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Abstract
Recent models of the oculomotor delayed response task have been based on the
assumption that working memory is stored as a persistent activity state (a ‘bump’
state). The delay activity is maintained by a finely tuned synaptic weight
matrix producing a line attractor. Here we present an alternative hypothesis,
that fast Hebbian synaptic plasticity is the mechanism underlying working
memory. A computational model demonstrates a working memory function
that is more resistant to distractors and network inhomogeneity compared to
previous models, and that is also capable of storing multiple memories.

1. Introduction

The mechanisms behind the cognitive functions of the human brain remain enigmatic. Relevant
experimental data at the microscopic level of ion channels, synapses and neural activity as
well as the macroscopic level of psychophysics and cognitive psychology are currently rapidly
accumulating. Computational models provide a way to bridge the gap between these levels of
description and to integrate information from multiple sources into a coherent picture. A good
predictive model allows the experimenter to design maximally informative new experiments.

The memory systems of the brain are key players in cognitive functions. They exist in
several different forms and have been characterized along dimensions like episodic-semantic
and declarative-procedural. Here we focus specifically on working memory, the retention
or maintenance of information for short periods of time, usually linked with an ongoing
behavioural task. The paradigmatic experiment has been the delayed response task (see [18,
p 1]). In the oculomotor version of this task [15], the location in visual space has to be
remembered over a few seconds after which a suitable response should be generated.
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For a long time, computational theories and models of memory processes addressing the
cellular and network level have focused on long-term memory. The dominating paradigm has
been the Hebbian cell assembly theory and its mathematical instantiation as attractor network
memories [3, 25, 54]. More recently, working memory processes have attracted the attention
of modellers [9, 12, 47, 51]. In contrast to network models of long-term memory, current
working memory models rely mainly on reverberatory, localized persistent activity [2, 9, 18]
in a network with fixed connectivity. These line attractor models originate from previous
models of neural fields [1] and of the visual hypercolumn [5, 21]. They have been used to
reproduce a variety of experimental findings from the prefrontal cortex (PFC) in the delayed
response oculomotor task.

These models, however, do not take into account important characteristics of the
underlying neuronal substrate like synaptic plasticity on the task relevant timescale 0.1–10 s
[22, 23] and neuronal adaptation [33], which is known to destabilize line attractors [28]. Their
operation is also sensitive to distractors unless additional stabilizing factors are included [9].
In addition, working memory is generally thought to be able to hold several items at the same
time [32, 34]. It has been hard to find a robust mechanism for this in the context of persistent
activity working memory models.

Here we investigate the alternative hypothesis that short-term Hebbian plasticity is a
critical mechanism underlying the phenomenology in WM tasks. The presentation of a
stimulus induces the formation of a corresponding attractor state which can later be read
out as reverberatory activity. Persistent activity is still an integral part of this hypothesis but
it now acts as an indicator of which stored memory is currently relevant and active. Short-
term forms of memory based on fast synaptic plasticity have previously been suggested [50].
A unification of different memory mechanisms acting on a range of timescales is an attractive
consequence of such a hypothesis.

Since the Hebbian property is crucial in attractor memory models our hypothesis suggests
the existence of fast Hebbian synaptic plasticity in the underlying cortical memory networks,
e.g. the PFC. The existence of such forms of synaptic plasticity has not yet been experimentally
established, but remains an open possibility.

In the following, we investigate this hypothesis in the context of a recently described
attractor network model capable of acting as a long-term as well as short-term palimpsest
memory [43]. A phenomenological model of cellular firing rate adaptation and synaptic
dynamics on a timescale of a few hundred milliseconds is also added in order to examine the
stability or memory states and the storage of multiple memory items.

2. The network simulation model

Our simulation model is based on the Bayesian confidence propagation neural network
(BCPNN) architecture [24, 29, 31, 43]. The BCPNN model is derived from a statistical view
of learning and neural processing, where the activity of units correspond to estimates of the
probability of various features. It employs a Bayesian–Hebbian learning rule that reinforces
connections between simultaneously active units and weakens or makes connections inhibitory
between anti-correlated units. It is here used as an attractor network model of a similar kind
as the Hopfield net, but with a high degree of synaptic plasticity, i.e. very fast learning and
forgetting.

The BCPNN learning rule has previously been used to set the weights in a cortical network
model implemented with biologically detailed compartmental model neurons and with cortical
minicolumns as its functional units [14]. That study suggests that it is reasonable to view the
units of the BCPNN network as cortical minicolumns.
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The learning rule produces both positive and negative weights. A connection from one
minicolumn to another in the model lumps together all synaptic connections between the
pyramidal cells in the respective minicolumns. Long-range synaptic connections are assumed
to be excitatory but they may contact pyramidal cells in the receiving minicolumn either directly
or via local inhibitory interneurons (e.g. bipolar cells) that in turn inhibit their companion
pyramidal cells. In this manner, either a positive or a negative functional connection is realized.
There is experimental support for plasticity in cortical synapses of both types involved in the
suggested inhibitory pathway [17, 37].

To model cellular adaptation and synaptic depression/facilitation we use a simple
phenomenological model. The adaptation is modelled as fast and temporary ‘unlearning’
implemented as an associative projection with negative gain and a short time constant [40,
41]. This results in a decrease of the effective synaptic weight between units active together
as well as an increasing negative bias, thus removing valleys in the energy landscape while
the network state remains in them. When units become inactive the projection returns to a
resting value, thus restoring the original synaptic efficacy. This adaptation model was chosen
due to its simplicity and symmetry with the learning rule used, and produces the same type of
attractor-switching behaviour as other cellular adaptation [7, 30, 55] and synaptic depression
based models [36, 48].

The BCPNN acts as a palimpsest memory where new information overwrites old and
memories decay at a rate set by a learning time constant modulated by a print-now signal [43].
By temporarily up-regulating the print-now signal it is possible to imprint relevant stimuli
while partially over-writing information already stored. While the print-now signal is zero no
weight changes occur. We have hypothesized that the print-now signal could correspond to
dopaminergic modulation of synaptic plasticity, which is well represented in e.g. the PFC and
facilitates synaptic plasticity [8, 11, 35, 53].

This model allows us to simulate long-term as well as intermediate and short-term
memories. In a short-term memory of this type the effective capacity is set by how strongly new
information is imprinted, at the same time forcing old information to decay. With a print-now
signal above a certain level, the memory becomes episodic, i.e. no repetition of the stimulus
is necessary.

Details of the learning rule and network update equations used in this paper can be found
in the appendix.

3. Set-up of the delayed oculomotor task

As in previous bump state models of working memory, the canonical experiment is based on
the oculomotor delayed response task. In this task a monkey is trained to fixate on a central
mark on a screen during a brief presentation of a peripheral cue. The gaze remains on the mark
during a subsequent delay period until a signal is given for the animal to make a saccade to the
cue position.

In our model the network was first subjected to a period of no input corresponding to the
pre-trial period. This was followed by a 300 ms cue stimulus and a simultaneous print-now
signal which caused an update of synaptic weights. After the cue the network spent 3 s in a
delay period with no input and no print-now signals.

After the delay period a reset signal was given in the form of strong stimulation to all
neurons in the network together with another print-now signal. While models with persistent
activity only need to reset the neural activity itself [20, 26], in this model the reset signal is also
assumed to be associated with a print-now signal erasing the changed synaptic weights. This
print-now signal could be the one that imprints the next stimulus, acting as a gating signal [11].
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The network consisted of 100 units fully connected to each other (this is similar to the set-
up in [5]; the hypercolumnin this model is, in fact, analogous to several identical hypercolumns
of the type used in [43] connected to each other). Each unit received input with different spatial
tuning, corresponding to a projection from a population of location sensitive cells in the parietal
lobe. For simplicity of display the units were ordered according to their favoured orientation.
Each target angle θ corresponded to an input of the form

Ii = Z exp

(
−

∣∣∣∣i − θ N

2π

∣∣∣∣
2/

σ 2

)
(1)

where Z is a normalization constant, N is the number of neurons and σ = 10. The distance
is assumed to wrap around the population, producing a ring-shaped network metric. If not
otherwise stated the input gain (gI) was set to 1, the learning time constant (τL) to 7.2 s and
the print-now signal to 1 or 0.

In these simulations the time constant of the adaptation projection τA has been given a
value of 160 ms, corresponding to the decay rate of the action potential related Ca2+ pool that
contributes to the accumulated after-hyperpolarization in a previous biophysically detailed
pyramidal cell model [13]. In the initial experiments reported below gA = 0, while in the
subsequent experiments with adaptation in section 4.1gA = 0.35.

The noise input was Gaussian with mean 0 and variance 1 and a default gain (gN) of
0.1. In the inhomogeneity experiments synaptic strengths and time constants (which were set
individually for each synapse) were subjected to noise. The noise was uniformly rather than
normally distributed in order to avoid negative time constants and synaptic sign reversals.

The model parameters have been collected in table A.1 in the appendix.

4. Results

The network was tested in the simulated delayed oculomotor task, both with a single and
several cues to remember. Different distractors were added during the delay period and the
tolerance to noise and parameter inhomogeneity was investigated.

The network exhibited one-shot learning of a bump shaped attractor state. The bump
activity profile can, due to rotation symmetry, be viewed as a tuning curve. When exposed to
a cue input consisting of a single bump for 300 ms, the network was able to sustain the bump
throughout the delay period due to the change in local excitatory connections and long-range
inhibition (figure 1). The increase in lateral inhibition stabilized the location of the bump while
the increased local excitation induced a persistent activity state. The reset signal abolished the
synaptic changes, thus dissolving the persistent activity state.

The activity of units not corresponding to the cue was reduced during the delay period
relative to the spontaneous activity before the cue or after the reset signal.

As a rule, the bump state was resistant even to high levels of noise and did not drift, since
its position was determined by the weight matrix and the neuron biases. Since it was the only
attractor state of the network the activity profile resumed its shape and location if disturbed
or if the activity was reset. Experiments with increasing levels of noise showed a broadening
of the bump state, until the noise amplitude was so high that it dominated over the recurrent
input. At the same time the population vector remained fixed to the peak of the original cue,
i.e. there was no true drift.

An interesting phenomenon was the sharpening of the bump state relative to the cue signal
during the delay period (figure 2(a)). This was due to the creation of a weight matrix with a
nonlinear relationship to the original bump size. The learning process of attractor networks
does not in general guarantee memory states identical to the input causing them, but it tends to
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Figure 1. (a) Activity of network during a simulated oculomotor delayed response task. Activation
of network units is indicated by grey-scale. The cue exposure caused a broad activation between
300 and 600 ms, followed by a persistent activity state until the reset signal at 3600 ms. (b) Weight
matrix after the cue period. Bright areas correspond to excitatory interactions and dark areas
to inhibition. The units near the target direction have formed a self-exciting group, with lateral
inhibition to and from all other units. (c) Bias of the units. Most units have a very low bias, but
those units close to the target direction have become more excitable.

create stable states in the vicinity of the input. The exact relationship between the shape of the
original cue signal and the persistent activity pattern will in general depend on details of the
learning rule used and its time constants; hence biological observations of these relationships
can be used to support or rule out proposed network models.

If several patterns were presented in turn during the cue phase (each pattern for 300 ms), the
last one remained active (figure 2(b)). If a sequence of targets were shown during the cue period
the weight matrix developed into a band matrix with translation symmetry corresponding to
a ring attractor family (there is an asymmetry caused by the aging of the memories, but for
the current parameters and cue exposure times this is small). Each unit developed excitatory
connections to units with similar spatial tuning and inhibitory connections to remote units
(figure 2), similar to the rotation invariant pre-wired synaptic matrices used in previous bump
state models.

These multiple bump states were metastable attractors: a sufficiently strong stimulus
(‘distractor’) could shift the network state to one of the other stored patterns (figure 3).
However, distractors had only temporary effects when a single target had been stored. For
increasing input gain it became possible to temporarily shift the bump towards other positions,
but when the input ended the network returned to the stored bump state. The shift appeared
to be ‘elastic’ and non-linear: for small input gains the distance moved under the influence of
external input was proportional to the gain, up to a critical level where the bump instead moved
directly to the input direction. When several targets had been stored the distractor would cause
a bump intermediate between the distractor location and the closest target; the bumps would be
strongly attracted to the stored target. For a large number of targets the behaviour was similar
to other line-attractor models, including fast virtual rotation between the original location and
the stimulated location.

The network functioned without strong inter-trial interference when subjected to several
task cycles (cue–delay–reset). It is worth noting that an explicit reset signal was not necessary if
new cues were imprinted strongly enough; the new cue would erase the old stored information
(figure 4).
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Figure 2. (a) Typical bump activity profile for the network. Mean activity during the cue and
delay period for one trial. Eight equidistant points have been marked for comparison with [15,
figure 9]. Shape fluctuations due to a noisy cue are imprinted in the delay activity, as can be seen
near the top. (b) Activity when the network was exposed to three cues during the cue period. This
created a synaptic matrix with three metastable memory states, each individually similar to the
state in figure 1. The activity remained in the state corresponding to the last cue until being reset.
(c) Plot of weights from a single neuron after learning eight bump attractors. (d) Weight matrix
after learning eight targets.

The network was extremely resistant to network inhomogeneity, synaptic noise and sparse
connectivity. Stable, if noisy, bump states persisted both for multiplicative synaptic noise where
weights were multiplied by uniform random numbers between 0 and 7 (not shown in figure)
and noise injected into the units. Similarly, the learning time constants could vary over a
large range without the loss of bump states. Dilution of the connections caused a graceful
degradation (figure 5).

The network was also resistant to selective removal of connections between units with
distant receptive fields or random removal of connections in specific regions, although the
loss of mutual inhibition enabled the co-existence of multiple bumps in different regions at
sufficient dilution.

An interesting effect was seen when the print-now signal was not completely turned off
during the delay phase, but kept on at 0.1 strength. Strongly activated neurons tended to link
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Figure 3. (a) If one pattern was stored, distractor input had no lasting effect: the activity returned
to the stored target. (b) If several targets were stored sufficiently strong input allowed the network
to shift between them. In the three target simulation the distractor occurred at position 40, but the
resulting bump was strongly attracted to the memory state at position 25.
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Figure 4. Multiple trial cycles. In each trial one cue is learned, remains sustained and is reset by
the arrival of the next cue. The print-now signal is set to κ(t) = 15 during each cue phase.

to each other, creating an attractor growing narrower and sharper (figure 6). This produced
gradual decay of some activities and increase of others, a ramping behaviour similar to what
has been observed in unit recordings in working memory experiments [16, 39].

4.1. Adaptation

With adaptation present (gA > 0) the stability of attractor states became time dependent.
For low values of adaptation the bump state remained stable and the system behaved as

before. For strong adaptation the bump state instead became oscillatory, first decaying to a
state where most neurons were weakly active and then returning to the bump shape again once
the initially adapted neurons and synapses had regained their efficacy. This cycle then repeated
itself.

For intermediate values of gA, the network exhibited a stable bump when trained with
one target, while moving between two or more bump states when trained with several targets
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Figure 5. Network performance as a function of noise level, synaptic dilution (a) and standard
deviation of time constants (b). The network was trained with eight attractors and placed in one
of them. The average overlap between the network state and the original pattern in the period
800–1000 ms afterwards was plotted. Noise was measured relative to the average value of the unit
potential h, dilution by the probability of removing a synapse. Time constants were uniformly
distributed around 7.2 s. Average over 100 trials in each point.
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Figure 6. (a) Single stored target, with slow learning (τL = 72 s) during delay stage. (b) Plot of
selected unit activities over time.

(figure 7). Hence it was possible to both have a single stable state and time multiplexed multiple
attractors without having to change the time constant or gain of adaptation.

The upper limit of the number of bump states that could be stored when adaptation occurred
appeared to be (for these parameters) approximately 10. For more targets increasing overlap
between the attractors created a band weight matrix with a single continuous attractor state.
Adaptation then caused the delay state to turn into a continuous moving wave instead of discrete
shifts between targets. This is similar to the adaptation-induced instability of bump states in
other models [28]. For a smaller number of stored targets the regions of strong local excitation
in the weight matrix were separated by mutual inhibition, producing a barrier for the translation
of the bump state from one location to another.
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Figure 7. Network activity with adaptation, for gA = 0.35. The bump state was stable for a single
learned target, while it flipped between different locations if two or more targets were stored.

4.2. Non-Hebbian plasticity

Non-Hebbian fast adaptation like e.g. augmentation is from a biological point of view a
less radical hypothesis than fast Hebbian plasticity for the stabilization of attractor memory
states [22]. However, in the current setting of an attractor network with spatially located input,
synaptic plasticity dependent only on presynaptic activity (such as augmentation) will produce
identical weight changes from each activated unit to all other units, precluding the formation
of a localized bump.

A learning rule dependent only on postsynaptic activity can produce a weight matrix
that is capable of sustaining a bump state: input-activated neurons will receive input equally
weighed from all other neurons, but since they have greater weights than the rest they will be
more strongly activated. This is identical to a learning rule changing only cellular excitability.
The postsynaptic rule is however not able to learn two or more different bump states, since
these will activate each other. It also appears to be insufficient to adequately maintain bump
attractor states against destabilizing influences such as adaptation, at least with the current
network (simulations were done with plasticity of only βi in a pre-set weight matrix; results
not shown).

We conclude that if fast plasticity is involved in the creation of bump states it needs to
be dependent on both pre-and postsynaptic activity if multiple states are to be learned, and at
least postsynaptic activity if only one state at the time is stored.

5. Discussion

We have described an attractor neural network with fast Hebbian plasticity that performs as
a working memory in the oculomotor delayed response task. It exhibits bump states similar
to previous models while being based on synaptic plasticity rather than a hard-wired weight
matrix. The modified connectivity maintains the persistent activity and stabilizes it against
noise, distractors and network inhomogeneity. This network can readily store multiple memory
states, with external cues activating one memory at a time.

In most models to date the maintenance of line attractors requires fine tuning of network
parameters [46, 51]. In our network the main parameter issue instead becomes setting learning
parameters to a range suitable for the task at hand, which is far less sensitive. Learning also
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stabilizes the network against inhomogeneity and noise, making it possible to maintain bump
states even when the individual neurons have different parameters and connectivity.

This is similar to the models of eye position control and invariant object recognition
described by Seung [44, 45] where line attractors are formed through learning. However,
in these models the learning is assumed to occur on a far slower timescale than the network
dynamics. Also, our model is not based on the assumption that the learned attractors form
or approximate a line attractor; while multiple overlapping stimuli can produce it, it is no
requirement in our model for a functional working memory even in the oculomotor task.
It may further be possible that slower forms of plasticity create an underlying line attractor
weight matrix, which is transiently modified by faster plasticity [50].

Persistent activity is an integral part of this model. There is no fundamental contradiction
between the hypothesis that persistent activity within cell assemblies is necessary for working
memory and the hypothesis that working memory is stored by changes in synaptic efficacy.
Both possibilities can be combined; the activity is necessary for readout to activate the proper
behavioural responses and synaptic plasticity is necessary or helpful in maintaining the activity.

It has been argued that a good reason to assume that working memory is stored as persistent
activity is that experimental disruption of such activity causes the animal to make an error [12].
However, this would also be the case if the memory was stored synaptically and read out as
reverberatory activity. Then instead of interfering with the storage as such the read out from
memory would be disturbed. Thus, these two hypotheses cannot be distinguished based on
such experimental results.

The existence of sufficiently fast Hebbian plasticity is a basic assumption of this model.
While non-Hebbian plasticity of suitable speed is known [22], the existence of fast Hebbian
synaptic change in the PFC remains conjectural. Long lasting (one day) LTP at hippocampo-
prefrontal synapses can be induced by trains of five short bursts of 10 pulses at 200 Hz given
at the frequency of the theta rhythm [10], but the time before the LTP is expressed appears to
be of the order of seconds to minutes [19, 23]. On the other hand it is possible that there can
exist Hebbian effects within post-tetanic potentiation [4] and that short-lived Hebbian effects
are just not easily demonstrated in the current experimental set-ups.

The extension of the model to include adaptation [41] enables attractor dynamics that
moves between the different stored states. Due to the existence of a single attractor state in the
one cue case, the network avoids the destabilizing effect of adaptation reported by Laing and
Longtin [28]. For the same parameter values but with several cues it can also sustain time-
multiplexed activity where the network state jumps between the memory states during the
delay period, similar to the switching in the binocular rivalry model of Laing and Chow [27].

The addition of an adaptation term destabilizes traditional ring-attractor models [28].
Adaptation acts as an inhibitory current which is preferentially enhanced on the trailing side of
a moving bump state, causing it to drive the motion forward. In this model this does not occur
due to the non-band structure of the weight matrix, unless enough overlapping memories have
been stored to create such a band matrix.

In addition to assigning a functional role in working memory for cellular and synaptic
phenomena like plasticity and adaptation, the model presented here makes several specific
predictions:

• There could be inter-trial interference due to incompletely erased synaptic changes.
Mistakes should tend to confuse the current and a similar previous target, as has been
observed [6]. The presentation of several targets at the same place followed by a target
nearby should lead to a probability of mistake increasing with the number of times the
first target was shown and decreasing with the distance to the second target.
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• There should exist a print-now signal resetting the synaptic state of the network concurrent
with the reset of neuron activity at the end of the task, regardless of success or failure.

• The shape of the input to the working memory network determines the memory state
shape. Hence a modification of the form of the input should result in a corresponding
change in the delay activity. If, for example, the previously sharply spatially tuned input
was replaced with a broadly tuned input more cells would become less active in the delay
period. This would not happen in a fixed synapse model, where the bump shape is set by
the pre-existing synaptic structure.

• A prediction and a possible problem with this kind of model is the lack of drift. Although
it remains uncertain whether drift of bump states plays a major role in the task [51], the
difference between the saccade target and the achieved target in oculomotor tasks appears
to increase monotonically with delay time [15, 38, 52]. In the current model it could be
due to the presence of other processes, such as a high intrinsic noise level combined with
weak learning.

Since the network is not based on pre-set synaptic strengths, it can be generalized to
arbitrary attractor states. For example, it can be used to learn from a 2D retinotopic map,
enabling the persistence of 2D bumps of activity at locations learned during the cue period. The
attractor states could also be distributed representations as in many regular attractor network
memories. Instead of using a specific kind of network for working memory and another
for long-term memory, our model suggests the possibility that the cerebral cortex may be
using a canonical network architecture with a spectrum of learning time constants for different
functions. Such general networks would become modality specific due to their afferent and
efferent connections rather than any particular architectural features, and shift their function
due to task demands. This could explain the apparent discrepancy between different studies
on the domain specificity of PFC (as discussed in [49]).

Though we investigated within the context of a specific computational model (BCPNN)
we expect the qualitative aspects of our results to be largely independent of the exact simulation
model. A possible future extension would be to implement the model using spiking neurons to
further examine its generality and properties, such as the effect of spike synchrony in memory
reset and the effects of AHP modulation on network dynamics.

In conclusion, we have shown that fast Hebbian learning is sufficient to reproduce many
properties of a working memory task which has previously been modelled in terms of persistent
activity states in a fixed connectivity attractor network. It remains to be examined to what extent
plasticity is necessary to maintain stable activity and how quickly it can be modulated to fit
the task.

Appendix

The BCPNN update equations for unit activity are

τm
dhi(t)

dt
= βi(t) + ln

( N∑
j

wi j(t)x j (t)

)
+ gI Ii + gNηi(t) − hi (t) (A.1)

xi(t) = ehi∑N
j ehi

(A.2)

where hi is the membrane potential of unit i , xi the rate of fire. τm is the membrane time
constant, gI the gain of the external input Ii , and gNηi (t) a noise term.
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Table A.1. Default parameters of the model.

Symbol Parameter Value

Cue length (ms) 300
Delay period length (ms) 3000
Reset period length (ms) 300

N Number of neurons 100
σ Input tuning width 10
gI Input gain 1
gN Noise gain 0.1
gA Adaptation gain −0.35
τL Learning time constant (ms) 7200
τA Adaptation time constant (ms) 160
τm Membrane time constant (ms) 10
κ(t) Print-now signal 0 or 1, 90 for reset, 15 in figure 4

The weights wi j and their corresponding biases βi are set by the following learning rule:

κ(t)τL
d P̂i(t)

dt
= xi(t) − P̂i (t) (A.3)

κ(t)τL
d P̂i j(t)

dt
= xi(t)x j (t) − P̂i j(t) (A.4)

βi (t) = log(P̂i (t)) (A.5)

wi j (t) = P̂i j (t)

P̂i (t)P̂j (t)
(A.6)

where P̂i and P̂i j are moving averages of unit activity and co-activity.
τL is the learning time constant of the associative projection. The learning time constant

is assumed to be modulated by an external input κ(t) such as a dopamine signal, acting as a
‘print-now’ signal [8, 42, 53]. During memory encoding it is decreased, enabling the network
to learn quickly, while during delay periods the time constant is long, making the synaptic
strengths stable.

The adaptation was modelled using an extra associative projection with learning time
constant τA and (negative) gain gA added to the update equation (A.1).
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