
The Mathematica® Journal

A Flexible
Implementation for
Support Vector
Machines
Roland Nilsson
Johan Björkegren
Jesper Tegnér
Support vector machines (SVMs) are learning algorithms that have many
applications in pattern recognition and nonlinear regression. Being very
popular, SVM software is available in many versions. Still, existing imple-
mentations, usually in low-level languages such as C, are often difficult to
understand and adapt to specific research tasks. In this article, we present
a compact and yet flexible implementation of SVMs in Mathematica,
traditionally named MathSVM. This software is designed to be easy to
extend and modify, drawing on the powerful high-level language of
Mathematica.

‡ Background
A pattern recognition problem amounts to learning how to discriminate between
data points xi belonging to two classes, defined by class labels yi œ 8+1, -1<, when
given only a set of examples Hxi , yi L from each class. These problems are found
in various applications, from automated handwriting recognition to medical
expert systems, and pattern recognition or machine learning algorithms are
routinely applied to solve them.

It may be helpful for newcomers to relate this to a more familiar problem:
standard statistical hypothesis testing for one-dimensional xi , such as Student’s
t-test [1, ch. 8], can be viewed as a very simple kind of pattern recognition
problem. Here, the hypotheses H0 and H1 correspond to classes +1, -1, and the
familiar

gHxL =
lom
no

H0, if x < xêê

H1 , if x > xêê
y
{
zzz,

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

where xêê is the mean of within-class means,

xêê =
1
ÅÅÅÅÅÅ
2

i
k
jjj

1
ÅÅÅÅÅÅÅ
l1

 ‚
i: y1 =+1

xi +
1

ÅÅÅÅÅÅÅÅÅÅ
l-1

 ‚
i: y1 =-1

xi
y
{
zzz,

lc = » 8i : y1 = c< » and H0 < H1 , is called the decision rule or sometimes simply the
classifier. We say that the decision rule g is induced from data xi , in this case
determined by computing xêê.

However, real pattern recognition problems usually involve high-dimensional
data (such as image data) and unknown underlying distributions. In this situation,
it is nearly impossible to develop statistical tests like the preceding one. These
problems are typically attacked with algorithms, such as artificial neural networks
[2], decisions trees [3, ch. 18], Bayesian models [4], and recently SVMs [5], to
which we will devote the rest of this article. Here we will only consider data that
can be represented as vectors x œ Rn ; other kinds of information can usually be
changed to this form in some appropriate manner.

‡ Support Vector Machines
SVMs attempt to find a hyperplane Pw,b = w.x + b = 0, x œ Rn that separates the
data points xi (meaning that all xi in a given class are on the same side of the
plane), corresponding to a decision rule

gHxL = signHw.x + bL.
In SVM literature, w is often referred to as the weight vector; b is called the bias (a
term adopted from neural networks). This idea is not new; it dates back at least
to R.A. Fisher and the theory of linear discriminants [6]. The novelty of SVMs lies
in how this plane is determined: SVMs choose the separating hyperplane
w.x + b = 0 that is furthest away from the data points xi , that is, that has maximal
margin (Figure 1). The underlying idea is that a hyperplane far from any
observed data points should minimize the risk of making wrong decisions when
classifying new data. To be precise, in SVMs we maximize the distance to the
closest data points. We solve

(1)maxHw,bL Hmini dHPw,b , xi LL,
where dHPw,b , xi L = » w.xi + b » ê »» w »» is the distance between data point i and the
plane Pw , subject to the constraint that this plane still separates the classes. The
plane Pw that solves (1) is called the optimal separating hyperplane and is unique
[5]. MathSVM provides algorithms for determining this plane from data.

A Flexible Implementation for Support Vector Machines 115

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

-4 -2 2

-2

-1

1

2

3

Figure 1. Two-class data (black and grey dots), their optimal separating hyperplane
(continuous line), and support vectors (circled in blue). This is an example output of the
SVMPlot function in MathSVM. The width of the “corridor” defined by the two dotted
lines connecting the support vectors is the margin of the optimal separating hyperplane.

‡ Solving the Optimization Problem
· The Primal Problem

It turns out that the optimal separating hyperplane solving (1) can be found as
the solution to the equivalent optimization problem

(2)
minw,b

1
ÅÅÅÅÅÅ
2

»» w »»2

subject to yi HwT xi + bL ¥ 1,

referred to as the primal problem. Typically, only a small subset of the data
points will attain equality in the constraint; these are termed support vectors since
they are “supporting” (constraining) the hyperplane (Figure 1). In fact, the
solution Hw, bL depends only on these specific points. Therefore, the method also
is a scheme for data compression, in the sense that the support vectors contain all
the information necessary to derive the decision rule.

· The Dual Problem
For reasons that will become clear later, w often has very high dimension, which
makes the primal problem (2) intractable. Therefore, we attack (2) indirectly, by
solving the dual problem

(3)
mina aT Qa - a

subject to ai ¥ 0, yT a = 0,

where Q = Hqi j L = Hyi y j x j xi L. This is a quadratic programming (QP) problem,
which has a unique solution whenever Q is positive semidefinite (as is the case
here). It is solved numerically in MathSVM by the function QPSolve. (At this
point we need to load the MathSVM package; see Additional Material.)

116 Roland Nilsson, Johan Björkegren, and Jesper Tegnér

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

In[1]:= �� MathSVM‘
�� Statistics‘NormalDistribution‘

In[3]:= ? QPSolve

QPSolve�Q,p,a,b,c,y,Τ� solves the quadratic programming problem min
Α.Q.Α�p.Α, subject to a�Α�b and y.Α�c. QPSolve uses the GSMO
algorithm described by Keerthi et al. Τ is a solution tolerance
parameter �0.01 or so is usually good enough for SVMs�. Q must
be a positive semidefinite matrix to guarantee convergence.

The variable a has dim a = l, the number of data points, so the matrix Q has l2

elements, which may be quite large for large problems. Therefore, QPSolve
employs a divide-and-conquer approach [7] that allows for solving (3) efficiently
without storing the full matrix Q in memory.

Having solved the dual problem for a using QPSolve, we obtain the optimal
weight vector w and bias term b, that is, the solution to the primal problem (2),
using the identities

(4)w = ‚
i

ai yi xi

(5)b = -
1
ÅÅÅÅÅÅ
2

 HwT x+ + wT x- L,

where in (5) x+ , x- are any two support vectors belonging to class +1 and -1,
respectively (there always exist at least two such support vectors) [5].

· A Simple SVM Example
Enough theory—let us generate some data and solve a simple SVM problem
using MathSVM.

In[4]:= len � 20;
X � Join�

RandomArray�NormalDistribution��2, 1�, �len�2, 2��,
RandomArray�NormalDistribution�2, 1�, �len�2, 2���;

y � Join�Table�1, �len�2��, Table��1, �len�2���;

For this elementary problem, we use the simple SVM formulation (2) provided
in MathSVM by the SeparableSVM function.

In[7]:= Τ � 0.01;
Α � SeparableSVM�X, y, Τ�

Out[8]= �0.405345, 0, 0, 0, 0, 0, 0, 0, 0,
0.102479, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.507824�

A Flexible Implementation for Support Vector Machines 117

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

The returned vector a is the solution found by QPSolve for the dual formulation
(3) of the SVM problem we just constructed. For this specific problem, the dual
formulation used is exactly that described by (3), that is

Q = Hqi j L = Hyi y j x j xi L
p = H-1, … , -1L
a = H0, … , 0L, b = H0, … , 0L
c = 0

The support vectors are immediately identifiable as the nonzero ai . (4) and (5)
are implemented as

In[9]:= WeightVector�Α, X, y�

Out[9]= ��0.73531, �0.692296�

In[10]:= Bias�Α, X, y�

Out[10]= �0.973496

A plot similar to Figure 1 is produced by the SVMPlot function. As in Figure 1,
the solid line marks the optimal hyperplane, and dotted lines mark the width of
the corridor that joins support vectors (highlighted in blue).

In[11]:= SVMPlot�Α, X, y�

-3 -2 -1 1 2 3

-4

-3

-2

-1

1

2

3

· Nonseparable Data
Often the assumption of separable training data is not reasonable (it may fail
even for the preceding simple example). In such cases, NonseparableSVM should
be used. This SVM variant takes a parameter C that determines how hard points
violating the constraint in (2) should be penalized. This parameter appears in the
objective function of the primal problem, which now is formulated as [5]

minw,b,x
1
ÅÅÅÅÅÅ
2

»» w.w »» +C ‚
i

xi

subject to yi Hxi .w + bL ¥ 1 - xi , xi ¥ 0.

Large C means high penalty, and in the limit C Ø ¶ we obtain the separable case.

118 Roland Nilsson, Johan Björkegren, and Jesper Tegnér

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

In[12]:= Τ � 0.01;
Α � NonseparableSVM�X, y, 0.5, Τ�

Out[13]= �0.3991, 0, 0, 0, 0, 0, 0, 0, 0, 0.1009, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.5�

In[14]:= SVMPlot�Α, X, y�

-3 -2 -1 1 2 3

-4

-3

-2

-1

1

2

3

· Getting QP Formulations
Sometimes it is interesting to examine what the QP problem looks like for a
given SVM formulation. Using the option FormulationOnly, we can inspect the
various parameters instead of actually solving the QP. This can, for example, be
used to study expressions analytically.

In[15]:= Clear�X, y, Α, len�

In[16]:= Τ � 0.01;
NonseparableSVM�Array�x, �2, 2��,
Array�y, �2��, C, Τ, FormulationOnly � True�

Out[17]= ����x�1, 1�2 � x�1, 2�2	 y�1�2,

�x�1, 1� x�2, 1� � x�1, 2� x�2, 2�� y�1� y�2�
,

��x�1, 1� x�2, 1� � x�1, 2� x�2, 2�� y�1� y�2�,

�x�2, 1�2 � x�2, 2�2	 y�2�2

,

��1, �1�, �0, 0�, �C, C�, 0, �y�1�, y�2��, 0.01

The parameters are given in the order corresponding to the arguments of
QPSolve.

‡ Feature Space and Kernels
In all of the preceding examples, the separating surface is assumed to be linear (a
hyperplane). This is often a serious limitation, as many pattern recognition
problems are inherently nonlinear in the input data and require nonlinear
separating surfaces. To overcome this obstacle, for each specific problem we
devise some appropriate transformation fHxL from input space X (the domain of
the original data) to a feature space H. The function f is chosen so that a hyper-

A Flexible Implementation for Support Vector Machines 119

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

plane in H corresponds to some desirable class of surfaces in X . (Choosing this
function for a specific problem is something of an art, but we can always try a few
different f known to have been successful in similar problems and simply hope
for the best.)

As an example, consider a second-degree polynomial surface in R2 , described by
w1 + w2 x1 + w3 x2 + w4 x1

2 + w5 x1 x2 + w6 x2
2 = 0. We may represent such a

surface by choosing a mapping X Ø H as

(6)fHx1 , x2 L = H1, x1, x2 , x1
2 , x1 x2 , x2 x1, x2

2 L
and forming a hyperplane in H defined by w.z + b = 0, where z = fHxL. If we now
solve the problem in the new variables z, we obtain a wide-margin hyperplane in
H corresponding to a second-degree surface in X .

The problem with this approach is that nonlinear f-transformations may have
huge dimensions. Even for the simple quadratic surface considered here, we
obtain dim H = 1 + n + n2 when dim X = n. For increasing polynomial degree,
this number grows quickly, and there are even nonlinear functions that result in
infinite-dimensional H . This is why we do not solve the primal problem (2)
directly: w may not be a finite vector, but a always is.

This problem is elegantly solved by kernels. It turns out that there are many
functions f for which we can compute scalar products fHxL.fHyL in H implicitly,
without actually calculating f. And in fact, this is all we need for solving the
SVM formulation (1). Thus we define the kernel function as

K Hx, yL = fHxL.fH yL

In the case of example (6), it turns out that KHx, yL = fHxL.fH yL = H1 + x. yL2 , which
is why we chose that specific form of f (explaining the two separate terms x1 x2
and x2 x1). It is not difficult to prove that this result holds for any polynomial
degree d; therefore, using the polynomial kernel

Kd Hx, yL = H1 + x. yLd

we can obtain any polynomial separating surfaces.

· A Nonlinear Example: Using Kernels
Let us see how kernels are handled in MathSVM to solve nonlinear problems.
The second-degree kernel in (6) is provided by

In[18]:= PolynomialKernel�x, y, 2�

Out[18]= �1 � x.y�2

Here is some data a linear classifier cannot possibly cope with.

120 Roland Nilsson, Johan Björkegren, and Jesper Tegnér

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

In[19]:= len � 50;

X � Join�
RandomArray�NormalDistribution�0, 0.03�, �len�2, 2��,
Table�

�Random�NormalDistribution�i�len � 1� 4, 0.01��,

Random�NormalDistribution��2 i�len � 1� 2	2 � 1 �6, 0.01

�,

�i, len�2�

;
y � Join�Table�1, �len�2��, Table��1, �len�2���;
SVMDataPlot�X, y, PlotRange � All�

-0.2 -0.1 0.1 0.2

-0.15

-0.1

-0.05

0.05

Let us solve this problem using the polynomial kernel. This is done as before, by
supplying the desired kernel (which can be any function accepting two argu-
ments) using the KernelFunction option.

In[23]:= Τ � 0.01;
pk � PolynomialKernel�#1, #2, 2� &;
Α � SeparableSVM�X, y, Τ, KernelFunction � pk�

Out[25]= �0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 3826.52, 0, 0, 0, 0, 0, 0, 0, 1146.88, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1644.97, 0, 0, 0, 0, 1034.67, 0�

When visualizing the results, SVMPlot can use the kernel functions to draw any
nonlinear decision curves.

In[26]:= SVMPlot�Α, X, y, KernelFunction � pk�

-0.2 -0.1 0.1 0.2

-0.15

-0.1

-0.05

0.05

In[27]:= Clear�len, X, y, Α, pk�

A Flexible Implementation for Support Vector Machines 121

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

· High-Dimensional Input Spaces
An interesting consequence of the kernel idea is that the dimensionality of the
input space X does not matter for the time-complexity of the SVM algorithm.
Since the solution is computed using only dot products between samples (in
input space or some feature space), high-dimensional problems are solved equally
fast (not considering the time used to precalculate the kernel matrix Q, which is
usually not noticeable). As an example of this, consider a problem with dimen-
sion n = 1000.

In[28]:= len � 20; n � 1000;
X � Join�

RandomArray�NormalDistribution��2, 1�, �len�2, n��,
RandomArray�NormalDistribution�2, 1�, �len�2, n���;

y � Join�Table�1, �len�2��, Table��1, �len�2���;

The kernel matrix is still just l ä l.

In[31]:= KernelMatrix�IdentityKernel, X� �� Dimensions

Out[31]= �20, 20�

The SVM algorithm is still fast, although the problem is much harder due to
extremely low sample density, which is reflected by more support vectors (the
nonzero ai).

In[32]:= Τ � 0.01;
�Α � SeparableSVM�X, y, Τ�	 �� Timing

Out[33]= �0.79 Second, �0.0000185576, 9.32288� 10�6,
0, 0, 0, 0.000031162, 0.0000215259, 0, 0.0000267382,

0.0000171359, 1.00351�10�6, 0.0000297867, 0.0000293384, 0,

0.0000131243, 0, 0.000024641, 0.000020647, 0, 5.90165�10�6��

The solution in this case may be viewed using the projection of data onto the
weight vector w. The separation looks almost perfect, although there will be
problems with overfitting (the solution may not work well when applied to new,
unseen examples x). However, this problem is outside the scope of the present
article.

In[34]:= ListPlot�X.WeightVector�Α, X, y��

5 10 15 20

-1

-0.5

0.5

1

122 Roland Nilsson, Johan Björkegren, and Jesper Tegnér

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

‡ Regression Analysis with SVMs
So far we have considered SVMs as a tool for pattern recognition only. It is also
possible to use the SVM framework for regression problems. Consider a function
y = f HxL to be approximated; for example, a quadratic.

In[35]:= X � Range��5, 5�; len � Length�X�;
y � Map�#2 � Random�NormalDistribution�0, 2�� &, X�;
ListPlot�Thread��X, y���

-4 -2 2 4

10

15

20

We can adapt the SVM method to the regression setting by using a e-insensitive
loss function

Le H f HxL, gHxLL =
lom
no

0, »» f HxL - gHxL »» < e

»» f HxL - gHxL »» -e, otherwise

where gHxL is the SVM approximation to the regression function f HxL. This loss
function determines how much a deviation from the true f HxL is penalized; for
deviations less than e, no penalty is incurred. Here is what the loss function looks
like.

In[38]:= Plot�If�Abs�x� � 1, 0, Abs�x� � 1�, �x, �3, 3�, AxesLabel � �"f�g", "L"��

-3 -2 -1 1 2 3
f-g

0.5

1

1.5

2

L

Using this idea, the regression problem is transformed to a classification prob-
lem: any x such that Le H f HxL, gHxLL = 0 may be considered “correctly classified.”
MathSVM solves such problems using the RegressionSVM function, parameter-
ized by e and a penalty constant C. Here we again try a polynomial kernel.

A Flexible Implementation for Support Vector Machines 123

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

In[39]:= pk � PolynomialKernel�#1, #2, 2� &;
Ε � 3; c � 0.5;
Τ � 0.01;
Α � RegressionSVM�X, y, c, Ε, Τ, KernelFunction � pk�

Out[42]= �0, 0, 0, 0, 0, 0.0252908, 0, 0, 0, 0,
0, 0.0133908, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0119�

The function RegressionSVMPlot provides convenient plotting of the resulting
regression function. As with SVMPlot, the kernel type used is supplied as a
parameter. Note how support vectors in this case are chosen as the data points
that are furthest away from the regression line.

In[43]:= RegressionSVMPlot�Α, X, y, Ε, KernelFunction � pk�

-4 -2 2 4

10

15

20

In[44]:= RegressionBias�Α, X, y, Ε, KernelFunction � pk�

Out[44]= 4.83561

We can, of course, also obtain the analytical expression of the estimated regres-
sion function.

In[45]:= RegressionFunction�Α, X, y, Ε, x, KernelFunction � pk�

Out[45]= 4.81032 � 0.0133908 �1 � 5 x�2 � 0.0119 �1 � 5 x�2

In[46]:= Clear�Α, X, y, pk, Ε, c, len�

· Two-Dimensional Example
We can use SVM regression with domains of any dimension (that is the main
advantage). Here is a simple two-dimensional example.

124 Roland Nilsson, Johan Björkegren, and Jesper Tegnér

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

In[47]:= X � Table��i, j�, �i, �4, 4�, �j, �4, 4��;
y � Map�

��#1�2 � #2�2� � 5 � Random�NormalDistribution�0, 0.5��� &, X, �2�
;
ListDensityPlot�y�
X � Flatten�X, 1�; y � Flatten�y�;

0 2 4 6 8

0

2

4

6

8

In[51]:= pk � PolynomialKernel�#1, #2, 2� &;
Ε � 3; c � 0.5;
Τ � 0.01;
Α � RegressionSVM�X, y, c, Ε, Τ, KernelFunction � pk�

Out[54]= �0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00231481, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00109909,
0, 0, 0, 0, 0, 0, 0, 0.00059379, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0,
0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0.000621928, 0, 0, 0, 0, 0, 0, 0, 0�

Here is the regression function.

In[55]:= rf � RegressionFunction�Α, X, y, Ε, �i, j�, KernelFunction � pk�

Out[55]= 1.94266 � 0.00109909 �1 � 4 i � 4 j�2 � 0.000621928�1 � 4 i � 4 j�2 �
0.00231481�1 � i � j�2 � 0.00059379 �1 � 4 i � 4 j�2

There are no specialized 3D plots for regression in the MathSVM package. Here
is the usual Plot3D visualization.

A Flexible Implementation for Support Vector Machines 125

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

In[56]:= Plot3D�rf, �i, �4, 4�, �j, �4, 4��

-4

-2

0

2

4
-4

-2

0

2

4

2

2.5

3

4

-2

0

2

‡ Conclusion
In this article, we have demonstrated the utility of the MathSVM package for
solving pattern recognition and regression problems. This is an area of very
active research and these algorithms are evolving quickly. In a rapidly moving
field such as this, it is important to have a clear, well documented, high-level
approach to implementation to minimize confusion. Mathematica provides an
excellent solution here, due to its high-level programming language and sym-
bolic capabilities.

MathSVM is currently 100% native Mathematica code, written with the emphasis
on clarity. This does incur penalties in terms of computational speed. Some parts
of the QP algorithm are therefore being ported to Java at this time to improve
performance. This should not impair the clarity of the software in any way, since
the QPSolve function is easy separable from the other parts of MathSVM in a
“black box” fashion.

The MathSVM software is still in its infancy and will no doubt expand rapidly, as
our group is currently involved in many projects in pattern recognition and
high-dimensional data analysis in general, as well as in a biomedical context. We
hope that this contribution will initiate other efforts to bring understandable
implementations of machine learning algorithms to the Mathematica community.

‡ References
[1] G. Casella and R. L. Berger, Statistical Inference, 2nd ed., Belmont, CA: Duxbury Press,

2002.

[2] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed., Englewood Cliffs,
NJ: Prentice Hall, 1999.

126 Roland Nilsson, Johan Björkegren, and Jesper Tegnér

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

[3] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, Englewood Cliffs,
NJ: Prentice Hall, 1995.

[4] N. Friedman, “Inferring Cellular Networks Using Probabilistic Graphical Models,”
Science, 303, 2004 pp. 799–805.

[5] V. N. Vapnik, Statistical Learning Theory, New York: John Wiley & Sons, 1998.

[6] R. A. Fisher, “The Statistical Utilization of Multiple Measurements,” Annals of Eugenics,
8, 1938 pp. 376–386.

[7] S. S. Keerthi and E. G. Gilbert, “Convergence of a Generalized SMO Algorithm for
SVM Classifier Design,” Machine Learning, 46, 2002 pp. 351–360.

‡ Additional Material
MathSVM.nb
MathSVM.m

Available at www.mathematica-journal.com/issue/v10i1/download.

About the Authors
Roland Nilsson is a graduate student at Linköping University working with machine
learning algorithms in analysis of high-dimensional biomedical data.

Johan Björkegren is an associate professor in molecular medicine at Karolinska
Institutet, Sweden, and cofounder of Clinical Gene Networks, a biotechnology
company involved in system-level analysis of biomedical data in cardiovascular
disease.

Jesper Tegnér is a professor of computational biology at Linköping University,
Sweden, and cofounder of Clinical Gene Networks.

Roland Nilsson
Computational Biology
Linköping University
SE-58183 Linköping, Sweden
rolle@ifm.liu.se

Johan Björkegren
Center for Genomics and Bioinformatics
Karolinska Institutet
SE-17177 Stockholm, Sweden
johan.bjorkegren@ks.se

Jesper Tegnér
Computational Biology
Linköping University
SE-58183 Linköping, Sweden
jespert@ifm.liu.se

A Flexible Implementation for Support Vector Machines 127

The Mathematica Journal 10:1 © 2006 Wolfram Media, Inc.

