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ABSTRACT

The most common objective of microarray studies is to look for
changes in the expression levels of genes, typically comparing data
from two biologically distinct sources such as healthy vs. diseased
tissue samples. Since microarray experiments are expensive, re-
sults from these studies commonly suffer from low numbers of
replicates, rendering low statistical power. Here, we propose an
alternative analysis based on a paired test of oligonucleotide probe
intensities. Using one separate array for characterizing hybridiza-
tion noise, we develop a Bayesian statistical test for differential
expression. We demonstrate that our approach provides low er-
ror rates while requiring only a single array hybridization for each
biological sample, making gene expression experiments more af-
fordable. We also show that our statistical test predicts error rates
with good precision, allowing the researcher to select gene sets in
a more rational way.

BACKGROUND
Genome-wide expression analysis has become an increasingly im-
portant tool for identifying gene function, disease-related genes
and transcriptional patterns related to drug treatments. The most
common measure in expression analysis is the estimate of differen-
tial expression between two distinct samples, such as experiments
vs.controls or diseasedvs.healthy tissue samples. Although there
are typically many sources of variation in this measure unrelated
to the biological question at hand, the concept remains central.

The Affymetrix GeneChip technology [1], introduced in the
mid-90’s, has become the most widely used platform for whole-
genome expression analysis. With this technology, each gene is
represented by 10-20 ”perfect match” (PM) 25-mer oligo probes,
complementary to different coding sequence regions. There is also
a corresponding set of ”mismatch” (MM) probes, where the mid-
dle base has been substituted for its complement. These were orig-
inally intended to be estimators of non-specific hybridization [1],
although later on it became evident that they too bind specifically
[2].

The typical goal of GeneChip data analysis is to combine all
probe signals into an estimate oftranscript abundance, a measure
of the amount of transcripts present. The method first proposed by
Affymetrix was to form the average difference〈PM−MM〉 across
all probes within a probe set. This method is based on two as-
sumptions, both of which has subsequently been shown to be false:

(1) by using the PM−MM difference, one assumes that the MM
probes only measure background noise; and (2) by averaging dif-
ferences, one assumes that the probes involved have identical bind-
ing characteristics. Assumption (1) has been thoroughly discussed
elsewhere[3], and we will avoid the details by simply not using
MM probe intensities. Assumption (2) has also been addressed
by several authors, and several estimators of transcript abundance
have recently been proposed, including the Model-based Expres-
sion Index (MBEI)[2] and the Robust Multi-array Analysis (RMA)
[4].

There is also considerable problems associated with determin-
ing the statistical significance of differential expression. The very
amount of hypotheses tested (usually on the order of 20,000) means
that classic statistical tests designed for a few hypotheses cannot
be applied directly. Moreover, all statistical tests rely on some
estimate of variation (noise) in the measurements, and it is not
clear how to obtain reliable noise estimates given the complexity
of probe hybridization.

In the present study, we propose the following analysis method
to tackle the problems outlined above. We avoid estimating abun-
dances altogether by using a paired statistic for probe-level data.
For this statistic, we estimate the hybridization noise using a sepa-
rate replicate array. Then, we develop a statistical test that includes
this noise estimate as ”prior knowledge”, and produces a direct es-
timate of the false positives rates for a given set of selected genes.
We demonstrate that our approach provides a reliable measure of
differential expression using a single GeneChip per condition, and
also predicts error rates with good precision.

METHODS

Probe hybridization model

For a given geneg, we model the normalized log-intensity of probe
i in the corresponding probe set as a stochastic variableXgi,

Xgi = pgi + ag + ε (1)

wherepgi is referred to as theprobe effect, ag is the log abun-
dance of the transcript of for geneg, andε is the noise contribu-
tion, which is assumed to have mean 0. This is the same model
used previously by among others Irizarry et al.[4]. Now, consider
a microarray experiment assessing differential expression between
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two distinct samples. For two arrays, containing different RNA
populations, we will obtain two relationships,

Xgi = pgi + ag + ε

X ′
gi = pgi + a′g + ε

Previous techniques would at this point attempt to estimateag and
a′g, and then calculate the log fold change of the gene, which we
denote byδg = a′g − ag. This procedure requires estimation of
all probe effectspgi. However, if we are only interested in the
log fold changeδg (which is often the case) we can avoid this
step and simply remove the problematic probe bias by forming the
difference

Dgi = X ′
gi −Xgi = δg + 2ε

We now assume thatε is identical for all probes. Then, the
stochastic variableDgi is also identical, and we may estimateδg

by the meanDg =
∑

i
Dgi/n. For hypothesis testing, we must

also estimate the standard deviationσ of the statisticDg. This can
be obtained with good precision using a single replicate chip, since
for replicates,δg = 0 for all genes, soσ2 =

∑
g
D2

g/(n− 1). We
will refer to σ astechnical variation. Note that none of these es-
timates require independence between the probes in a given probe
set.

Empirical-Bayes analysis
The question of significance of each selected gene requires a care-
ful treatment due to the amount of hypotheses tested. We chose
an empirical-Bayes approach [5] to this problem because it makes
assumptions (priors) explicit and testable.

Denote bya0 the fraction of genes that do not differ in abun-
dance, that is, genes for which the null hypothesisH0 : δ = 0 is
true. Letπ1(δ) be the distribution ofδ for the remaining fraction
1− a0 of genes. A reasonable choice for a priorπ(δ) is then

π(δ) =

{
a0, δ = 0
(1− a0)π1(δ), δ 6= 0

(2)

For all genes, we now assume that the meanDg is ∼ N(δg, σ)
(the central limit theorem provides some justification for this). The
marginal distribution is then (dropping the subscriptg for clarity)

m(d) = a0N(d|0, σ) + (1− a0)m1(d) (3)

wherem1 is the marginal density ofD with respect toπ1,

m1(d) =

∫
N(d|δ, σ)π1(δ) dδ

In other words, the marginal distribution, which is what one would
observe in a histogram ofd (figure 1), is a mixture ofN(d|0, σ)
from the genes that have not changed, and another distribution
m1(d) from those that have.

We then obtain the posterior probability ofH0 from Bayes
theorem:

π(δ = 0|d) =
a0N(d|0, σ)

m(d)

To compute this probability, we must determine the shape ofπ1

and the value ofa0. Assumingπ1 ∼ N(µ, τ), the marginal (3) be-
comes a gaussian mixture, and we can easily estimate the param-
eters using a standard expectation-maximization (EM) algorithm
[6]. It is certainly not clear thatπ1 should be normal; however, it
can be shown that the exact functional form has little bearing on
the resulting posterior probability, as long as we have a reasonable
estimate of the variance ofπ1 [5](pp.151).
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Fig. 1. Plot of the marginalm(d) (solid line) as estimated by the
EM algorithm, together with the corresponding data histogram, for
configuration 1.

Data set
The data used in this paper is publicly available from Affymetrix
[7]. It contains 42 transcripts added at known concentrations, re-
ferred to asspike-ingenes. The concentrations are exponentially
spaced as(1/8, 1/2, . . . , 256, 512) pM. In all experiments, an iden-
tical background from human cells is present in addition to the
spike-ins. We refer to this data set as the Latin Square data set.

RESULTS
By comparing spike-in genes from the Latin Square data set against
each other in various pairwise arrangements, different fold changes
can be obtained. We arranged the data in two configurations, ob-
taining two ”virtual” experiments with (1) 1638 spike-in genes,
with fold changes exponentially spaced as2, 4, 8 . . . , 4096, and
(2) 1512 spike-in genes, all with fold change 2. In addition to the
spike-ins we added the background from a random pair of repli-
cates chips. We refer to these constructed data sets as configura-
tion 1 and 2, respectively. For both configurations, data was nor-
malized at the probe level by the quantile-normalization method
[8] and log-transformed (base 2). No background correction was
used in our analysis; we tried the procedure proposed by Irizarry
et al.[10], but found that it did not improve our results. We then
computed the statisticd for each gene. Figure 2 shows plots ofd
versus average signal for the two configurations, demonstrating a
low amount of false positives (thin black region). Note the under-
estimation of fold changes in fig. 2A, where the largestlog2 nom-
inal fold change is 12, and also the inconsistency of fold change
estimates in fig. 2B, especially for low intensity transcripts.

We estimated the technical variationσ to 0.083 and 0.078 for
configuration 1 and 2, respectively (differences reflect chip repro-
ducibility). We then estimateda0, µ andτ using the EM algorithm
(Table 1). The algorithm has a slight tendency to overestimate the
fraction of H0 close toδ = 0, which is understandable. These
small discrepancies do not seem to have any discernible impact on
the subsequent analysis. The fit of the estimated marginal distri-
bution (3) is shown for configuration 1 in figure 1; theH1 fraction
is too small to be visible here.

Using the above estimates we calculated the posterior proba-
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Fig. 2. (A) For configuration 1, a plot of estimatedlog2 fold
changed versus averagelog2 signal(x′ + x)/2. Spike-in genes
are highlighted in red. (B) Same as (A) for configuration 2. Here,
the blue line marks the expected 2-fold difference.

bility of no differential expressionπ(δ = 0|d). From this probabil-
ity we determined gene ranks and estimated the expected number
of false positives (̂FP) and true positives (̂TP) in a selected set of
genesG as

F̂P =
∑
g∈G

π(δg = 0|dg)

T̂P = |G| − F̂P

These estimates are plotted along with true FP and TP values in
Receiver Operator Characteristic (ROC) curves (figure 3). For
reference, we also compute classical p-values with the Bonfer-
roni correction, and make the corresponding error estimates us-
ing these. Our method is slightly overoptimistic for configuration
1, possibly because of the extreme fold changes in this set (up to
4096-fold). Overall though, the agreement is good enough to war-
rant the use of this error estimate for gene selection. In contrast,
the classical p-values are clearly not suitable: even with the conser-
vative correction (Bonferroni), the error rates are severely under-
estimated in both configurations. The Area Under Curve (AUC)
measure found with our method (figure 3) is on par with the best
scoring methods in the Affycomp benchmark [11], although direct
comparisons are not possible since our data comes from a more
recent GeneChip version.

EM Estimates True values
configuration (1) a0 0.931 0.931

µ -0.18 - 0.15
τ 3.03 3.04

configuration (2) a0 0.945 0.936
µ 0.57 0.50
τ 0.35 0.37

Table 1. Estimates of the prior parameters from the EM algorithm.
True values forτ andµ refer to mean and standard deviation of the
set of spike-in genes, calculated directly.
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Fig. 3. (A) ROC curve for configuration 1, with genes selected
by π(δ|d). Curves displayed are the perfect ROC (thick, solid);
actual ROC (thin, solid); ROC predicted by our method (dot-
ted); ROC predicted by classical Bonferroni-corrected p-values
(dashed). Area under ROC curve (AUC) is calculated for the ac-
tual ROC. (B) Same as A, for configuration 2.

We next determined confidence intervals forδ from the pos-
terior, given the estimated fold changed. Confidence intervals
are quite narrow (aboutd ± 0.12 at the 95% level), but unfortu-
nately there is substantial bias in the estimatesd when the true
fold change is large. Figure 4 shows true versus estimated log
fold changes for the spike-in probes in configuration 1. There
is a considerable underestimation of fold changes, especially at
higher δ. The Pearson correlation coefficient is only 0.81. We
believe that this low agreement originates in nonlinear, sequence-
dependent characteristics of Affymetrix probes [12, 13] which is
not adequately captured by the linear model (1). Colors indicate
the average expression(a+a′)/2 in both arrays (using the known
concentrations). It is clear that a lower overall expression level
compresses fold changes more than a higher level. This has pre-
viously been attributed to lack of background correction [10], but
we were not able improve the performance more than marginally
using the background correction proposed in [10].

DISCUSSION
The Affymetrix GeneChip technology is currently the most popu-
lar platform for global gene expression analysis, an approach gen-
erally expected to be a key tool for discovering gene functions.
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Fig. 4. True versus estimated fold changes for configuration 1 (see
text). Colors indicate the average actual concentration in the two
arrays. Solid line marksd = δ.

The concept of differential expression plays a central role in this
field. In the present paper, we have proposed an alternate method
for measuring differential expression. We have showed that our
method can provide an accurate measure of differential expression
using a single GeneChip per condition. We have also demonstrated
that our method provides accurate predictions of the error rates for
a given set of selected genes.

Hitherto, most studies have estimated technical variation sep-
arately for each gene, using several replicate GeneChips per con-
dition. The main advantage to our approach stems from the treat-
ment of technical variation as constant across genes, which allows
us to assess statistical significance using a single array per condi-
tion. This can obviously save substantial time and resources for
microarray researchers. Our statistical treatment does not depend
on the exact method of fold change estimation; in fact, it may even
be applicable to other types of microarrays, as long as the underly-
ing assumption of constantσ remains valid. For our data, we have
verified that the GeneChips used are well reproducible concerning
σ (estimates ranging from about 0.07 to 0.09log2 fold changes),
and also thatσ is indeed uniform for all genes, independent of
signal intensity, motivating the use of a single estimate.

In fact, the only case where this assumption does not hold is
when there actually is a substantial difference in RNA levels. In
this case, deviations fromσ may well be evidence of nonlinear-
ity in probe hybridization, which cannot be captured by the linear
model (1). If so, gene-specific estimates would include model bias,
misleading the statistical analysis. This line of reasoning is also
consistent with the fact that, although our statistical model seems
promising, we have not been able to achieve accurate quantitative
estimates of fold changes with our method (figure 4).

For microarray researchers, the most useful output of our method
is probably the estimated error rates for a given set of selected
genes. The accuracy of these predictions rely on our estimates of
the parameters in the prior. Hence, we carried out a sensitivity
analysis for these parameters and found thatσ is the most sensi-
tive parameter. Fortunately, this parameter is also the easiest to
estimate, given the large amounts of data used. For the remaining
parameters, the method is fairly robust.

In closing, we must emphasize that we have not considered
biological variation in this paper: having determined a statistically
significant change of RNA levels between two samples says little

of the biological interpretation of that change. On the other hand, a
reliable technical procedure opens up possibilities of investigating
biological variation. For example, a set of 10 arrays, each mea-
suring the transcriptional profile of a human tissue for different
individuals or conditions, would allow for10 · 9/2 = 45 com-
parisons in an all-to-all scheme, providing more information for
higher-level data analysis.
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