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a b s t r a c t 

Multiple Sclerosis (MS) is an autoimmune disease targeting the central nervous system (CNS) causing de- 

myelination and neurodegeneration leading to accumulation of neurological disability. Here we present a 

minimal, computational model involving the immune system and CNS that generates the principal sub- 

types of the disease observed in patients. The model captures several key features of MS, especially those 

that distinguish the chronic progressive phase from that of the relapse-remitting. In addition, a rare sub- 

type of the disease, progressive relapsing MS naturally emerges from the model. The model posits the 

existence of two key thresholds, one in the immune system and the other in the CNS, that separate dy- 

namically distinct behavior of the model. Exploring the two-dimensional space of these thresholds, we 

obtain multiple phases of disease evolution and these shows greater variation than the clinical classifica- 

tion of MS, thus capturing the heterogeneity that is manifested in patients. 

© 2017 KAUST, BESE, Saudi Arabia. Published by Elsevier Inc. 

This is an open access article under the CC BY-NC-ND license. 
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. Introduction 

Multiple Sclerosis (MS) is an inflammatory, autoimmune disease

argeting the central nervous system (CNS) inducing demyelination,

xonal loss and neurodegeneration [1] . Most patients initially dis-

lay a relapsing-remitting disease course (RRMS), with bouts of

ttacks followed by a variable degree of recovery of neurological

unctions. During this phase, inflammatory lesions occur intermit-

ently as demonstrated by magnetic resonance imaging. With time,

ost RRMS patients convert to a (secondary) progressive disease

tate (SPMS), characterized by irreversible deterioration of neuro-

ogical health and abilities. It has been hypothesized that the tran-

ition from RRMS to SPMS occurs when the extent or nature of

njury reaches a certain threshold [2,3] . In addition, a smaller frac-

ion of patients (10–15%) display a progressive disease course from

nset - primary progressive MS (PPMS) [4] . 

Despite plenty of research, there is as yet no convincing expla-

ation for the origins and mechanisms for MS [5] . The common
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lassification into the three subtypes (RRMS, SPMS, PPMS) ignores

he immense heterogeneity that exists among patients at the clin-

cal, immunological and histopathological level [6,7] . For example,

hile both demyleination and axonal neurodegeneration are com-

only observed in MS patients, the relationship between the two

rocesses and their combined effect on disability or disease pro-

ression is not well-understood [3,8] . Given these large variations

n MS characteristics, stitching together different observations and

esults to produce a consistent framework describing the disease

as been and remains an elusive goal. 

Here we present a minimal, computational model that repro-

uces the principal types of MS and accounts for several features

f the disease progression. The model is shaped by specific as-

umptions that are supported by various fragments of evidence

rom histopathological and neurological sources. We locate the ori-

in of the disease in the immune system, in line with the current

nderstanding [9] . The spatial and temporal scales describing the

rocesses are macroscopic, representing a coarse-grained behavior

f the system. The perturbations and fluctuations in the model are

epresented as stochastic noise. 

The model also posits the existence of two independent

hresholds or capacities, one that regulates the immune system
ccess article under the CC BY-NC-ND license. 
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Fig. 1. Interaction diagram representing the immune system and CNS. The pro (PI) 

and anti-inflammatory (AI) components form a negative feedback loop (AI sup- 

presses PI while increase of PI enhances AI). The two modules are linked by the in- 

filtration of the CNS by PI and causing demyelination and lesions. The self-loops on 

PI and CNS represent the effect of breaching their thresholds, which leads to unreg- 

ulated increase of the inflammatory component and neurodegeneration respectively. 

The notion that pro-inflammatory processes or degenerative processes, can increase 

beyond control of is indicated with a positive feedback loop (self-arrow) at PI and 

CNS respectively. The random perturbation on the pro-inflammatory component is 

represented by an incoming arrow from the node EE (environmental fluctuations). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c  

i  

a  

d  

b  

n  

c  

f  

t  

i  

a  

i  

m

 

g  

t  

p  

fl  

p  

r  

t  

a  

o  

i

 

m

 

 

 

 

Z  

E  

a  

i  

t

F

c  

t  

d

 

T  

t  

i  

p  

I  

t  

o  

t  

d  

p  

t  

I  
dynamics, and the other representing the protective capacity

against neurodegeneration. These induce irreversible transitions in

the progress of the disease. With all other parameters of the model

held fixed, studying the classes of disease trajectories obtained

across the two dimensional space of the thresholds reveals a var-

ied set of ‘phases’. Thus our minimal model is sufficient to capture

the observed heterogeneity of the disease, above and beyond the

standard clinical classification. 

2. Model construction 

Fig. 1 shows the interaction graph of the model. The im-

mune system components are one of two possible types: pro-

inflammatory (PI) and anti-inflammatory (AI) [10] . Following ear-

lier work [11,12] we assume that there exists a cross-regulatory in-

teraction between the two components setting up oscillations in

their respective numbers. The anti-inflammatory factors suppresses

inflammation while increase of the inflammatory component in

turn strengthens the anti-inflammatory response. The initial dam-

age to the CNS is the demyelination of white matter caused by

inflammatory attacks [13] ; the greater the inflammatory compo-

nent in the immune system, the more their infiltration into the

CNS, and hence, more widespread the demyelination. There is si-

multaneously an internal process within the CNS that repairs the

damage and remyelinates the axons [14] . In addition, neurodegen-

eration and neuronal death [8] occurs in the CNS and we model

the combined effect of demyelination and neurodegeneration as

the overall disease pathology. 

Apart from the above well-established processes, there are a

couple of additional dynamics that we propose as model hypothe-

ses. First, the immune system is subjected to random noise that

represents (a) the fluctuations of the coarse-grained model and (b)

the perturbations from the interactions with other elements that

do not comprise the core processes of the disease [15] . It is im-

portant to note that, while the actual interactions that produce

the noise are external to the central disease mechanisms, their
ombined effect as noise has a very important role in determin-

ng the disease evolution as we will see later on. The second is

 pair of critical events that irreversibly change the interaction

ynamics. The first of these is the collapse of the negative feed-

ack loop in the immune system when the inflammatory compo-

ent reaches a certain threshold following which the inflammatory

omponent increases unremittingly [16,17] . The primary motivation

or introducing this threshold is the observation that the interac-

ions of Fig. 1 implies that the presence (or absence) of oscillations

n the demyelination of the CNS necessarily requires presence (or

bsence) of similar oscillations in the immune system, and specif-

cally the PI. This is a very general result and is proved in Supple-

ent Section A. 

The second critical event represents the triggering of neurode-

eneration in the CNS when axonal demyelination reaches a cer-

ain threshold (see Methods for details). This happens when the

rotective capacity of the CNS against neuronal damage from in-

ammatory demyelination is overwhelmed. Once triggered, the

rocess of neuronal death spreads across the CNS unabated. The

easoning leading to the hypothesis of a CNS threshold arises from

he fact that while demyelination and CNS lesions are the associ-

ted forms of pathology during the relapsing remitting phase, ax-

nal loss and brain atrophy are the key contributors to the disabil-

ty in the progressive form of MS [18–20] . 

The full set of ordinary differential equations that underpin the

odel is given in Eqs. (1) –(5) . 

dI 

dt 
= −c 1 I 

A − A S 

b 1 + A 

1 [ I C − I] + ξ0 e 
− t−t C 

τ 1 [ I − I C ] + F λ(t) (1)

dA 

dt 
= c 2 A 

I − I S 
b 2 + I 

1 [ I C − I] (2)

dZ Demy 

dt 
= c 3 

I − I S 
b 3 + I 

(
Z Tot − Z Demy − Z Dead 

Z Tot 

)
1 [ I − I S ] − κZ Demy (t) 

(3)

dZ Dead 

dt 
= c 4 

(
Z Tot − Z Dead 

Z Tot 

)
1 [ Z Demy − Z C ] (4)

 Path = Z Demy + Z Dead (5)

qs. (1) and ( 2 ) represent the immune system processes. I and A

re the inflammatory and anti-inflammatory components, I S , A S be-

ng their stationary values respectively, c 1 , c 2 kinetic constants. F is

he stochastic noise 

 λ(t) = 

∑ 

i 

δ(t − t i ) v i 

haracterized by instantaneous stimulus v i that occurs at times

hat are Poisson distributed with average rate λ. v ′ 
i 
s are drawn in-

ependently from a uniform distribution U[ −0 . 1 , 0 . 1] . 

1 [ x ] is a step function taking 1 when x ≥ 0 and 0 otherwise.

his is used to represent the threshold in the immune system, such

hat when I < I C the trajectory around the stable fixed point ( I S , A S )

s oscillatory. The stochastic term introduces random, uncorrelated

erturbations to the oscillations. If, as a result of such deflections,

 > I C at some point t C , the negative feedback loop is severed and

he increase of I is governed by a factor that exponentially decays

ver time and with time-scale τ . We emphasize that the qualita-

ive features of the model would be equally valid with any non-

ecreasing function determining the rate of change of I , and this

articular factor was meant to capture the finiteness of inflamma-

ory factors and also the time-span over which the proliferation of

 occurs. The interaction term between the two components that
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Table 1 

Parameters used in the model and their values. 

Parameter Description Value 

c 1 , b 1 Controls rate of change of inflammatory component. c 1 = 20 , b 1 = 30 

I S , A S Stationary state values of pro and anti inflammatory components. I S = 7 , A S = 7 

ξ 0 Initial rate of increase of inflammatory component upon immune threshold breach. 0.5 

τ Time scale determining the proliferation of inflammatory component following immune breach. 20 

λ Poisson rate at which the random perturbations occur. 20 

I C Immune threshold. Varies 

c 2 , b 2 Controls rate of change of anti-inflammatory component. c 2 = 50 , b 1 = 30 

c 3 , b 3 Controls rate of change of demyelination. c 3 = 20 , b 3 = 40 

Z tot Total volume of the region susceptible to damage. 2 

κ Rate of remyelination. 1 

c 4 Controls the growth of dead cells c 4 = 0 . 5 

Z C CNS threshold Varies 

Table 2 

List of abbreviations. 

Abbreviation Expansion 

CNS Central Nervous System 

RRMS Relapse Remitting MS 

SPMS Secondary Progressive MS 

PPMS Primary Progressive MS 

PI Pro-Inflammatory 

AI Anti-Inflammatory 
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Fig. 2. (a) Disease trajectory for RRMS and (b) the corresponding dynamics in the 

immune system. Immune and CNS thresholds are 25 and 4 respectively. 
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etermines their rate of change is modeled as a hyperbolic factor

21] . 

Eq. (3) represents the demyelination in the CNS Z Demy caused by

he inflammatory attacks on the undamaged fraction of the total

olume Z tot ; the last term in that equation represents remyelina-

ion at rate κ . The other threshold, in Eq. (4) , triggers the neurode-

eneration in the CNS when Z Demy > Z C causing neuronal death

 Dead . The overall pathology in the CNS is the sum of the demyeli-

ation and death in CNS, Eq. (5) . 

. Results 

We demonstrate the generation of the basic clinical subtypes of

he disease using the model described above. Although the model

enerically produces the different subtypes, in order to study the

ualitative variations introduced by differences in thresholds, all

he parameters of the model (except the thresholds I C , Z C ) are

aintained constant to generate the different subtypes that are

iscussed below. These parameter values are given in Table 1 in

he Methods section. 

Fig. 2 a shows the progression of RRMS in the CNS, where the

isease pathology - here, equivalent to demyelination - follows a

uasi-periodic behavior of expansion and retraction (due to re-

yelination). Fig. 2 b shows the corresponding oscillations in the

mmune system between the pro and anti inflammatory compo-

ents. The waxing and waning of the inflammatory component di-

ectly leads to the relapses and remissions in the disease pathol-

gy. 

The random noise term in the immune system creates the ir-

egularities in the periodic behavior of the inflammatory compo-

ents in Fig. 2 b. For a given trajectory, the stochastic term is criti-

al in determining if and when the immune threshold is breached.

uring relapse-remitting, if the inflammatory component breaches

he threshold, the disease course turns towards progressive phase

SPMS) and this is shown in Fig. 3 a. The threshold eliminates

he negative feedback loop in the immune system and induces a

witch from oscillatory behavior to monotonic increase of the in-

ammatory component Fig. 3 b. This is relayed to the CNS leading

o steady increase in disease pathology ( Fig. 3 a). 
Finally, the PPMS subtype, characterized by unremitting wors-

ning of the condition from the start, is shown in Fig. 4 a. This

s the outcome of the lower immune threshold that is breached

y the inflammatory component very early in the evolution (see

ig. 4 b). Fig. 4 a also shows another phenomena - dead cells start

ccumulating from around time t = 18 , that is triggered by the

reach of CNS threshold. Yet another subtype that emerges from

ur model is the progressive relapsing (PRMS) [22] where the dis-

ase deteriorates steadily except there are intervals of partial re-

issions, leading to quasi-periodic ripples over a growing pathol-

gy ( Fig. 5 a). This arises when the CNS threshold against neurode-

eneration is overcome first, leading to accumulation of neuronal

eath, while the oscillations in the immune system are relayed
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Fig. 3. (a) Disease trajectory for SPMS and (b) the corresponding dynamics in the 

immune system. Immune and CNS thresholds are 13 and 4 respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. (a) Disease trajectory for PPMS and (b) the corresponding dynamics in the 

immune system. Immune and CNS thresholds are 9 and 1.2 respectively. 
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to the CNS in the form of waxing-waning demyelinating pattern

( Fig. 5 b). The overall pathology is the combined effect of neuronal

death and demyelination. 

4. Model reproduces disease characteristics 

Disease evolution thus depends on the two thresholds and the

magnitude of the fluctuation term in the immune system. Together,

we show that they generate model features that are consistent

with the existing knowledge of MS. If the initial appearance of

MS is relapse-remitting, then the different thresholds correspond

to transitions to progressive phase at different levels of disabil-

ity [23] . An immediate but important consequence of the model

is the increase in probability of overcoming the thresholds and

switching to chronic progressive type increases with age [24] . For

any given threshold, shorter time to progressive transition in our

model implies faster deterioration of the disease condition [24] .

The thresholds being independent of the negative feedback dynam-

ics implies that the time between onset of the disease and transi-

tion to progressive phase is independent of the frequency of re-

lapse [25] ( Fig. 6 a). 

The relapse-remitting and the progressive courses are decou-

pled in our model by design. The natural consequences of this are

that (a) the characteristics of the progressive course is indepen-

dent to that of the relapse-remitting phase and (b) the progressive

phase in SPMS or PPMS is similar to each other. There is significant

evidence that this is indeed true with MS patients. First, while the

median age for initial symptoms in both RRMS and SPMS is 29,

the median age for the onset of the progressive phase in SPMS is
9, which is exactly the median age for onset of the PPMS variant

f the disease [23] . More strikingly, even the distribution of age of

nset among patients is nearly identical for the RRMS/SPMS, as is

he similarity in the corresponding curves for the age of onset of

he progressive phase in SPMS and PPMS [23] . This shows that the

evelopment of disease pathology on an average is similar during

he chronic progressive phase in both PPMS and SPMS. 

Second, the immuno-suppressive treatments found to be effec-

ive during the relapse-remitting phase [2] of the disease have lit-

le to no benefits in patients who have already reached the pro-

ressive stage of the disease [26,27] . This is certainly the case in

ur model once the CNS threshold is breached, as progression of

eurodegeneration is independent of the immune system dynam-

cs. Likewise, if the progressive course were to be initiated by over-

oming the immune threshold, then the suppressive mechanism

ould no longer be effective against the inflammatory growth. 

. Different regimes of MS 

To characterize the full spectrum of disease types arising from

ifferent combinations of the two thresholds, we consider the two-

imensional parameter space and examine the disease courses in

ach. However, we begin by considering the immune threshold

nly. Fig. 6 b shows the variation of the fraction of RRMS with the

mmune threshold based on 200 realizations (keeping other pa-

ameters fixed). The stochastic nature of the immune dynamics im-

lies that for a threshold in an intermediate range demarcated by

ertical blue lines, a certain fraction of the realizations will breach
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Fig. 5. (a) Disease trajectory for PRMS and (b) the corresponding dynamics in the 

immune system. Immune and CNS thresholds are 20 and 0.4 respectively. 
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Fig. 6. (a) Plot of the frequency of relapses with the time at onset of progressive 

phase. The immune and CNS thresholds are fixed at 25 and 4 respectively. c 1 was 

set equal to c 2 in Eqs. (1) and ( 2 ), and was sampled from a uniform distribution in 

the interval U [16, 28]. All other parameters were kept fixed. (b) Fraction of RRMS 

cases as the immune threshold is varied (CNS threshold is 4). For each threshold 

value, a set of 200 realizations was performed to determine the fractions. 
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t. The thresholds to the left of this region are invariably breached

SPMS/PPMS) and those to the right exhibit only RRMS. 

The two-dimensional phase diagram should agree with the

bove results as a limiting case of CNS threshold Z C → ∞ . Likewise,

e can argue that there is function σ ( I C ) of the immune threshold,

orresponding to a phase transition curve, such that, for every Z C 
 σ ( T C ), there would invariably be a breach of the CNS threshold

efore that of the immune system. We also note that, if the im-

une system threshold is breached, the probability of an eventual

NS breach markedly increases. Thus, even before we perform de-

ailed simulations over the entire parameter space, we can see that

his scenario quite correctly captures the fact that neurodegenera-

ion frequently accompanies the progressive phase of the disease,

egardless of the history of the disease [2] . 

The complete classification of the two-dimensional parameter

pace is shown in Fig. 7 . Following the previous discussion, the

wo vertical light green lines have the same x-intercepts as the

lue lines in Fig. 6 b and, as expected, we recover the three re-

ions seen in that figure at the band above the blue curve of this

lot. These two vertical lines together with the three curves repre-

ent the phase boundaries between qualitatively different regimes

f model behavior. The red curve is the one whose existence we

rgued for above, below which CNS breach invariably occurs prior

o that of the immune system. Thus the entire region below that

urve in the parameter space would map to PPMS or SPMS. The

ark green curve separates the phase just above the red curve,

here both RRMS and SPMS co-exist and the phase where the pro-

ressive phase (when it occurs) is always initiated first by the im-

une breach (may or may not be followed by the CNS threshold
reach). Finally, the blue curve represents the boundary beyond

hich no CNS threshold (including secondary breaches) ever oc-

urs. Note that a given pair of dashed and solid curves of the same

olor correspond to the original demarcation from simulation re-

ults and the smoothed out spline fit of the same respectively. 

Fig. 7 admits a rich spectrum of disease courses, more so than

he standard clinical classification of the disease types. Specifi-

ally, SPMS can occur in different regions of the phase space, and

hile the manifestations of disability are likely to be similar, these

ave mechanistically different origins. In fact, even if we consider

he subset of SPMS characterized by neurodegeneration, the phase

pace of our model indicates that it can be either from a breach

f CNS threshold (below the red curve) or an immune breach fol-

owed by a CNS breach (above the green curve). In the band be-

ween the red and green curves (and between the vertical lines),

he progressive course could have been triggered by overcoming

ither the CNS or the immune threshold. 

. Methods 

The above equations were integrated numerically by fourth or-

er Runge–Kutta method. The step function was approximated by

erms of the form 

1 

1+ e γ (I±I C ) 
for ( γ � 1, a constant). Indeed the

ey features of the model do not depend on the sharpness of the

hreshold. A full listing of all the parameters and their values is

iven in Table 1 . In all the realizations of disease evolution, the
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Fig. 7. Immune and CNS threshold phase space split into different regimes, each 

marked by the types of disease evolution that is possible. This is a logical exten- 

sion of Fig. 6 to include the CNS threshold (the vertical cyan lines match the im- 

mune threshold boundaries indicated in Fig. 6 ). The ‘phases’ indicated in the figure 

are determined from the distribution of outcomes of model simulations. The three 

curves running from left to right represent the phase boundaries, where the model 

exhibits a qualitative change in terms of the classes of disease trajectories that are 

generated (see Methods section for details on how these boundaries were calcu- 

lated from the simulations; Table 2 provides a list of abbreviations to interpret the 

text for the various phases.). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b  

p  

d  

w

7

 

s  

a  

a  

l  

s  

s  

a  

s  

d  

S  

c  

n

 

t  

t  

d  

o  

n  

c  

t  

t  

r  

fi  

e  

t  

e  

fi  

a  

t  

t  

d  

s

 

s  

i  

T  

e  

c  

h  

c  

a  

o

 

t  

a  

i  

a  

b  

c  

o  

a  

m  

a  

t

 

i  

o  

i  
overall duration (simulation time/number of steps) was also main-

tained constant, except where we study the dependence of the rel-

ative prevalence of the different forms of MS on it. 

To obtain the phase diagram Fig. 7 , the two dimensional param-

eter space was covered by a rectangular grid with the dimension

of each cell being 1 × 0.03 along the x and y axis respectively. At

every grid intersection, a set 100 realizations of the disease trajec-

tories were carried out with all other parameters and initial con-

ditions fixed. Each realization was categorized as a specific dis-

ease type depending on how, if at all, the transition to progres-

sive phase occurred. We classify the solution as RRMS if no thresh-

old was breached, and SPMS/PPMS if either of the thresholds is

crossed. The latter case is divided into three cases - in the first sce-

nario, the breach happens only at the immune system, the second

where the breach occurs in the CNS initially, and the third which

is similar to the first case except that the CNS threshold is even-

tually overcome too. In the case the CNS is originally breached, we

obtain progressive relapsing MS, that subtype of the disease where

relapses are superimposed on progressive degeneration. 

The phase boundaries in the two dimensional parameter space

separating the different phases were determined by setting thresh-

olds on the appropriate fractions from the numerical simula-

tions. The boundary separating purely neurodegenerative progres-

sive cases from the others (red) comes from determining, for each

parameter value of the immune threshold, the CNS threshold at

which the fraction of CNS breaches drops below 95%. A spline fit

on these points gives the smooth red curve. Likewise, the curve

separating regions of parameter space where CNS (primary) breach

occurs with finite probability (below) and never (above) is set

when the same fraction is diminished to 5% (green). Finally, the

blue curve splits the region where CNS (secondary) breach is ob-

served with a finite probability (below) and where it vanishes

(above) and is identified by the CNS threshold value for which

the fraction of CNS (secondary) breaches falls under 5%. Secondary
reach is defined as disease trajectories where the transition to

rogressive phase occurs in the immune system, but the elevated

amage to the myelin sheaths triggers the neurodegeneration as

ell. 

. Discussion 

A set of prescriptive guidelines were used to devise our model,

ome of which are general to computational modeling while others

re specific to the MS case. First, given the complexity of the inter-

ction dynamics in biological systems (different time-scales, non-

inearity, external perturbations, physical and biochemical con-

traints), we focus on reproducing the qualitative aspects of the

ystem correctly [28] . This is especially true for MS where mech-

nistic understanding of the disease is very limited and at the

ame time, the vast heterogeneity in its clinical course [6,7] ren-

ers quantitative fitting of the model to training data sets futile.

econd, the key characteristics of the model should emerge generi-

ally from the equations. Equivalently, parameter fine-tuning is not

ecessary to generate a specific type of behavior. 

Indeed our full set of equations (1) –(5) have several parame-

ers but the nature and properties of the different disease trajec-

ories emerging from the model across different thresholds do not

epend sensitively upon those parameters (aside from the thresh-

lds, of course). For example, the coefficients { c i , b i } are the ki-

etic rate parameters and a perturbation in their values would not

hange the phase space features of Fig. 7 . It is precisely because of

his fact that we do not specify the scale (i.e., units) for the time,

he immune system components or the CNS damage. Similarly, our

esults do not require sensitivity analysis because we are neither

tting the model to some specific disease course (patients or oth-

rwise) nor are we arriving at specific magnitudes for quantities

hat can be measured. We however stress that our model aims to

lucidate the mechanisms of the disease process and not precise

tting to specific cases. In much the same spirit, the key claims

nd results of our model are based on the interaction structure of

he model (e.g., the existence of cross-regulation setting up oscilla-

ions) and not on the specific mathematical form of the interaction

ynamics, allowing us to draw more general and robust conclu-

ions about the disease processes. 

As a further step in the direction of generality, we have de-

cribed the immune system in terms of inflammatory and anti-

nflammatory components without specifying whether these are

 cells, B cells, macrophages, cytokines, antibodies, chemokines

tc. The reasons are two fold: first, it must be noted that any

omponent-pair with the regulatory dynamics we have considered

ere is sufficient to generate the patterns observed; second, what

onstitutes a regulatory or an inflammatory component may vary

cross time, and the same cell might switch from being one to the

ther, or a new entity may contribute to these roles. 

It could be argued that the lack of clear causal explanation for

he disease, and especially the transition to the progressive form,

nd the heterogeneity of its pathogenesis permits several compet-

ng hypothesis to be equally valid descriptions of MS development

nd progress. This may be true as a general principle but to the

est of our knowledge there have been very few models of MS,

omputational or otherwise, dealing with the mechanism of the

nset and progress of the disease. Even these focus on narrower

spects such as reproducing the relapse-remitting behavior [29] or

odeling the development of lesions [30] . More important, there

re definite assumptions that go into our model, and examining

he validity of these assumptions provides a falsifiability test. 

First, we argue that periodic or quasi-periodic dynamics in the

mmune system is the key to explaining the relapse-remit behavior

f patients (see Supplement Section A). Although oscillations in the

mmune system are manifested in several ways [31] the negative
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eedback loop between the inflammatory and suppressive factors

as only recently been explored [11] . The cross regulation of the

nflammatory T effector cells and the T regulatory cells has been

resented as model of the immune system dynamics generating

olutions corresponding to natural protective immunity or to au-

oimmunity [12,29] . Second, we posit that immune-mediated tran-

ition from relapse-remitting to progressive phase occurs following

he breakdown of the suppressive mechanism and hence the neg-

tive feedback loop. The resistance of inflammatory cells to reg-

lation by regulatory cells has been observed in several cases of

utoimmune diseases [32,33] . While we model the transition us-

ng a threshold for the inflammatory component, we should point

ut that any mechanism that weakens or destroys the regulatory

ffect would lead to the same behavior as well. 

Third, the disease pathology originates from two sources -

he immune-mediated inflammatory attacks causing demyelination

nd neurodegeneration in the CNS. Neurodegeneration itself is trig-

ered when demyelination exceeds a certain threshold. The dis-

inction between the two subtypes is also observed in the analysis

f the cerebrospinal fluid [34] . However, it should be noted that

xonal injury has often been observed during the early stages of

S [35] but nonetheless a similar concept of threshold or protec-

ive capacity has been used to describe its effects on neurologi-

al functioning [36,37] adding further evidence in support of our

odel. 
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