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ABSTRACT

Here we address the challenge of profiling causal properties and tracking the transforma-
tion of chemical compounds from an algorithmic perspective. We explore the potential of

applying a computational interventional calculus based on the principles of algorithmic

probability to chemical structure networks. We profile the sensitivity of the elements
and covalent bonds in a chemical structure network algorithmically, asking whether

reprogrammability affords information about thermodynamic and chemical processes
involved in the transformation of different compound classes. We arrive at numerical
results suggesting a correspondence between some physical, structural and functional

properties. Our methods are capable of separating chemical classes that reflect func-

tional and natural differences without considering any information about atomic and
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molecular properties. We conclude that these methods, with their links to chemoinfor-
matics via algorithmic, probability hold promise for future research.

Keywords: Molecular complexity; algorithmic probability; Kolmogorov-Chaitin com-

plexity; causality; causal path; information signature; chemical compound complexity;
algorithmic information theory; Shannon entropy.

1. Background and preliminaries

One of the major challenges in modern physics is to provide proper and suitable

representations of network systems for use in fields ranging from physics [3] to chem-

istry [7]. A common problem is the description of order parameters with which to

characterize the ‘complexity of a network ’. Graph complexity has traditionally been

characterized using graph-theoretic measures such as degree distribution, clustering

coefficient, edge density, and community or modular structure.

A previous algorithmic information-theoretic view of systems toxicity applicable

both to network analysis and pharmacokinetic analysis has been proposed [13], with

the overarching aim of not only describing but also seeking out causal mechanisms.

The suggestion was that since the problem of designing new compounds, aiming

to develop drugs, for new targets is challenging, whereas the prediction problem

is easier from an inference point-of-view compared to elucidating the mechanisms

driving toxicity, complementary approaches are warranted.

For example, instead of engineering a drug to target a unique pathway or muta-

tion of a tiny subset of diseases, drug repositioning involves starting with approved

drugs to find combinations that can be used to treat diseases other than the ones

they were designed for, with the advantage that approved drugs can bypass much

regulation if we correctly control for the effects they can have. Thus prediction and

simulation are key. This means that the whole field has to move towards causal

modelling and functional inference rather than employing traditional statistical

and purely geometric approaches (e.g. distances between compounds or grid-based

docking).

Here we are interested in combining techniques originating in fundamental math-

ematics and theoretical computer science to take a fresh look at long-standing

challenges in molecular complexity from an algorithmic information perspective as

applied to networks [33, 28].

Algorithmic information indices may facilitate the characterization of some

properties of chemical compounds. Statins, for example, are associated with the

heart and cholesterol, while morphine, codeine and heroin share structural prop-

erties and effects. Algorithmic information-theoretic approaches like the one show-

cased here are concerned with predictive causal models, going beyond statistical/

descriptive approaches (such as structural alignments). This is important because,

for statins, for example, block the cholesterol synthesis pathway by inhibiting

the HMG-CoA reductase because similarity to HMG-CoA structure, which is the
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rationale used to treat cardiovascular diseases in patients. The algorithmic ap-

proach deployed here is thus equipped to find model-based mechanistic candidates

for this kind of causal processes involved in the transformation and interactions of

compounds. Here we will focus on one kind of representation namely chemical struc-

ture networks, first independent of physical properties that can then be tested and

connected back to find what is a consequence of the compound causal structure/

topology and what is a consequence of other intrinsic features such as atomic charge

and thermodynamic constraints.

For this approach we will use the techniques and methods developed in [33, 31].

The basic idea is to estimate the likelihood of similarity between compounds based

on an induced partition of possible common underlying mechanisms (models are

found by an exhaustive algorithm that explains small pieces of the data). This

is, in general, a hard if not impossible task (uncomputable), but approximations

have been shown to be useful and new numerical methods have been advanced that

are complementary to previous approaches such as the use of lossless compression

algorithms to approximate algorithmic complexity, which are very limited at ac-

counting for causation [30, 32]. Moreover, even when the method is based on the

idea of finding minimal programs, the more practical aim is to find any, or a set

of programs, explaining the data rather than the smallest one, and so the problem

becomes computationally feasible [9, 21, 27, 30].

1.1. Chemical notation

There are two main notations for chemical substances. The simplified molecular-

input line-entry system or SMILES is an ASCII string specification describing the

structure of a chemical. The string is obtained by printing the symbol nodes encoun-

tered in a depth-first tree traversal of the chemical graph. The chemical graph is first

trimmed to remove hydrogen atoms, and cycles are broken to turn it into a spanning

tree. Where cycles have been broken, numerical suffix labels are included to indicate

the connected nodes, and parentheses are used to indicate points of branching on

the tree. For example, nicotine is written as CN1CCC[C@H]1c2cccnc2. A SMILES

string thus encodes and contains information about a molecule and is an upper

bound of its information content.

A more standardized notation in chemistry is the IUPAC International Chemi-

cal Identifier or InChI, another textual identifier for chemical substances, its chief

advantage over SMILES being that the InChI algorithm converts the structural

information of the chemical substance in a 3-step process that can be tweaked to

a desired level of structural chemical detail, except for an unchanged substring

representing the substance (called the main layer). The algorithm then removes re-

dundant information, keeps as much of the information of the structure as desired,

and encodes it in a string. In some sense, InChI is thus a tighter bound of the

algorithmic complexity of the chemical structure captured by ASCII strings and an

improvement over SMILES.
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1.2. Molecular complexity

The concept of molecular complexity has been shown to be relevant in the design

of syntheses through minimizing the sum of molecular complexities of the synthetic

intermediates [10]. A number of proposals have been made in the literature for

defining molecular complexity. For example, enumerations of graph invariants for

comparing chemical structures have been used for at least 3 decades, and QSAR

regression models [16] for even longer. Different approximations emphasize different

aspects of the molecule and are heavily observer dependent, because the observer

has to make a pre-selection of features of interest (e.g. clustering coefficient, some

eigenvalues in graph spectra, degree distributions, etc.). This is what the chemistry

community has been doing with what they call “chemical fingerprints”, and prior

to that in molecular formulae comparing degree distributions.

In 1981, Bertz [5] introduced a measure of molecular complexity by applying

Shannon’s entropy to the distribution of subgraphs in molecular graphs. That was

the starting point of a systematic search in chemical theory for relevant measures of

molecular complexity. Ever since, graph and molecular complexity measures have

focused on statistics of the topological properties of graphs, such as the size of the

non-repeating subgraph set, among similar approaches. For recent results and a

survey see [4, 15], including a proposal for using lossless compression as a graph

complexity index [17]. An up-to-date review of mainstream techniques in the area

of molecular networks can be found in [8].

Molecular complexity is not easy to define or to quantify, and all previous ap-

proaches have focused on combinatorial or statistical properties of the molecular

graphs, either as a function of bond connectivities, specificity of structures or di-

versity of elements. Researchers agree that the complexity of a molecule increases

with increasing size, increasing branching, and increasing cyclicity for acyclic and

cyclic structures [19], but no computable measure can cover all possible enumerable

computable features like these (both currently defined and undefined) at the same

time. Indeed, a more universal and robust measure of molecular complexity should

take into account all these features of interest at the same time, without having

to enumerate them explicitly or to define an ad-hoc measure for each of them. A

measure that only focuses on some of these properties in the expectation that it

could later be generalized to be able to deal with other properties is out of the

question.

Small molecules or compounds are commonly represented by their skeletal

molecular graphs (see Fig. 1A). That is, the union of a set of points, symboliz-

ing atoms other than hydrogen, and a set of lines, symbolizing molecular bonds.

A typical similarity formula (see Fig. 1E-F) is given by the total number of ele-

ments in the bin 0 divided by the square of the total count of atoms of the largest

molecule. The closer to 0, the more dissimilar. The formula can be relaxed by

taking near 0 bin elements, but this only works for the most simple cases of struc-

tural similarity. This kind of approach is descriptive rather than predictive. For

example, regardless of different biological mechanisms of action, aspirin and statins
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A B C D

E F

G H

Fig. 1. A: Canonical structural diagram of aspirin. B: The undirected chemical structure network

of aspirin, where shape, particular elements and bond types are not retained. C and D: Statins
have similar contact maps. Here we feature lovastatin and simvastatin. Contact maps of a com-

pound are calculated from the distance among its constituent atoms; the further away, the darker.

E: Alignment histograms between lovastatin and simvastatin. The greater the number of atoms
in or around the zero bin, the more similar. The x-axis represents the average distance among

atoms. F: Weaker alignment between lovastatin and aspirin than among statins. G: Algorithmic
(mis)alignment from the node information signatures of aspirin versus statins (normalized by as-

pirin size) with lovastatin topping all others. H: The edge information signature of aspirin is all

positive i.e. all single-bond perturbations to aspirin make its generative mechanistic model even
simpler. In comparison, statins (average signature normalized by aspirin size) have very similar

signatures but differ in the number of molecular bonds that when removed send the compound

networks towards algorithmic randomness.

have shown similar beneficial effects on cardiovascular diseases (CVDs) at popula-

tion level, combination usage of the two drugs has additive effects, but it is not yet

clear in what precise ways aspirin and statins differ, while the general agreement is

that they possess similarities (e.g. accumulating evidence from basic and observa-

tional research demonstrate the anti-inflammatory effects of both drugs contribute

to CVDs treatment, and combined usage of two drugs has additive and synergistic

effects over the use of only one [1]). It is not difficult to see how in some cases
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compounds or compound substructures may share information from complemen-

tary regions, e.g. between drugs and targets, because the structure of the docking

entity is energetically and structurally the complement of the docking region of the

other entity, and thus the compounds may display (partially or entirely) similar

classical and algorithmic information properties and estimations.

Molecular complexity is not easy to define or to quantify, and all previous ap-

proaches have focused on combinatorial or statistical properties of the molecular

graphs, either as a function of bond connectivities, specificity of structures or di-

versity of elements. Researchers agree that the complexity of a molecule increases

with increasing size, increasing branching, and increasing cyclicity for acyclic and

cyclic structures [19], but no computable measure can cover all possible enumerable

computable features like these (both currently defined and undefined) at the same

time. Indeed, a more universal and robust measure of molecular complexity should

take into account all these features of interest at the same time, without having to

enumerate them explicitly or to define an ad-hoc measure for each of them.

The number of possible statistical and algorithmic properties in all possible

networks is countably infinite, but no effective (computable) measure can account

for all of them [14]. This only leave us with uncomputable measures that can serve as

general universal measures of complexity equipped to find any effective (statistical

or algorithmic) regularity. Our approach may find some applications. For example,

one may find that low algorithmic complexity molecules are easier to synthesize or to

assemble into larger new molecules and drugs because high algorithmic complexity

molecules would share fewer physical properties.

1.3. Causality and algorithmic probability

The concept of algorithmic complexity [11, 6] is at the core of the challenge of

complexity in discrete dynamic systems, as it involves finding the most statistically

likely generating mechanism (computer program) that produces some given data.

Formally, the algorithmic complexity (also known as Kolmogorov-Chaitin complex-

ity) is the length of the shortest computer program that reproduces the data from

its compressed form when running on a universal Turing machine.

We follow the so-called Coding Theorem (CTM) and Block Decomposition

Methods (BDM) as introduced in [9, 21, 27, 30], based on the seminal concept

of Algorithmic Probability [22, 12], which in turn is strongly related to algorithmic

complexity [11, 6]. The only parameters used for the decomposition of BDM as

suggested in [30] was the maximum 12 for strings and 4 for arrays given the current

best CTM approximation [21] based on an empirical distribution based on all Tur-

ing machines with up to 5 states, and no string/array overlapping decomposition

for maximum efficiency (as it runs in linear time) and for which the error (due to

boundary conditions) is bounded [30]. However, the algorithm introduced here is

independent of the method used to approximate algorithmic complexity, such as

BDM. BDM assigns an index associated with the size of the most likely generating
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mechanism producing the data according to Algorithmic Probability [22]. BDM is

capable of capturing features in data beyond statistical properties [30, 29], and thus

represents an improvement over classical information theory. Because finding the

program that reproduces a large object is computationally very expensive even to

approximate, BDM finds short candidate programs (which are generative models)

using a method introduced in [9, 21] that finds and reproduces fragments of the

original object and then puts them together as a candidate algorithmic model of

the whole object [30, 27]. These short computer programs are effectively candidate

mechanistic models explaining each fragment, with the long finite sequence of short

models being itself a generating mechanism.

In this sense, a causal path is a path where the changes between one state

and another is merely the product of an underlying dynamical system following its

normal course, sans external intervention [31].

An important concept is that of the information signature of an object [31].

An information signature quantifies the algorithmic resilience of an object to trans-

formations, that is how much its most likely mechanistic model may change after

modifying the object. In the case of networks, perturbations can be applied to

nodes or edges, that is, in the context of chemical structure networks to atoms

and molecular bonds which means that one can have both node and edge informa-

tion signatures (see Fig. 1G, H). Comparing information signatures is therefore a

way to perform an algorithmic alignment among different objects such as chemical

compounds.

2. Numerical experiments and results

2.1. Algorithmic structural complexity

We perturb the structure of a chemical compound network and see the effect on the

set of candidate generating models by performing interventions and ranking them

by the disruptiveness and causal contribution to the networks’ original algorithmic

information content and therefore to the networks’ original hypothesize generative

models (as found by the CTM/BDM method).

We may attach the rubric in silico alchemy to the digital computer simulation

of the types of changes that a molecule can be subject to regardless of the thermo-

dynamic aspects of said molecule or the processes involved (later, we will compare

it to the known processes and physical properties associated with the old and new

compounds). Central to the ideas exploited here is the notion of the information

signature as the result of an in silico simulation measuring the sensitivity of causal

generative model of a compound to perturbations. The information signature de-

picted in Fig. 1G illustrates a set of such interventions/perturbations simulating the

kinds of transformations that a compound such as aspirin can undergo, measuring

the structural sensitivity to single-bond changes and the susceptibility of aspirin

to being reprogrammed (artificially converted) into a different or similar (causal)

structure in what would be a causal path.
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This is an alchemy of sorts, because some of these transformations may be

thermodynamically unlikely and the simulation takes no account of any physical

properties (one can easily transform any element into gold under such conditions).

But all likely causally topological paths are studied as equally possible in order to

determine if there are thermodynamic effects that can be explained by algorithmic

causality, rather than being external effects following particular laws but being

intrinsic properties of the compound in question.

2.2. Chemical network perturbation analysis

All values in the node (Fig. 1G) and edge (Fig. 1H) information signatures of as-

pirin are positive, that is, no intervention targeting any element pushes aspirin to

become a more complex compound. Their algorithmic alignment is similar to the

one produced by classical geometric alignments yet there are less arbitrary cutoff

values (atom to atom distance threshold). The result is consistent with the litera-

ture characterizing aspirin as a simple structure. More importantly, the signature

of aspirin has two clearly identifiable regions. In the disruptive regime at about 25

bits — measuring the difference between the mutated/disrupted compound and the

original aspirin structure — are the elements of the carbon ring that is identified as

the most stable structure in aspirin. The reduction in algorithmic complexity comes

from the fact that breaking the carbon cycle produces a simple tree graph with a

long path graph, a graph that is of even lower algorithmic complexity because there

is an even shorter program that can produce a tree with a long path than a struc-

ture with the ring/cycle. In contrast, removing all hydrogen and oxygen elements

makes an algorithmically neutral contribution, meaning that their removal is less

disruptive to the core of the structure of aspirin (even though it may be more

deeply implicated in its functioning, a limitation of this type of analysis if, e.g.,

valency values or electric charges are not incorporated in the network description

(e.g. as weights) — which it is possible to do though we do not cover it in this

paper). Yet the signature analysis indicates that such elements may more easily be

found in more causal paths than atoms from the carbon ring. In other words, it

is algorithmically less random to find a carbon ring in the middle of a structure

than to add some elements to the molecule by, e.g., methylation or phosphoryla-

tion. Another observation from Fig. 1H is that fluvastatin has the most negative

node information signature among the statins and it is also the statin with the

lowest number of interactions compared to most other statins and lovastatin is the

most positive and also similar to aspirin in its information changes remaining algo-

rithmic simple, with all node and edge perturbations positive. Lovastatin has sim-

ilar interactions to atorvastatin and simvastatin which are also close to Lovastatin

in the signature information landscape. Aspirin is, however, in the middle of the

statins pack suggesting a greater similarity than what classical alignment methods

suggest (Fig. 1F).
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2.3. Algorithmic causal transformations

Chemical compounds that may be in the same causal path will have similar signa-

tures [31] from single bond or atomic knock-out interventions. One such example

may be that of acids and alcohols compared to compounds that are structurally —

and causal structurally more removed — such as compounds one may expect to

form between organic versus inorganic substances (as tested in Fig. 2D). This can

be seen by analyzing the tails of the signature distributions (Fig. 2C-D) that provide

a network with the means of moving towards or away from its original algorithmic

model.

It is also of interest to find a correspondence between the algorithmic difficulty

of transforming a compound such as an acid to an alcohol. What is suggested in

the preliminary experiments is that it is (slightly) more difficult because it implies

a reduction of algorithmic randomness (Fig. 2C), as compared to transforming an

alcohol to an acid, which is consistent with the literature showing that oxidants

able to perform this operation in, e.g. complex organic molecules require substan-

tial selectivity, therefore making it less likely to happen by the chance imposition

of a thermodynamic direction, something also suggested by the algorithmic causal

calculus. This is, however, less dramatic than transforming inorganic into organic

compounds according to the simulation (Fig. 2D), where inorganic compounds seem

to require a larger increase of algorithmic information content to reach the complex-

ity of organic compounds, suggesting that inorganic compounds are algorithmically

simpler as they are algorithmically more probable, and therefore may occur natu-

rally with much greater ease. Counterintuitively, the results pertaining to organic

versus inorganic substances may suggest that organic compounds are much more

stable (less reprogrammable) than inorganic compounds in general, and structurally

this may be the case, given that the main difference separating the two classes is

the stability provided by carbon atoms that are the building blocks of organic

matter.

Figure 2(A) illustrates the finding that the class of heavy metals is the least

complex according to their algorithmic complexity estimation by BDM. The reason

is that most of them tend to be very simple and small while possessing properties

that endow them with stronger covalent bonds. In contrast, pyrimidines, for exam-

ple, which comprise the basis of DNA and RNA nucleotides, are the most complex

(together with purines they form the other nucleotides among the highest complex-

ity heterocylic aromatic organic compounds (see Fig. 2(A))). The results show that

taking the highest algorithmically complex compounds would profile all pyrimidines

(558) with high accuracy, of all the other compounds considered in this database

(44 089), and likewise the lowest complexity retrieves all inorganic compounds fol-

lowed by heavy and iodinated molecules. The total number of compounds per class

can be found in Table 1.

It is also of interest to note that classes of compounds whose algorithmic com-

plexity estimation median values are close to each other are causally related. For
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A B

C D

Fig. 2. A and B: Classification of compound classes according to their estimations of algorithmic

probability/complexity by BDM. C and D: In silico alchemy by intervening in chemical structure
networks and analyzing their algorithmic properties. The algorithmic sensitivity of acids and

alcohols is very similar, corresponding to known mechanistic processes that can transform one into

the other. A minor asymmetry can be found similar to the difficulty of converting one compound
into another. In contrast, organic vs inorganic compounds are among the most dissimilar.

example, acids and alcohols appear to have very similar algorithmic information

content, notwithstanding the fact that alcohol structures are much larger in size

than acids. Their structure and causal origin can be regarded as similar as they

can be derived from each other with their main structure unchanged. However,
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Table 1. Number of elements per compound class used in the experiments. A total of
158 399 extracted from ChemicalData[] in the Wolfram Language, the sources relied upon

being provided in the documentation.

Class Count Class Count Class Count

Acids 537 Iodinated 774 Drugs 4630
Alcohols 1190 Ketones 865 Fluorinated 3470

Aldehydes 723 Monomers 994 Halogenated 11223

Amides 531 Nitriles 1100 Heterocyclic 10964
Amines 1916 Pyridines 1435 Inorganic 3605
Amino Acid Derivatives 799 Pyrimidines 558 Liquids 10474

Carboxylic Acids 1145 Aromatic 18567 Organic 27969
Esters 1409 Biomolecules 6159 Organometallic 2315

Ethers 619 Brominated 2620 Salts 4718
Heavy Molecules 1060 Chiral 5915 Solids 22936

Hydrocarbons 1499 Chlorinated 5680

esters are difficult to reduce to ethers, as they decompose to yield alcohols via de-

composition of the intermediate hemiacetals even when esters can be reduced to

ethers [25]. It is therefore interesting to emulate the evolution of these networks

through all possible chemical trajectories and see how algorithmically easy or dif-

ficult it is for them to become other compounds favouring certain properties, and

how (un)stable they may be in the face of perturbations, independently of ther-

modynamics, while being ultimately related (and we will devise some tests in this

regard). We use a measure of sophistication based on logical depth and a measure

of reprogrammability gauging the susceptibility of a chemical compound to being

converted into some other, more random or simpler, chemical compound.

Statistical overlapping of complexity estimations is to be expected, given that

classes are not distinct. Aspirin is a drug, but it is also classified as a biomolecule,

organic, solid and aromatic. Many classes also share elements with chirality proper-

ties. However, a significant divergence between contrasting classes such as those not

closely causally related is to be expected, as measured by the algorithmic probability

of a compound being in the causal path of another class of compounds (i.e. there be-

ing no simple chemical/thermodynamic process — natural or artificial — to convert

most elements from one into another class) such as those of an organic nature (in-

cluding, for example, elements under organic, biomolecules, heterocyclic, pyridines,

pyrimidines and monomers) into those of a more inorganic nature (including, for ex-

ample, the category inorganic itself and heavy molecules). Other features driving the

complexity estimation are properties such as are found in heterocyclic compounds,

compounds containing atoms from at least two different elements as members of its

rings, thus being structurally richer on average. Nucleic acids and most drugs are

also high in algorithmic complexity and have large variance values, indicating that

designed compounds tend to be wide-ranging in nature while inclining towards

complexity. Another contrasting/disjoint pair of classes is liquids versus solids,

with statistically different complexity values. It is interesting to note that chemical
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structure networks of liquid compounds are significantly less complex than those

of solids, and that inorganic compounds are the least complex, while drugs are the

most complex and feature a high incidence of human-made synthetic compounds.

2.4. Molecular complexity versus compound properties

The simplified molecular-input line-entry standards SMILES and InChI are specifi-

cations in the form of a line notation for describing the structure of chemical species

using short ASCII strings. SMILES is a string obtained by printing the symbol

Fig. 3. Graph branching is one of the most important measures proposed in molecular com-
plexity. Here it is shown how algorithmic-based measures such as lossless compression (Compress

and Bzip2) are correlated with graph spectra, which in turn capture graph branching [18]. The

correlation is stronger than that obtained when using only Shannon entropy. All data come from
the Wolfram Language database retrieved by the ChemicalData[] function.

Fig. 4. SMILES and InChI molecular strings correlate with complexity even when normalized

by size, as would be expected since both notations capture very important properties of the
compounds. InChI has a greater correlation statistic, as would also be expected from the fact that

the sequence notation was designed to capture more information about the molecular compounds
it represents.
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nodes encountered in a depth-first tree traversal of a chemical graph. The chemical

graph is first trimmed to remove hydrogen atoms, and cycles are broken to turn

it into a spanning tree. Hence one should find some correlations with properties of

the represented molecular graph. InChI contains all the information contained in a

SMILES description and more atomic information such as bond connectivity, tau-

tomeric information, isotope information, stereochemistry, and electronic charge.

Figure 4 reports the correlation found between these notations and complexity by

several complexity indexes and Fig. 3 describing the correlation between branch-

ing (a common index of order parameter in molecular complexity) and measure of

statistical and algorithmic complexity.

The results reported in Fig. A.1 are interesting because one can think of algorith-

mic complexity as a method sorting by size of the underlying generating mechanism

causing each structure, and it would be expected to find compounds that behave or

produce similar states to be generated by similar mechanisms. The results reported

together with the class enrichment and depletion analysis shown in Fig. A.3 are in-

teresting because, as has been suggested, in the case of organic molecules, the lower

the information content the fewer the possibilities for different interactions with

other molecular compounds. Figure A.2 illustrates how the algorithmic complexity

approximated by BDM correlates with some physical properties of the molecular

compounds. This is interesting because it suggests — if the correlation is actually

correct — that some information about properties that are global properties, such

as temperature, is in the local structure of the molecule, which is not surprising

if one recalls that how rigid or charged a particle is may have an impact on its

dynamic interactions with other molecular compounds.

3. Conclusions

We have identified and illustrated interesting research avenues that a causal inter-

ventional calculus based on algorithmic probability/complexity (as the study of a

system’s changes in algorithmic information) can bring to the discussion of molecu-

lar complexity and chemoinformatics, in particular to chemical structure networks.

Indeed, usually a drug has a backbone from high throughput screening leading hits

and intensive modification of the chemical structure is done to make it drug like,

providing improved stability, solubility etc.

We have found that this algorithmic approach suggests similarities for graphs/

networks that may be explained by common generative mechanisms, suggesting

an algorithmic likelihood of causal transformations from candidate models found

by algorithmic probability. We found that the method separates distinct classes of

chemical compounds, both by estimations of the algorithmic complexity of chemical

structures and for causal sensitivity based on a measure of agnostic (no physical

properties being involved) reprogramability. The experiments with statins whose

similar effects to aspirin are an open question, suggests a measure of similarity

and of interactions/toxicity that should be further tested. We have also shown that
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the measures show various degrees of correlation with some chemical compound’s

physical properties.

Our approach effectively introduces a new dimension in the study of information-

theoretic properties and algorithmic transformations of compounds, and further

explorations and generalizations to more general compound networks (where several

compounds are connected), binding and reaction networks should be investigated.
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Appendix

Fig. A.1. Random sample of chemical structures sorted by algorithmic complexity: BDM sorts

molecular graphs by their adjacency matrix, not by their size but their shape. As shown in Fig. A.3
this makes for biases reflected in the class memberships of the molecular compounds, mainly

between organic and inorganic, and between solids, liquids and solvents.
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Fig. A.2. Four physical properties found to be slightly correlated to the graph algorith-
mic complexity of a large set of molecular networks (built from contact maps extracted

from atomic data in ChemicalData[] in the Wolfram Language coming from public chem-

ical data banks) according to their BDM values with statistics (Pearson): −0.16, −0.20,
−0.34 and −0.3 and p values all < 0.05 except for combustion heat at p = 0.07. Fit-

ting lines (red) were found by Least square: x2(0.0133001◦C) + x(−3.85595◦C) + 460.328◦C,

x2 (0.450617 kJ/mol) + x (−57.8591 kJ/mol) + 5521.25 kJ/mol, x2
(
0.0595914 kg/m3

)
+

x
(
−22.2082 kg/m3

)
+3306.75 kg/m3 and x2(0.0144063◦C)+x(−5.23141 ◦C)+546.651◦C. While

the correlation values are weak, in all these cases no element with high values for each property

was found to also have high BDM. In other words, all elements with high values for each property
also had very low algorithmic probability estimations and therefore high algorithmic complexity,

thereby pinpointing elements with high values for these physical properties.
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Fig. A.3. Top enriched and depleted cl asses separated by estimations of graph algorithmic
complexity (approximated by CTM/BDM v. randomized membership) out of a random sample

of 100 complex chemicals sorted by class. The probability on the y-axis is given by the Spearman

correlation between complexity values and class membership. Liquids, solids, organics and solvents
are the best separated when enriched by algorithmic information content, i.e. with generating

mechanisms with similar computer program lengths when the underlying networks are explained

causally (as generated by 2-dimensional computer programs). Data source: Wolfram Language
database from the ChemicalData[] function.
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