 0, 0, 0, 0, 0, 1146.88, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1644.97, 0, 0, 0, 0, 1034.67, 0�

When visualizing  the results,  SVMPlot  can use the kernel  functions  to  draw any
nonlinear decision curves.

In[26]:= SVMPlot�Α, X, y, KernelFunction � pk�
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In[27]:= Clear�len, X, y, Α, pk�
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· High-Dimensional Input Spaces
An  interesting  consequence  of  the  kernel  idea  is  that  the  dimensionality  of  the
input  space  X  does  not  matter  for  the  time-complexity  of  the  SVM  algorithm.
Since  the  solution  is  computed  using  only  dot  products  between  samples  (in
input space or some feature space), high-dimensional problems are solved equally
fast  (not considering the time used to precalculate  the kernel matrix Q,  which is
usually  not  noticeable).  As  an  example  of  this,  consider  a  problem  with  dimen-
sion n = 1000.

In[28]:= len � 20; n � 1000;
X � Join�

RandomArray�NormalDistribution��2, 1�, �len�2, n��,
RandomArray�NormalDistribution�2, 1�, �len�2, n���;

y � Join�Table�1, �len�2��, Table��1, �len�2���;

The kernel matrix is still just l ä l.

In[31]:= KernelMatrix�IdentityKernel, X� �� Dimensions

Out[31]= �20, 20�

The  SVM  algorithm  is  still  fast,  although  the  problem  is  much  harder  due  to
extremely  low  sample  density,  which  is  reflected  by  more  support  vectors  (the
nonzero ai ).

In[32]:= Τ � 0.01;
�Α � SeparableSVM�X, y, Τ�	 �� Timing

Out[33]= �0.79 Second, �0.0000185576, 9.32288� 10�6,
0, 0, 0, 0.000031162, 0.0000215259, 0, 0.0000267382,

0.0000171359, 1.00351�10�6, 0.0000297867, 0.0000293384, 0,

0.0000131243, 0, 0.000024641, 0.000020647, 0, 5.90165�10�6��

The  solution  in  this  case  may  be  viewed  using  the  projection  of  data  onto  the
weight  vector  w.  The  separation  looks  almost  perfect,  although  there  will  be
problems  with  overfitting  (the  solution  may  not work  well  when  applied to  new,
unseen  examples  x).  However,  this  problem  is  outside  the  scope  of  the  present
article.

In[34]:= ListPlot�X.WeightVector�Α, X, y��
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‡ Regression Analysis with SVMs
So far we have considered SVMs as a tool for pattern recognition only. It is also
possible to use the SVM framework for regression problems. Consider a function
y = f HxL to be approximated; for example, a quadratic.

In[35]:= X � Range��5, 5�; len � Length�X�;
y � Map�#2 � Random�NormalDistribution�0, 2�� &, X�;
ListPlot�Thread��X, y���
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We can adapt  the SVM method to the regression  setting by using a  e-insensitive
loss function 

Le H f HxL, gHxLL =
lom
no

0, »» f HxL - gHxL »» < e

»» f HxL - gHxL »» -e, otherwise

where  gHxL  is  the SVM approximation  to the regression  function f HxL.  This  loss
function  determines  how  much  a  deviation  from  the  true  f HxL  is  penalized;  for
deviations less than e, no penalty is incurred. Here is what the loss function looks
like.

In[38]:= Plot�If�Abs�x� � 1, 0, Abs�x� � 1�, �x, �3, 3�, AxesLabel � �"f�g", "L"��
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f-g
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Using  this  idea,  the  regression  problem  is  transformed  to  a  classification  prob-
lem:  any  x  such  that  Le H f HxL, gHxLL = 0  may  be considered  “correctly  classified.”
MathSVM  solves  such  problems  using  the  RegressionSVM  function,  parameter-
ized by e and a penalty constant C. Here we again try a polynomial kernel.
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In[39]:= pk � PolynomialKernel�#1, #2, 2� &;
Ε � 3; c � 0.5;
Τ � 0.01;
Α � RegressionSVM�X, y, c, Ε, Τ, KernelFunction � pk�

Out[42]= �0, 0, 0, 0, 0, 0.0252908, 0, 0, 0, 0,
0, 0.0133908, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0119�

The function RegressionSVMPlot  provides convenient  plotting of  the resulting
regression  function.  As  with  SVMPlot,  the  kernel  type  used  is  supplied  as  a
parameter.  Note  how  support  vectors  in  this  case  are  chosen  as  the  data  points
that are furthest away from the regression line.

In[43]:= RegressionSVMPlot�Α, X, y, Ε, KernelFunction � pk�
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In[44]:= RegressionBias�Α, X, y, Ε, KernelFunction � pk�

Out[44]= 4.83561

We can, of  course,  also  obtain the analytical  expression  of  the estimated  regres-
sion function.

In[45]:= RegressionFunction�Α, X, y, Ε, x, KernelFunction � pk�

Out[45]= 4.81032 � 0.0133908 �1 � 5 x�2 � 0.0119 �1 � 5 x�2

In[46]:= Clear�Α, X, y, pk, Ε, c, len�

· Two-Dimensional Example
We  can  use  SVM  regression  with  domains  of  any  dimension  (that  is  the  main
advantage). Here is a simple two-dimensional example.
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In[47]:= X � Table��i, j�, �i, �4, 4�, �j, �4, 4��;
y � Map�

��#1�2 � #2�2� � 5 � Random�NormalDistribution�0, 0.5��� &, X, �2�
;
ListDensityPlot�y�
X � Flatten�X, 1�; y � Flatten�y�;

0 2 4 6 8

0

2

4

6

8

In[51]:= pk � PolynomialKernel�#1, #2, 2� &;
Ε � 3; c � 0.5;
Τ � 0.01;
Α � RegressionSVM�X, y, c, Ε, Τ, KernelFunction � pk�

Out[54]= �0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00231481, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00109909,
0, 0, 0, 0, 0, 0, 0, 0.00059379, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0.000621928, 0, 0, 0, 0, 0, 0, 0, 0�

Here is the regression function.

In[55]:= rf � RegressionFunction�Α, X, y, Ε, �i, j�, KernelFunction � pk�

Out[55]= 1.94266 � 0.00109909 �1 � 4 i � 4 j�2 � 0.000621928�1 � 4 i � 4 j�2 �
0.00231481�1 � i � j�2 � 0.00059379 �1 � 4 i � 4 j�2

There are no specialized 3D plots for regression in the MathSVM package. Here
is the usual Plot3D visualization.
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In[56]:= Plot3D�rf, �i, �4, 4�, �j, �4, 4��

-4

-2

0

2

4
-4

-2

0

2

4

2

2.5

3

4

-2

0

2

‡ Conclusion
In  this  article,  we  have  demonstrated  the  utility  of  the  MathSVM  package  for
solving  pattern  recognition  and  regression  problems.  This  is  an  area  of  very
active  research  and  these  algorithms  are  evolving  quickly.  In  a  rapidly  moving
field  such  as  this,  it  is  important  to  have  a  clear,  well  documented,  high-level
approach  to  implementation  to  minimize  confusion.  Mathematica  provides  an
excellent  solution  here,  due  to  its  high-level  programming  language  and  sym-
bolic capabilities.

MathSVM  is currently 100% native Mathematica  code, written with the emphasis
on clarity. This does incur penalties in terms of computational speed. Some parts
of  the  QP  algorithm  are therefore  being  ported  to  Java  at  this  time  to  improve
performance. This should not impair the clarity of the software in any way, since
the  QPSolve  function  is  easy  separable  from  the  other  parts  of  MathSVM  in  a
“black box” fashion.

The MathSVM software is still in its infancy and will no doubt expand rapidly, as
our  group  is  currently  involved  in  many  projects  in  pattern  recognition  and
high-dimensional  data analysis in general, as well as in a biomedical context. We
hope  that  this  contribution  will  initiate  other  efforts  to  bring  understandable
implementations of machine learning algorithms to the Mathematica community.
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‡ Additional Material
MathSVM.nb
MathSVM.m

Available at www.mathematica-journal.com/issue/v10i1/download.
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