
Ab initio Algorithmic Causal Deconvolution of Intertwined
Programs and Networks by Generative Mechanism∗

Hector Zenil1,2,3,4, Narsis A. Kiani1,2,3,4, Allan A. Zea1,4,5, Jesper Tegnér2,3,6
1 Algorithmic Dynamics Lab, Centre for Molecular Medicine,

Karolinska Institute, Stockholm, Sweden
2 Unit of Computational Medicine, Department of Medicine,

Karolinska Institute, Stockholm, Sweden
3 Science for Life Laboratory, SciLifeLab, Stockholm, Sweden
4 Algorithmic Nature Group, LABORES for the Natural and

Digital Sciences, Paris, France
5 Escuela de Matemática, Facultad de Ciencias, UCV, Caracas, Venezuela

6 Biological and Environmental Sciences and Engineering Division,
Computer, Electrical and Mathematical Sciences and Engineering

Division, King Abdullah University of Science and
Technology (KAUST), Kingdom of Saudi Arabia
{hector.zenil, narsis.kiani, jesper.tegner}@ki.se

Abstract

Complex data is usually produced by interacting sources with different
mechanisms. Here we introduce a parameter-free model-based approach, based
upon the seminal concept of Algorithmic Probability, that decomposes an obser-
vation and signal into its most likely algorithmic generative sources. Our meth-
ods use a causal calculus to infer model representations. We demonstrate the
method ability to distinguish interacting mechanisms and deconvolve them, re-
gardless of whether the objects produce strings, space-time evolution diagrams,
images or networks. We numerically test and evaluate our causal separation
methods and find that it can disentangle examples of observations from dis-
crete dynamical systems, and complex networks. We think that these causal
separating techniques can contribute to tackle the challenge of causation for
estimations of better rooted probability distributions thereby complementing
more limited statistical-oriented techniques that otherwise would lack model
inference capabilities.

Keywords: Model generation; signal decomposition; segmentation; algorith-
mic renormalization; algorithmic image segmentation; graph partitioning; al-
gorithmic machine learning; model generation; feature selection.

∗An online implementation is available at http://www.complexitycalculator.com.
Code in the Wolfram Language and R is available at https://github.com/allgebrist/

Causal-Deconvolution-of-Networks/

1

ar
X

iv
:1

80
2.

09
90

4v
4

 [
cs

.A
I]

 5
 A

pr
 2

01
8

http://www.complexitycalculator.com
https://github.com/allgebrist/Causal-Deconvolution-of-Networks/
https://github.com/allgebrist/Causal-Deconvolution-of-Networks/

1 Introduction

To extract and learn representations leading to generative mechanisms from data,
especially without making arbitrary decisions and biased assumptions, is a central
challenge in most areas of scientific research particularly in connection to current
major limitations of influential topics and methods of machine and deep learning as
they have often lost sight of the model component.

Classical information theory has provided rigorous ways to capture our intuitive
notions regarding uncertainty and information, and made an enormous impact in
doing so. One of the fundamental measures here is mutual information, which
captures the average information contained in one variable about another, and vice
versa. If we have two source variables and a target, for example, we can measure the
information held by one source about the target, the information held by the other
source about the target, and the information held by those sources together about
the target. Any other notion about the directed information relationship between
these variables, which can be captured by classical information-theoretic measures
(e.g., conditional mutual information terms) is linearly redundant with those three
quantities.

However, intuitively, there is strong desire to measure further notions of how
this directed information interaction may be decomposed, e.g., how much informa-
tion the two source variables hold redundantly about the target, how much each
source variable holds uniquely, and how much information can only be discerned by
synergistically examining the two sources together. These notions go beyond the
traditional information-theoretic view of a channel serving the purpose of reliable
communication, considering now the situation of multiple communication streams
converging on a single target. This is a common situation in biology, and in particu-
lar in neuroscience, where, say, the ability of a target to synergistically fuse multiple
information sources in a non-trivial fashion is likely to have its own intrinsic value,
independently of reliability of communication.

The absence of measures for such decompositions into redundant, unique and
synergistic information is arguably the most fundamental missing piece in classi-
cal information theory. Triggered by the formulation of the Partial Information
Decomposition framework by Williams and Beer in 2010, the past few years have
witnessed a concentration of work by the community in proposing, contrasting, and
investigating new measures to capture these notions of information decomposition.

Typically, models encode features of data in statistical form and in single vari-
ables and merged models, even in cases where several data sources are involved.
Quantitative measures to disentangle complex signals and methods to tell apart
causal mechanisms from noise and (ir)relevant interactions are of broad interest
in areas such as statistical mechanics, reverse engineering, network inference, data
reconstruction and scientific discovery in general, being germane to the challenge

2

of causal analysis. For example, the development of techniques for learning dis-
entangled representations using probabilistic machine and deep learning methods
has recently gained significant momentum [11]. More broadly, model-based repre-
sentations from data is one of the main challenges in machine learning, artificial
intelligence and causal discovery and inference. Here we introduce a framework
based upon the theory of algorithmic probability, which in our formulation is capa-
ble of identifying different sources that may explain and provide different models for
each of the possible causes of convoluted or intertwined data. Casual inference has
been one of the most challenging problems in science. The debate about causality
has not prevented the development of successful and mature mathematical and algo-
rithmic frameworks, first in the form of classical statistics and today in the form of
computability and algorithmic information theories. Based on these latest mature
mathematical frameworks that are acknowledged to fully characterize the concept
of randomness as opposed to causal (deterministic), we introduced a suite of algo-
rithms [20] to study the algorithmic information dynamics of evolving systems, and
also methods to reduce the dimensions of data [21] based on the same principles.
Algorithmic data dimension reduction and algorithmic deconvolution are two chal-
lenges which can be viewed as opposite sides of the same coin. On the one hand,
data reduction is achieved by finding elements that are considered redundant, using
as a criterion their contribution to the algorithmic content of the description of the
data. Such elements provide the basis for compression and they can therefore safely
be removed. On the other hand, the algorithmic deconvolution by generative mech-
anisms operates by identifying the elements that are likely to be part of the same
causal path of some production rule or generating mechanism. The deconvolution
is thus able to decompose causes and pinpoint the different sources generating the
observed data.

2 Notation and Background

2.1 Cellular automata

We use cellular automata as causal dynamical systems to illustrate the algorithm
before demonstrating its capabilities on more sophisticated objects of a convoluted
nature and its applications to objects such as complex networks.

A cellular automaton is a computer program that applies in parallel a global rule
composed of local rules on a tape of cells with symbols (e.g. binary). Thoroughly
studied in [22], Elementary Cellular Automata (or ECA) are one-dimensional cellular
automata that take into consideration in their local rules the cell next to the centre
and the centre cell.

3

Definition 2.1. A cellular automaton (or CA) is a tuple 〈S, (L,+), T, f〉 with a set
S of states, a lattice L with a binary operation +, a neighbourhood template T , and
a local rule f .

The set of states S is a finite set with elements s taken from a finite alphabet∑
with at least two elements.

Definition 2.2. The neighbourhood template T = 〈η1, ..., ηm〉 is a sequence of L. In
particular, the neighbourhood of cell i is given by adding the cell i to each element
of the template T : T = 〈i + η1, ..., i + ηm〉. Each cell i of the CA is in a particular
state c[i] ∈ S. A configuration of the CA is a function c : L → S. The set of all
possible configurations of the CA is defined as SL.

As a discrete dynamical system, the evolution of the CA occurs in discrete time
steps t = 0, 1, 2, ..., n. The transition from a configuration ct at time t to the
configuration c(t+1) at time t + 1 is induced by applying the local rule f . The

local rule is to be taken as a function f : S|T | → S which maps the states of the
neighbourhood cells of time step t in the neighbourhood template T to cell states
of the configuration at time step t+ 1:

ct+1[i] = f (ct[i+ η1], ..., ct[i+ ηm]) (1)

The general transition from configuration to configuration is called the global map
and is defined as: F : SL → SL.

In the case of 1-dimensional CA it is common to introduce the radius of the
neighbourhood template which can be written as 〈−r,−r + 1, ..., r − 1, r〉 and has

length 2r+ 1 cells. With a given radius r the local rule is a function f : Z|S|
(2r+1)

|S| →

Z|S| with Z|S|
(2r+1)

|S| rules. Elementary Cellular Automata (ECA) have a radius r = 1

(closest neighbours), having the neighbourhood template 〈−1, 0, 1〉, meaning that
the neighbourhood comprises a central cell. From this it follows that the rule space
for ECA contains 22

3
= 256 rules.

Enumeration of ECA rules: It is common to follow the lexicographic ordering
scheme introduced by Wolfram [22]. According to this encoding, the 256 ECA rules
can be encoded by 8-bits.

2.2 Causation and Algorithmic Probability

Algorithmic complexity [5, 2] is at the core of the challenge of complexity in discrete
dynamical systems, as it involves finding the most statistically likely generating
mechanism (computer program) that produces a set of given data. Formally, the al-
gorithmic complexity (also known as Kolmogorov-Chaitin complexity) is the length

4

of the shortest computer program that reproduces the data from its compressed
form when running on a universal Turing machine.

We apply the so-called Coding Theorem Method (CTM) and Block Decomposi-
tion Method (BDM) as introduced in [3, 9, 13, 19] based on the seminal concept of
Algorithmic Probability [10, 6] to estimate algorithmic complexity [5, 2].

3 Methods and deconvolution algorithm

3.1 Graph complexity

The concept of Algorithmic Probability (and associated Levin’s semi-measure and
Universal Distribution) has been introduced as a method for approximating algo-
rithmic complexity based on the frequency of the patterns occurring in the adjacency
matrix of a network. The measure applied to labelled graphs has been proven to
be an tight upper bound of the algorithmic complexity of unlabelled graphs and
therefore quite invariant to particular adjacency matrix choice [15].

More precisely, the algorithmic probability [10, 6, 2] of a subgraph H ⊆ G is a
measure of algorithmic probability based on the frequency of a random computer
program p producing H when run on a 2-dimensional tape universal (prefix-free1)
Turing machine U also referred to as a Turmite. That is, m(G) =

∑
p:U(p)=H⊆G 1/2|p|.

The probability semi-measure m(G) is related to algorithmic complexity C(G)
in that m(G) is at least the maximum term in the summation of programs m(G) ≥
2−C(G), given that the shortest program carries the greatest weight in the sum.
The Coding Theorem establishes the connection between m(G) and C(G) as ([6]):
|− log2m(G)−C(G)| < c (Eq. 1), where c is some fixed constant, independent of s.
The theorem implies that one can estimate the algorithmic complexity of a graph
from the frequency of production from running random programs and applying the
Coding theorem: C(G′) = − log2m(G) + O(1). The Coding theorem establishes
that graphs produced with lower frequency by random computer programs have
higher algorithmic complexity, and vice versa.

The BDM of a graph thus consists in decomposing the adjacency matrix of
a graph into subgraphs of sizes for which complexity values have been estimated,
then reconstructing an approximation of the algorithmic complexity of the graph by
adding the complexity of the individual pieces according to the rules of information
theory, as follows:

C(G) =
∑

(ru,nu)∈Adj(G)d×d

log2(nu) + C(ru) (2)

1The group of valid programs forms a prefix-free set (no element is a prefix of any other, a
property necessary to keep 0 < m(G) < 1).

5

where Adj(G)d×d represents the set with elements (ru, nu), obtained when de-
composing the adjacency matrix of G into all subgraphs of size d contained in G.
In each (ru, nu) pair, ru is one such submatrix of the adjacency matrix and nu its
multiplicity (number of occurrences). As can be seen from the formula, repeated
subgraphs only contribute to the complexity value with the subgraph BDM complex-
ity value once plus a logarithmic term as a function of the number of occurrences.
This is because the information content of subgraphs is only sub-additive, as one
would expect from the growth of their description lengths. Applications of m(G) and
C(G) have been explored in [3, 9, 8, 13], and include applications to graph theory
and complex networks [12] and [13] where the technique was first introduced.

The only parameters used for the application of BDM, as suggested in [19], is
to set the overlapping of the decomposition to the maximum 12 bits for strings and
4 square bits for arrays given the current best CTM approximations [9] from an
empirical distribution based on all Turing machines with up to 5 states, and no
string/array overlapping in the decomposition for maximum efficiency (as it runs in
linear time) and for which the error (due to boundary conditions) has been shown
to be bounded [19].

However, the algorithm introduced here is independent of the method used to
approximate algorithmic complexity such as BDM. BDM assigns an index associated
with the size of the most likely generating mechanism producing the data according
to Algorithmic Probability [10]. BDM is capable of capturing features in data be-
yond statistical properties [19, 16] and thus represents an improvement over classical
information theory. Because finding the program that reproduces a large object is
computationally very expensive– even to approximate–BDM finds short candidate
programs using another method [3, 9] that finds and reproduces fragments of the
original object and then puts them together as a candidate algorithmic model of
the whole object [19, 13]. These short computer programs are effectively model
candidates explaining each fragment, with the long finite sequence of short models
being itself a generating mechanistic model.

The aim of the deconvolution algorithm is to break a dataset into groups that do
not share certain features (essentially causal clustering and algorithmic partition by
probable generative mechanism, completely different from traditional clustering and
partition in machine learning approaches). Usually these characteristics are a pa-
rameter to maximize, but ultimately the purpose is to distinguish components that
are generated similarly from those that are generated differently. In information-
theoretic terms the question is therefore as follows: What are the elements (e.g.
nodes or edges) that can break a network into the components that maximize their
algorithmic information content, that is, those elements that preserve the informa-
tion about the underlying programs generating the data?

Let G be a graph and let E = E(G) denote its set of edges. Let G\e denote the
graph obtained after deleting an edge e from G. The information contribution of

6

e to G is given by I(G, e) := C(G) − C(G\e). A positive information contribution
corresponds to information loss and a negative contribution to information gain.
Here we wish to find the subset F ⊆ E such that the removal of the edges in F
disconnects G into N components and minimises the loss of information among all
subsets of edges, i.e. the subset such that I(G,F) ≤ I(G,S) for all S ⊆ E. Let
us denote the number of connected components of G by k(G). Algorithm 1 allows
us to obtain the subgraph (V,E\F) subject to the above conditions. The desired
subset of edges is then given by F = E(G)\E(Deconvolve(G,N)).

Algorithm 1 Causal deconvolution for networks

1: function Deconvolve(G,N), 1 ≤ k(G) ≤ N ≤ |V (G)|
2: while k(G) < N do
3: infoloss← ∅
4: // for each edge e
5: for e ∈ E(G) do
6: if I(G, e) > 0 then
7: // store the information loss after deleting e into infoloss
8: infoloss← infoloss ∪ {I(G, e)}
9: // calculate the minimal information loss across all edges

10: minloss← min(infoloss)
11: // remove all edges with contribution = minloss from G
12: G← G\{e ∈ E(G) : I(G, e) = minloss}

return G

The only parameter that Algorithm 1 requires is the number of components into
which an object will be decomposed. However, there is a natural way to find the
optimal terminating step and therefore the number of maximum possible compo-
nents that minimize the sum of the lengths of the candidate generating mechanisms
thereby truly making the algorithm parameter-free as it is not required to have a
preset number of desired components.

Before introducing the terminating criterion (c.f. next section) for the number
of components, let’s analyse what it might mean for two components s1 and s2 to
have same algorithmic information content C(s1) = C(s2). Clearly that subcompo-
nents s1 and s2 have the same algorithmic complexity (an integer—or a real value if
using AP-based BDM—indicating the size of the approximated minimal program)
does not imply that the two components are generated by exactly the same gen-
erating mechanism. However, because of the exponential decay of the algorithmic
probability of an increasingly random object, we have it that the less random it is,
the exponentially more likely it is that the underlying mechanism will be the same
(see Fig. 5C). This is because there are exponentially fewer short programs than
long ones. For example, in the extreme case of connected graphs, we have it that

7

the complete graph denoted by Kn has the smallest possible algorithmic complexity
∼ log(n). If C(s1) = C(s2) ∼ log(n) then s1 and s2 are, with extremely high proba-
bility, generated by the same algorithm that generates either the complete graph or
the empty graph (with same lowest algorithmic complexity as it requires no descrip-
tion other than either all nodes connected or all nodes disconnected). Conversely,
if C(s1) = C(s2) but C(s2) and C(s1) depart from log(n) (and approximate algo-
rithmic randomness) then the likelihood of being generated by the same algorithm
exponentially vanishes. So the information regarding both the algorithmic complex-
ity of the components and their relative size sheds light on the candidate generating
mechanisms and is less likely to coincide ‘by chance’ for non-trivial cases.

3.1.1 Algorithm terminating criterion

The immediate question is where we should stop breaking down a system into its
causal components. The previous section suggests a terminating criterion. Let
S be the object which has been produced by N mostly independent generative
mechanisms. We decompose S into n parts s1, . . . , sn in such a way that each si,
i ∈ {1 . . . n} has an underlying generating mechanism found by running the algo-
rithm iteratively for increasing n, but after each iteration we calculate the minimum
of the differences in algorithmic complexity among all subcomponents. The algo-
rithm should then stop where the number of subcomponents is exactly N when
the sum of the lengths—the estimated algorithmic complexity—of each of the pro-
grams will diverge from the expected log(N) because the length of the individual
causal mechanisms producing each new component will be breaking a component
that could previously be explained by the causal mechanism at a previous iteration
of the algorithm.

As a trivial example, let’s take the string 1n, where Sn means that the pattern S
is repeated n times. After application of the algorithm, the terminating criterion will
suggest that 1n cannot be broken down into smaller segments, each with a different
causal generating mechanism, whose total length sums will be shorter than the
length of the generating mechanism producing 1n itself. This is because the sum of
the length of the shortest programs

∑
i |pi| running on a universal Turing machine

generating segments of 1n of length mi < n each, such that the concatenation
∪i=1pi = 1n, will be strictly greater than C(1n), given that each pi halting criterion
will require i logmi bits more than C(1n).

In the case of Fig. 2, the terminating criterion retrieves N = 3 components from
the two interacting ECA (rule 60 and 110). This does not contradict the fact that
we started from two generating mechanisms, because there are three clear regimes
that are actually likely to be reproducible by three different generating mechanisms,
as suggested by the deconvolution algorithm itself, and as found in [7], where it has
been shown that rule 110 can be emulated by the composition of two simpler ECA

8

rules (rules 51 and 118). As seen in Fig. 2, among the possible causal partitions,
N = 2 successfully deconvolves ECA rule 60 from rule 110 on the first run, with
a stronger difference than the difference found between N = 3 components when
breaking rule 110 into its two different regimes.

3.1.2 Time complexity

The algorithmic for network deconvolution that we have introduced in this section
runs in polynomial-time in the general case for a small number of components to
deconvolve. Let M denote the number of edges of the graph G. The brute force
algorithm for this problem searches the edge such that its removal minimises the
loss of information and deletes it, repeating this process for all edges of G until
N subcomponents are reached, which has a worst-case time complexity of O(M2).
Algorithm 1 is different from the brute force approach in that edges with equal
minimal contribution to the loss of information are not deleted sequentially but all
at once. While Algorithm 1 also has a worst-case time complexity of O(M2), this
slight modification makes it more optimal in some cases.

4 Numerical experiments

4.1 Decomposition of sequences and space-time diagrams

In this section, we will test the suggested algorithm on different types of objects,
in order to show its applicability and power. We start with the simplest version
of an object which conveys information, a string, and move later to consider richer
objects such as networks.

We will use different programs to produce different parts of a string, that is a
program p to generate segment s1 and program p′ to generate segment s2 put next to
each other. Clearly the string has been generated by two generating mechanisms (p
and p′). Now we use the algorithm to deconvolve the string and find the number of
generating mechanisms and most likely model mechanisms (the program themselves)
inducing a form of algorithmic partition based on the likelihood of each segment to
be produced by different generating mechanisms.

Figs. 1A-E illustrate how strings that have short generating mechanisms are sig-
nificantly and consistently more sensitive to perturbations. The resulting string is
0111010010101010000000
1001100111100110000011100110 with the colours corresponding to the parts sug-
gested by the different regimes, according to their algorithmic contribution and the
segment’s resilience to perturbations (by deletion and replacement) to the original
string. Behind every real number approximating the algorithmic complexity of a

9

A B

C D

E

F G

Figure 1: Proof of concept applied to a binary string composed of two segments
with different underlying generating mechanisms (computer programs). A: Log plot
of complexity estimation of a regular segment (blue) consisting of the repetition of
‘01’ 25 times followed by a random-looking segment (red). B: Log plot reversing
the order of A yet preserving the qualitative behaviour of the different segments. C:
The code of the smallest generating program (a non-terminating Turing machine)
depicted visually (states are arrows in different directions) producing the string of
01n for any n (0 is white and 1 is orange) starting from a blank tape as shown in
the space-time diagram (E). D: the same computer program as a state diagram. F:
Interacting programs with different generating mechanisms (ECA rules 255 v 110)
running for 60 steps. G: Algorithmic information footprint, every pixel is deleted
and its original contribution to the whole quantified and coloured accordingly. If
grey, then it makes the lowest contribution, blue represents a low contribution and
red the highest contribution (randomness).

10

string there is the discovery of a large set of generating programs when using the
Algorithmic Probability (AP)-based measure BDM producing the object.

We not only could find the number of mechanisms correctly (Figs. 1A and B)
but the candidate programs (which for this trivial example are exactly the original)
that generate each segment (Figs. 1C-E) by way of seeking for the shortest computer
programs in a bottom up approach (see [3, 9, 13, 19]). Finding the shortest programs
is, however, secondary, because we only care about the different explanatory power
that different programs have to explain the data in full or in part pinpointing the
different causal nature of the segments and helping in the deconvolution of the
original observation.

Figs. 1C-E depict the computer program (a non-terminating Turing machine)
that is found when calculating the BDM of the 01n string. The BDM approximation
to the algorithmic complexity of any 01n string is thus the number of small com-
puter programs that are found capable of generating the same string or, conversely
(via the algorithmic Coding theorem, see [3, 9, 13]), the length of the shortest pro-
gram producing the string. For example, the string 01n was trivially found to be
generated by a large number of small computer programs (in Fig. 1C,D depicted
a non-terminating Turing machine with E its output) using our algorithmic meth-
ods (as opposed to, e.g., using lossless compression, which would only obfuscate
the possible generating model) with only two rules out of 2× 2 rules for the size of
Turing machine with only two states and two symbols and no more, thus of very low
algorithmic complexity compared to, e.g., generating a random-looking string that
would require a more complex (longer) computer program. The computer program
of a truly random string will grow in proportion to the length of the random string,
but for a low complexity string such as 01n, repeated any number of times n, the
length of the computer program is of (almost) fixed size, growing only by log(n) if
the computer program is required to stop after n iterations. In this case 01n is a
trivial example with a strong statistical regularity whose low complexity could be
captured by applying Shannon entropy alone on blocks of size 2.

Figs. 1 F and G illustrate how the algorithm can separate regions produced by
generating mechanisms of different algorithmic information content by observing
their space-time dynamics, thereby contributing to the deconvolutin of regions that
are produced by different generating mechanisms. In this example both programs are
sufficiently robust to not break down (see Sup. Inf.) when they interact with each
other, with rule 110 prevailing over 255. Yet, in the general case it is not always easy
to tell these mechanisms apart. In more sophisticated examples such as in Figs. 2
D to E, we see how the algorithm can break down contiguous regions separating
an object into two major components corresponding to the different generating
computer programs that are intertwined and actively interacting with each other.
The experiment was repeated 20 times with programs with differing qualitative (e.g.
Wolfram class) behaviour.

11

A B

C

D E

F

Figure 2: A: The output of two different intertwined programs (ECA rules 60 and
110) with qualitatively complex output behaviour (11 to 60 steps depicted here,
from a random initial condition) interacting with each other (one of which has
been proven to be Turing-universal and the other has also been conjectured to be
universal [22]), each producing structures of a similar type that, from an observer’s
perspective, are difficult to distinguish (see Subfigure C) as is artificially done in B
(knowing which pixel is generated by which rule). C: What an observer of the last
runtime would see in the form of a stream of bits with no clear statistical distinction.
D: The algorithm pinpoints the regions of neutral, positive and negative, with the
contiguous largest blue component segmenting the image into two components. E:
only negative vs positive causal contributions where both Shannon entropy and a
popular lossless compression algorithms fail (see SI). F: Sanity check/validation:
Statistically significant quantitative differences among the parts after application of
the algorithm as illustrated in E among apparently weak qualitative differences as
illustrated in Subfig. A.

12

Fig. 2 F demonstrates that perturbations to regions in red are considered to
have a more random effect and are thus by themselves less algorithmically com-
plex (random) versus simple. When regions are of the same algorithmic complexity
they are likely to be generated by similar algorithms, or more precisely, algorithms
that are of similar minimal length. Regions in blue move the space-time evolu-
tion away from randomness and are themselves more algorithmically random. Blue
structures on the left hand side correspond to large triangles occurring in ECA rule
110 that are usually used to compute and transfer information in the form of par-
ticles. However, triangular patterns transfer information in a limited way because
their light cone of influence reduces at the greatest possible speed of the automa-
ton, and they are assigned an absolute neutral information value. Absolute neutral
values are those closest to 0. Once separated, the two regions have clearly different
algorithmic characteristics given by their causal perturbation sensitivity, with the
right hand side being more sensitive to both random and non-random perturbations.
Moreover, Fig. 2 F shows results compatible with the theoretical expectation and
findings in [20] where a measure of reprogrammability associated with the number
and magnitude of elements that can move a dynamical system towards or away from
randomness was introduced and shown to be related to fundamental properties of
the attractor space of the system.

4.2 Graph and network deconvolution

Classification can usually be viewed as solving a problem which has an underlying
tree structure according to some measure of interest. One way to think of optimal
classification is to discover a tree structure at some level of depth, with tree leaves
closer to each other when such objects have a common or similar causal mechanism
and for which no feature of interest has been selected. Fig. 3 illustrates how the
algorithm may data, in this case starting from a trivial example that breaks complete
K-ary trees. Traditionally, partitioning is induced by an arbitrary distance measure
of interest that determines the connections in a tree, with elements closer to a cluster
centre connected by edges. The algorithm breaks the trees (see Fig. 3) into as
many components as desired by iterating the algorithm until the number of desired
components is obtained or the terminating criterion is applied (c.f. Subsection 3.1.1).
Figs. 3A,B provide examples illustrating how to maximize topological symmetry.
The algorithm can be applied, without loss of generalization, to any non-trivial
graph, as in Figs. 3C,D or on any dataset for that matter.

Figs. 4 illustrate the algorithm and terminating criterion starting from an ar-
tificial graph composed by several graphs (2 simple and one E-R random: a small
E-R random graph connected to a star graph and to a complete graph). The graph
can be successfully decomposed by algorithmic probability (see Figs. 4B and D) by
identifying the likelihood of an edge to be produced by the same mechanism by

13

A B

C D

E

Figure 3: A,B: Forced deconvolution of a tree by minimization of graph algorithmic
information loss thereby maximizing causal resemblance of the resultant components
(hence causal clustering). Depicted are the components of a K-ary trees of size 6
(A) and 10 (B) and their resulting graphs after one iteration of the deconvolution al-
gorithm. C: Deconvoluting a graph composed by a complete graph and a scale-free
(S-F) network generated by preferential attachment and randomly connected be-
tween them. Negative edges break down the graph into components corresponding
to the different underlying generating mechanisms. D: Deconvolution of a random
graph (E-R) and a scale-free (S-F) network. E: The algorithm first separates the
subcomponents with the largest algorithmic difference, followed by other subcom-
ponents.

14

A B

C D

Figure 4: A: Synthetic graph composed by 3 subgraphs with different topology. B:
The causal decomposition in smaller components separating the graph into smaller
spanning subgraphs, further partition starts breaking subgraphs whose resultant
components’ algorithmic complexity are too close to each other indicating the ter-
minating criterion. C: The information signature (red circle) illustrates the distribu-
tion of information values for each edge (x-axis) from the original graph (A), a line
of differences of consecutive values (blue square) from the signature indicating the
largest values producing a natural separation (the peaks signal the edges to delete)
with, in this case, four values clearly standing out beyond the log(2) line (yellow
rhombus) breaking the signature corresponding to each subgraph forming with high
accuracy thereby deconvolving the original graph (A) into the spanning graphs that
are most likely generated by the same causal/algorithmic source.

virtue of being close to each other in the information contribution (which theoreti-
cally should be removed by only log(2) if it follows the normal evolution of the same
process), hence what we call causal separation/partition and clustering. Fig. 4D
shows the distribution of all edges coloured by its graph membership and almost

15

perfectly corresponding to the different pieces separated by the largest differences
as shown in Fig. 4A.

The same task using classical information theory (Shannon entropy) is shown not
to be sensitive enough (see Sup. Inf.), and a popular lossless compression algorithm
(Compress based on LZW) provided a noisy approximation (see Sup. Inf.) to the
results obtained by using the Block Decomposition Method, as defined in [19], whose
description is provided in the Sup. Inf.

Figs. 3C-E illustrate how randomly connected graphs with different topologies
can be broken into their respective generative mechanisms. Fig. 3C is a complete
graph of size 20 randomly connected by 3 edges to a scale-free graph of size 100.
The graphs are generated by different mechanisms, one is a small program that,
given a number N of nodes, produces a graph with all nodes connected to all other
N − 1 nodes and has a program of small length that grows only by logN [15]. The
scale-free network is generated by the canonical preferential attachment algorithm
with two edges per node and requires a slightly longer algorithm that grows by
logN + c [15] where c is a small constant accounting for the pseudo-random choice
of attachment nodes. The algorithm breaks the graphs into two components, each of
which corresponds to the graphs with different degree distribution (depicted below
each case) associated with its generating mechanism. This is because |P (G1)| +
|P (G2)|+ . . .+ |P (Gn)|+ |P (eGi)| > |P (G1G2 . . . Gn)| for any Gi, where eGi is the
set of edges randomly connecting Gi to Gj for any i and j for all G of low algorithmic
complexity.

4.3 Robustness and limitations

Fig. 3 D illustrates a similar case to Fig. 3 C, but instead of a complete graph
an Erdős-Rényi (E-R) graph with edge density 0.5 is produced and connected by
3 random edges to a scale-free network produced in the same fashion as in Fig. 3
C. Again, the algorithm was able to break it down into the two corresponding
subgraphs. Fig. 3 D represents a test case to evaluate the effect of additive noise by
connecting an E-R graph of increasing size and with an increasingly greater number
of random edges.

Next we ask how much structure, if any, can be recovered/extracted when adding
a random (E-R) graph to different types of structured networks. To this end, we
conducted a series of numerical experiments shedding light on the limitations of
the algorithm introduced here in the face of additive noise. The same results were
obtained for the simpler case of connecting any complete graph of increasing size to
any other graph such as E-R or S-F.

Fig. 5 shows the results from the experiments separating graphs, in this case
a scale-free graph (S-F) from an Erdős-Rényi graph (E-R), the former generated
by a Barábasi-Albert preferential attachment algorithm [1] and the latter produced

16

A

B C

Figure 5: A: Causal deconvolution of graphs, a S-F graph (2 new links per added
node) from an E-R (0.5 edge density) graph emulating noise (each point represents
the average of 10 replicates). When the number of links increases as a function
of the subgraph sizes, the separability is robust (red square markers) compared to
increasing the number of random links only for graphs of fixed size (40 nodes), when
successful separation is compromised, noise (E-R) and structure (S-F) being indistin-
guishable. B: A small sample of 6 graphs among the 10×20 = 200 graphs randomly
connecting a S-F to an E-R graph. Success at identifying randomly connecting links
is shown and was found to be very robust. C: Objects have exponentially greater
chances of being produced by the same generating mechanism if they are of low
algorithmic randomness and thus of high algorithmic probability.

by a pseudo-random generator. Fig. 5A quantifies the error and optimal signal-
to-noise ratio for optimal deconvolution, testing the algorithm under additive noise
both for fixed and growing size subcomponents. Fig. 5B shows links coloured in
red as identified by the algorithm having the highest algorithmic information value
when their removal sends the original composed system towards lower algorithmic

17

information content, thereby telling apart the two subcomponents. Negative links
are mostly on the side of the E-R graph. In other words, the S-F can be extracted
with the greatest precision and a lower rate of false positives from the mix, which
is to be expected given the random nature of the added links that connect the
graphs, making them more like the E-R links than the S-F. If only the number
of random links among graphs increases for fixed size graphs (Fig. 5B blue circle
marks) a maximum precision of about 0.9 is reached before degradation. That
is, at around 32.5% of the links randomly connecting the components. In other
words, the algorithm is robust, telling apart noise from structure even after up to
0.325 (from the random links connecting the components) + 0.5 (from the
E-R component) = 0.825, i.e. 82.5% of all links are random. On the other hand, the
number of false positives is constant at about 5%, in the case shown in Fig. 5B all of
the false positives (red links not connecting the two graphs with different topology)
are inside the E-R graph and mostly nonexistent on the side of the less random S-F
graph.

5 Remarks and conclusions

For some more sophisticated yet successful examples on which these new algorithmic
methods may outperform applications of entropy in general (without access to true
probability distributions) and other computable measures see [19], and [16] for a non-
trivial example in which entropic measures fail (by offering divergent descriptions of
the same evolving system). The generation of these models is key in our approach
because the integer (or real) value assigned to a system as an estimation of its
algorithmic complexity is nothing but a guiding index of the number of specific
models found by our method that are capable of explaining and generating the
data.

One possible objection is that any number of interacting rules can be thought
of as a single rule producing an intertwined output because we known from Turing
universality that any number of interacting programs can also be rewritten as a
single program in a larger rule space (defined by state × symbol) incorporating
all the behaviours together. That is, any computer program can be decomposed
into one or more computer programs producing the same output. This means that
separating programs and signals is, in some way, not fundamental. Fig. 2C-F shows,
for example, that by iterating the deconvolution algorithm not only do the two
main components of the image correspond to the two generating ECA rules, but
a second application of the algorithm would produce a third or more components
corresponding to further resilient features generated by the rules, which can be
considered rules themselves within a smaller rule (state/symbol) space. However,
in the deconvolved observations the interacting rule determining how two or more

18

rules may interact effectively constitutes a third global rule to which the algorithm
has no direct access or an apparent region in the observed window.

We have introduced and tested a parameter-free algorithm for causal deconvo-
lution of interlaced and interacting mechanisms using fundamental concepts drawn
from the theory of Algorithmic Probability and Algorithmic Information Theory.
Our approach enables a parameter-free analysis of the deconvolution problem, since
we have removed the need for pre-defined user-centric definitions of global properties
or local rules (e.g. distance metrics) to determine the algorithm. Instead, relating
our algorithm to the algorithmic information theory provides us with a fundamental
metric. While the algorithm uses state-of-the-art algorithms to approximate algo-
rithmic complexity (CTM and BDM), the algorithm and methods introduced here
are independent of the approximating method chosen (e.g. lossless compression).
However, the precision and accuracy is not. Yet, the algorithm is sufficiently ro-
bust to disentangle sophisticated intertwined causal mechanisms. This opens the
possibility of parlaying these algorithmic methods into a more elaborate machine
learning framework. For example, the extracted causal information can be used as a
prior distribution for machine and deep learning techniques. This is useful because
efficient techniques for pattern recognition are as a rule weak on inferring models,
and thus ill-equipped to capture the underlying generative mechanisms and thereby
produce predictive and prescriptive causal models that exceed the descriptive nature
of current classical and modern statistical approaches.

Acknowledgements

H.Z. was supported by the Swedish Research Council (Vetenskapsr̊adet) grant No.
2015-05299.

References

[1] R. Albert, A.-L. Barabási, Statistical mechanics of complex networks, Reviews
of Modern Physics, 74 (1): 47–97, 2002.

[2] G.J. Chaitin. On the length of programs for computing finite binary sequences
Journal of the ACM, 13(4):547–569, 1966.

[3] J.-P. Delahaye and H. Zenil, Numerical Evaluation of the Complexity of Short
Strings: A Glance Into the Innermost Structure of Algorithmic Randomness,
Applied Mathematics and Computation 219, 63–77, 2012.

[4] E. Hermo-Reyes and J.J. Joosten, “Competing Cellular Automata” http:

//demonstrations.wolfram.com/CompetingCellularAutomata/, Wolfram
Demonstrations Project, June 17, 2014.

19

http://demonstrations.wolfram.com/CompetingCellularAutomata/
http://demonstrations.wolfram.com/CompetingCellularAutomata/

[5] A.N. Kolmogorov. Three approaches to the quantitative definition of informa-
tion, Problems of Information and Transmission, 1(1):1–7, 1965.

[6] L.A. Levin. Laws of information conservation (non-growth) and aspects of
the foundation of probability theory, Problems of Information Transmission,
10(3):206–210, 1974.

[7] J. Riedel and H. Zenil, Rule Primality and Compositional Emergence of
Turing-universality from Elementary Cellular Automata, forthcoming, 2017.
XXX

[8] F. Soler-Toscano, H. Zenil, J.-P. Delahaye and N. Gauvrit, Correspondence
and Independence of Numerical Evaluations of Algorithmic Information Mea-
sures, Computability, vol. 2, no. 2, pp. 125–140, 2013.

[9] F. Soler-Toscano, H. Zenil, J.-P. Delahaye and N. Gauvrit, Calculating Kol-
mogorov Complexity from the Frequency Output Distributions of Small Turing
Machines, PLoS One 9(5), e96223, 2014.

[10] R.J. Solomonoff, A formal theory of inductive inference: Parts 1 and 2. Infor-
mation and Control, 7:1–22 and 224–254, 1964.

[11] N. Siddharth, B. Paige, J-W van de Meent, A. Desmaison, N.D. Goodman,
P. Kohli, F. Wood, P.H.S. Torr, Learning Disentangled Representations with
Semi-Supervised Deep Generative Models, arXiv:1706.00400 [stat.ML], 2017.

[12] H. Zenil, F. Soler-Toscano, K. Dingle and A. Louis, Graph Automorphisms
and Topological Characterization of Complex Networks by Algorithmic Infor-
mation Content, Physica A: Statistical Mechanics and its Applications, vol.
404, pp. 341–358, 2014.

[13] H. Zenil, F. Soler-Toscano, J.-P. Delahaye and N. Gauvrit, Two-Dimensional
Kolmogorov Complexity and Validation of the Coding Theorem Method by
Compressibility, 2013.

[14] H. Zenil, N.A. Kiani and J. Tegnér, Quantifying Loss of Information in
Network-based Dimensionality Reduction Techniques, Journal of Complex
Networks 4, 342–362, 2016.

[15] H. Zenil, N.A. Kiani and J. Tegnér, Methods of Information Theory and Algo-
rithmic Complexity for Network Biology, Seminars in Cell and Developmental
Biology, vol. 51, pp. 32-43, 2016.

[16] H. Zenil, N.A. Kiani and J. Tegnér, Low-Algorithmic-Complexity Entropy-
deceiving Graphs, Physics Reviews E. 96, 012308, 2017.

20

http://arxiv.org/abs/1706.00400

[17] H. Zenil, Compression-based Investigation of the Dynamical Properties of Cel-
lular Automata and Other Systems, Complex Systems, 19(1), pages 1–28, 2010.

[18] H. Zenil and E. Villarreal-Zapata, Asymptotic Behaviour and Ratios of Com-
plexity in Cellular Automata Rule Spaces, International Journal of Bifurcation
and Chaos, vol. 13, no. 9, 2013.

[19] H. Zenil, S. Hernández-Orozco, N.A. Kiani, F. Soler-Toscano, A. Rueda-
Toicen, A Decomposition Method for Global Evaluation of Shannon Entropy
and Local Estimations of Algorithmic Complexity, arXiv:1609.00110 [cs.IT],
2016.

[20] H. Zenil, N.A. Kiani, F. Marabita, Y. Deng, S. Elias, A. Schmidt, G. Ball, J.
Tegnér, An Algorithmic Information Calculus for Causal Discovery and Re-
programming Systems, 2017. BioArXiv DOI: https://doi.org/10.1101/185637

[21] H. Zenil, N.A. Kiani, J. Tegnér, Data Reduction and Network Sparsification
by Minimal Algorithmic Information Loss, arXiv XXX

[22] S. Wolfram, A New Kind of Science, Wolfram Media, Champaign IL., 2002.

21

http://arxiv.org/abs/1609.00110

Supplementary Information

5.1 Interacting programs

Figure 6: Interacting programs such as cellular automata require us to define how
the interaction happens by, e.g., deciding what set of rules apply at the intersection.
For instance, one of the two sets of local rules or a 3rd set of rules effectively defining
a super cellular automaton that most likely is another cellular automaton in a larger
rule-space (requiring more states to define the two sub-cellular automata and the
interaction). Depicted here is the type of interaction we explored, and this case
shows the richness of such possible interactions where both rules ‘spill over’ each
other.

The qualitative behaviour of each program can heuristically be identified by
what is known as its Wolfram class, which in turn has been formalized using tools
and methods from algorithmic complexity in [17, 18]. Informally, Wolfram class
1 represents evolutions of programs that converge to a simple fixed configuration,
exemplars of Wolfram class two converge to repetitive simple behaviour, those of
Wolfram class 3 produce unbounded apparently statistically random behaviour and
exemplars of Wolfram class 4 reproduce apparently open-ended persistent structures.
None of what has been introduced here depends on this behavioural characterization
based on different heuristics, and it is thus in no way fundamental to the results
reported.

The interaction rule is interaction rule number 1 according to the enumera-
tion open-source program on the Wolfram Demonstrations website publicly avail-
able at http://demonstrations.wolfram.com/CompetingCellularAutomata/ [4]
determining the way in which the local rules from each global ECA rule will be
dictated and applied at their intersection.

22

http://demonstrations.wolfram.com/CompetingCellularAutomata/

5.2 Graph generation

The graphs used throughout this paper were generated using the Wolfram Language
on the Mathematica platform using the function RandomGraph[] with uniform
distribution (UniformGraphDistribution[]) for Erdős-Rényi graphs and a scale-free
distribution (BarabasiAlbertGraphDistribution[]) for the scale-free networks con-
structed by starting from a cycle graph of size 3 and a vertex of k edges added
at each step according to the preferential attachment algorithm [1] following a dis-
tribution proportional to the vertex degree. All experiments were replicated and
averaged from a set of at least 20 instances.

5.3 Comparison with entropy and lossless compression

Fig. 7 shows the results obtained by using classical information theory (Shannon
entropy) and one of the most popular lossless compression algorithms (Compress)
based on LZW as an approximation to algorithmic (Kolmogorov-Chaitin) complex-
ity instead of BDM. Because all values collapse into a single value for entropy, the
colours displayed are the result of an artificial sorting of the pixels based on their
indices, from top to bottom. Compression is a lower-quality approximation of what
we reported in Figs. 1C-F, where the reported algorithm based on the BDM is clearly
an improvement.

A B

Figure 7: Shannon entropy (A) and lossless compression (Compress) underperform,
not being sensitive enough in performing the same task reported in Figs. 1C-F.

23

	1 Introduction
	2 Notation and Background
	2.1 Cellular automata
	2.2 Causation and Algorithmic Probability

	3 Methods and deconvolution algorithm
	3.1 Graph complexity
	3.1.1 Algorithm terminating criterion
	3.1.2 Time complexity

	4 Numerical experiments
	4.1 Decomposition of sequences and space-time diagrams
	4.2 Graph and network deconvolution
	4.3 Robustness and limitations

	5 Remarks and conclusions
	5.1 Interacting programs
	5.2 Graph generation
	5.3 Comparison with entropy and lossless compression

