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Abstract

We show how complexity theory can be introduced in machine learning to help bring together
apparently disparate areas of current research. We show that this new approach requires less train-
ing data and is more generalizable as it shows greater resilience to random attacks. We investigate
the shape of the discrete algorithmic space when performing regression or classification using a loss
function parametrized by algorithmic complexity, demonstrating that the property of differentia-
tion is not necessary to achieve results similar to those obtained using differentiable programming
approaches such as deep learning. In doing so we use examples which enable the two approaches
to be compared (small, given the computational power required for estimations of algorithmic
complexity). We find and report that (i) machine learning can successfully be performed on a
non-smooth surface using algorithmic complexity; (ii) that parameter solutions can be found using
an algorithmic-probability classifier, establishing a bridge between a fundamentally discrete theory
of computability and a fundamentally continuous mathematical theory of optimization methods;
(iii) a formulation of an algorithmically directed search technique in non-smooth manifolds can be
defined and conducted; (iv) exploitation techniques and numerical methods for algorithmic search
to navigate these discrete non-differentiable spaces can be performed; in application of the (a) iden-
tification of generative rules from data observations; (b) solutions to image classification problems
more resilient against pixel attacks compared to neural networks; (c) identification of equation
parameters from a small data-set in the presence of noise in continuous ODE system problem, (d)
classification of Boolean NK networks by (1) network topology, (2) underlying Boolean function,
and (3) number of incoming edges.

Keywords: algorithmic causality; generative mechanisms; program synthesis; non-differentiable
machine learning; algorithmic probability

1 Introduction

Given a labelled data-set, a loss function is a mathematical construct that assigns a numerical value
to the discrepancy between a predicted model-based outcome and its real outcome. A cost function
aggregates all losses incurred into a single numerical value that, in simple terms, evaluates how close
the model is to the real data. The goal of minimizing an appropriately formulated cost function is
ubiquitous and central to any machine learning algorithm. The main heuristic behind most training
algorithms is that fitting a sufficiently representative training set will result in a model that will capture
the structure behind the elements of the target set, where a model is fitted to a set when the absolute
minimum of the cost function is reached.

∗Corresponding authors.
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The algorithmic loss function that we introduce is designed to quantify the discrepancy between
an inferred program (effectively a computable model of the data) and the data.

Algorithmic complexity [38, 24, 7], along with its associated complexity function K, is the accepted
mathematical definition of randomness. Here, we adopt algorithmic randomness—with its connection
to algorithmic probability—to formulate a universal search method [29, 37] for exploring non-entropy-
based loss/cost functions in application to AI, and to supervised learning in particular. We exploit
novel numerical approximation methods based on algorithmic randomness to navigate undifferentiable
problem representations capable of implementing and comparing local estimations of algorithmic com-
plexity, as a generalization of particular entropy-based cases, such as those rooted in cross entropy or
KL divergence, among others.

In [43, 13] and [34, 47], a family of numerical methods was introduced for computing lower bounds
of algorithmic complexity using algorithmic probability. The algorithmic complexity KL of an object x
is the length of the shortest binary computer program p, that running on a Turing-complete language L,
can reproduce x and halt. That is, KL(x) = minp{|p| : L(p) = x}. The Invariance theorem [38, 24, 7]
guarantees that the choice of computer language L has only an impact bounded by a constant that can
be thought of as the length of the compiler program needed to translate a computer program from one
computer language into another. The algorithmic probability [38, 28] of an object x is the probability
AP of a binary computer program p producing x by chance (i.e. considering that keystrokes are binary
instructions) running on a Turing-complete computer language L and halting. That is,

AP (x) :=
∑

p:L(p)=x

1

|p|
∼ K(x).

Solomonoff and Levin show that AP is an optimal computable inference method [36] and that any
other inference method is either a special case less powerful than AP , or indeed is AP itself [28].
Algorithmic probability is related to algorithmic complexity by the so-called Coding theorem: K(x) ∼
− log2AP (s).

The Coding theorem [13, 34] and Block Decomposition methods [47] provide a procedure to nav-
igate the space of computable models matching a piece of data, allowing the identification of sets of
programs sufficient to reproduce the data regardless of its length, and thus relaxing the minimal length
requirement. In conjunction with classical information theory, these techniques constitute a hybrid,
divide-and-conquer approach to universal pattern matching, combining the best of both worlds in a
hybrid measure (BDM). The divide-and-conquer approach entails the use of an unbiased library of
computable models, each capturing small segments of the data. These explore and build an unbiased
library of computable models that can explain small segments of a larger piece of data, the conjoined
sequence of which can reproduce the whole and constitute a computable model–as a generalization of
statistical approaches typically used in current approaches to machine learning.

Interestingly, the use of algorithmic probability and information theory to define AI algorithms has
theoretically been proposed before [37, 39]. Yet, it has received limited attention in practice compared
to other less powerful but more accessible techniques, due to the theoretical barrier that has prevented
researchers from exploring the subject further. However, in one of his latest interviews, if not the last
one, Marvin Minsky suggested that the most important direction for AI was actually the study and
introduction of Algorithmic Probability [31].

2 An Algorithmic Probability Loss Function

The main task of a loss function is to measure the discrepancy between a value predicted by the model
and the actual value as specified by the training data set. In most currently used machine learning
paradigms this discrepancy is measured in terms of the differences between numerical values, and in
case of cross-entropy loss, between predicted probabilities. Algorithmic information theory offers us
another option for measuring this discrepancy–in terms of the algorithmic distance or information
deficit between the predicted output of the model and the real value, which can be expressed by the
following definition:
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Definition 1. Let y be the real value and ŷ the predicted value. The algorithmic loss function La is
defined as La(y, ŷ) = K(y|ŷ). It can be interpreted as the loss incurred by the model at data sample
(xi, yi), and is defined as the information deficit between the real value with respect to the predicted
value.

There is a strong theoretical argument to justify the Def. 1. Let’s recall that given a training set
X = 〈xi, yi〉, an AI model M aims to capture, as well as possible, the underlying rules or mechanics
that associate each input xi with its output yi. Let’s denote by M∗ the perfect or real model, such
that M∗(xi) = yi. It follows that an ideal optimization metric would measure how far our model M
is from M∗, which in algorithmic terms is denoted by K(M∗|M). However, we do not have access to
much information regardingM∗ itself. What we do have is a set of pairs of the form (xi, yi = M∗(xi)).
Thus the problem translates into minimizing the distance between a programM∗ that outputs yi and a
programM that outputs ŷi given xi. Now, given that xi is constant forM andM∗, the objective of an
optimization strategy can be interpreted as minimizing K(yi|ŷi) for all yi in our data sets. Therefore,
with the proposed algorithmic loss function, we are not only measuring how far our predictions are
from the real values, but also how far our model is from the real explanation behind the data in a
fundamental algorithmic sense.

An algorithmic cost function must be defined as a function that aggregates the algorithmic loss
incurred over a supervised data sample. At this moment, we do not have any reason, theoretical
or otherwise, to propose any particular loss aggregation strategy. As we will show in subsequent
sections, considerations such as continuity, smoothness and differentiability of the cost function are
not applicable to the algorithmic cost function. We conjecture that any aggregation technique that
correctly and uniformly weights the loss incurred through all the samples will be equivalent, the only
relevant considerations being training efficiency and the statistical properties of the data. However,
in order to remain congruent with the most widely used cost functions, we will, for the purpose of
illustration, use the sum of the squared algorithmic differences

Ja(X̂,M) =
∑

(xi,yi)∈X̂

K(yi|M(xi))
2.

3 Categorical Algorithmic Probability Classification

One of the main fields of application for automated learning is the categorical classification of ob-
jects. These classification tasks are often divided into supervised and unsupervised problems. In its
most basic form, a supervised categorical classification task can be defined, given a set of objects
X = {x1, . . . , xi, . . . , xn} and a set of finite categories C = {c1, . . . , cj , . . . , cm}, as that of finding
a computable function or model M : X → C such that M(xj) = cj if and only if xi belongs to cj
according to previously agreed criteria. In this section we apply our hybrid machine learning approach
to supervised classification tasks.

Now, it is important to note that it is not constructive to apply the algorithmic loss function (Def. 1)
to the abstract representations of classes that are commonly used in machine learning classifiers. For
instance, the output of a softmax function is a vector of probabilities that represent how likely it is
for an object to belong to each of the classes ([5]), which is then assigned to a one-hot vector that
represents the class itself. However, the integer that such a one-hot vector signifies is an abstract
representation of the class that was arbitrarily assigned, and therefore has little to no algorithmic
information pertaining to the class itself. Accordingly, in order to apply the algorithmic loss function
to classification tasks, we need to seek a model that outputs an information rich object that can be
used to identify the class regardless of the context within which the problem was defined. In other
words, the model must output the class itself or a similar enough object that identifies it.

We can find the needed output in the definition of the classification problem: a class cj is defined as
all the xij that are associated with it, and finding any underlying regularities to define a class beyond
that is the task of a machine learning model. It follows that an algorithmic information model must
output an object that minimizes the algorithmic distance to all the members of the class, so that we
can classify them. Therefore, a correct interpretation of the general definition of the algorithmic loss
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function for a model M is the following:

La(yi, ŷi) = K(xi|M(xi)), (1)

where yi is the class to which xi belongs, while M(xi) = ŷi is the output of the model. What the
equation 1 is saying is that the model must produce as an output an object that is algorithmically
close to all the elements of the class. In unsupervised classification tasks this object is known as a
centroid of a cluster [30]. This means that the algorithmic loss function is inducing us to universally
define algorithmic probability classification as a clustering by an algorithmic distance model.1 A
general schema in our algorithmic classification proposal is based on the concept of a nearest centroid
classifier.

Definition 2. Given a training set X̂ = {(x1, cj1), . . . , (xi, cji), . . . , (xn, cjn)} with m different cj
classes, an algorithmic classification model consists of a set of centroids C∗ = {c∗1, . . . , c∗j . . . , c∗m} such
that each minimizes the equation

Ja(X̂,M) =
∑
xi∈X̂

K(xi|M(cji))

, where M(cji) = c∗j is the object that the model M assigns to the class yi, and the class prediction
for a new object x is defined as:

ŷ = cj .arg minc∗j∈C∗K(x|c∗j ).
In short, we assign to each object the closest class according to its algorithmic distance to one of the
centroids in the set of objects C∗.

Now, in a strong algorithmic sense, we can say that a classifier is optimal if the class assigned to
each object fully describes this object minus incidental or incompressible information. In other words,
if a classifier is optimal and we know the class of an object, then we know all its characteristics, except
those that are unique to the object and not shared by other objects within the class. Formally, a
classifier f : X → {c1, . . . cj . . . cm} is optimal with a degree of sophistication (in the sense of Koppel,
[26, 25, 2]) of c if and only if, for every xi, for any program p and object r such that p(r) = xi and
|p|+ |r| ≤ K(xi) + c, then K(xi|f(xi)) ≤ |r|+ c. The next theorem shows that minimizing the stated
cost function guarantees that the classifier is optimal in a strong algorithmic sense:

Theorem 3. If a classifier f minimizes the cost function Ja(X, f), then it is an optimal classifier,

Proof. Assume that f is not optimal. Then there exist xi such that, for any class cj , there exists a
program |p| and string r such that |p| + |r| ≤ K(xi) + c, p(r) = xj and K(xi|cj) > |r| + c. Now,
consider the classifier f ′:

f ′(x) =

{
f(x) if x 6= xi

p otherwise.
It follows that

J(X, f ′)− J(X, f) = K(xi|p)−K(xi|f(xi) = cj)

> K(xi|p)− |r|+ c

≥ |r|+O(1)− |r|+ c ≥ c.

4 Approximating the Algorithmic Similarity Function

While theoretically sound, the proposed algorithmic loss (Def. 1) and classification (Def. 2) cost func-
tions rely on the uncomputable mathematical object K ([24, 8]). However, recent research and the
existence of increasing computing power ([13, 47]) have made available a number of techniques for
the computable approximation of the non-conditional version of K. In this Section we present three
methods for approximating the conditional algorithmic information function K(x|y).

1An unlabelled classificatory algorithmic information schema has been proposed by [11].
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4.1 Conditional CTM and Domain Specific CTM

The Coding Theorem Method ([13]) is a numerical approximation to the algorithmic complexity of
single objects. A generalization of CTM for approximating the conditional algorithmic complexity is
the following:

Definition 4. Let M : x → y be a computable relation and P a finite set of pairs of the form (y, x)
corresponding to M . We define the conditional CTM (with respect to P and M) as:

CTM(x|y) = log2

 ∑
(y,x)∈P

1

|P |

 ,

, where |P | is the cardinality of P . When M is not a Turing complete space, or P does not contain
an exhaustive computation of all possible pairs for the space, we say that we have a domain specific
CTM function.

The previous Def. is based on the Coding theorem ([29]), which establishes a relationship between
the information complexity of an object and its algorithmic probability. If the relation M approaches
the space of all Turing machines, and P is the set of all possible inputs and outputs for these machines,
then at the limit, we have it that CTM(x|y) = K(x|y). In the computable cases where we take a
reduced (finite) set of Turing machines, we then have a (lower bounded) approximation to K.

In the case where x is the empty string and M is the relation induced by the space of small Turing
machines with 2 symbols and 5 states, with P computed exhaustively, CTM approximates K(x), and
has been used to compute an approximation to the algorithmic complexity of small binary strings of
up to size 12 ([34, 13]). Similarly, the space of small bi-dimensional Turing machines has been used to
approximate the algorithmic complexity of square matrices of size up to 4× 4 ([49]).

WhenM refers to a non-(necessarily) Turing complete space, or a computable input/output object
different from ordered Turing machines, or if P has not been computed exhaustively over this space,
then we have a domain specific version of CTM, and its application depends on this space. This version
of CTM is also an approximation to K, given that, ifM is a computable relation, then we can define a
Turing machine with input x that outputs y. However, we cannot guarantee that this approximation
is consistent or (relatively) unbiased. Therefore we cannot say that it is domain independent.

At the time of writing this article, a database P for conditional CTM over small Turing machines
had yet to be computed.

4.2 Coarse Conditional BDM

The Block Decomposition Method (BDM, [47]) decomposes an object () into smaller parts for which
there exist, thanks to CTM ([47]), good approximations to their algorithmic complexity, and we then
aggregate these quantities by following the rules of algorithmic information theory. We can apply
the same concept to computing a coarse approximation to the conditional algorithmic information
complexity between two objects. Formally:

Definition 5. We define the coarse conditional BDM of X with respect to the tensor Y with respect
to {αi} as

BDM(X|Y ) =
∑

(ri,ni)∈Adj(X)−Adj(Y )

(CTM(ri) + log(ni)) +
∑

Adj(X)∩Adj(Y )

f(nxj , n
y
j )

where {αi} is a partition strategy of the objects into smaller objects for which CTM values are known,
Adj(X) is the result of this partition for X and Y respectively, nxj and nyj are the multiplicity of the
objects rj within X and Y respectively, and f is the function defined as

f(nxj , n
y
j ) =

{
0 if nxj = nyj
log(nxj ) otherwise.
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The sub-objects ri are called base objects or base tensors (when the object is a tensor) and are objects
for which the algorithmic information complexity can be satisfactorily approximated by means of
CTM.

The motivation behind this definition is to enable us to consider partitions for the tensors X and
Y into sets of subtensors 〈xi〉 and 〈yi〉, and then approximate the algorithmic information within the
tensor X that is not explained by Y by considering the subtensors xi which are not present in the
partition 〈yi〉. In other words, if we assume knowledge of Y and its corresponding partition, then
in order to describe the elements of the decomposition of X using the partition strategy {αi}, we
only need descriptions of the subtensors that are not Y . In the case of common subtensors, if the
multiplicity is the same then we can assume that X does not contain additional information, but that
it does if the multiplicity differs.

The term
∑

Adj(X)∩Adj(Y ) f(nxj , n
y
j ) quantifies the additional information contained within X when

the multiplicity of the sub-tensors differs between X and Y . This term is important in cases where
such multiplicity dominates the complexity of the objects, cases that can present themselves when the
objects resulting from partition are considerably smaller than the main tensors.

4.3 Strong Conditional BDM

The previous definition featured the adjective coarse because we can define a stronger version of
conditional BDM approximating K with greater accuracy that uses conditional CTM. As explained
in Section 9.2, one of the main weaknesses of coarse conditional BDM was the inability to detect the
algorithmic relationship between base blocks. This is in contrast with conditional CTM.

Definition 6. The strong conditional BDM of X with respect to Y corresponding to the partition
strategy {αi} is

BDM(X|Y ) = min
P

∑
((rxi ,n

x
i ),(r

y
i ,n

y
i ))∈P

(CTM(rxi |r
y
j ) + f(nxi , n

y
i ))

where P is a pairing of the base elements in the decomposition of X and Y where the elements of X
can appear only once in a pair but without restrictions as to the elements of Y . This is a functional
relation (rxi , n

x
i ), 7→ (ryi , n

y
i ), and f is the same function as specified in Def. 5. If conditional CTM is

used, then we say that we have strong conditional CTM.

While we assert that the pairing strategy minimizing the given sum will yield the best approximation
to K in all cases, prior knowledge of the algorithmic structure of the objects can be used to facilitate
the computation by reducing the number of possible pairings to be explored, especially when using the
domain specific version of conditional BDM. For instance, if two objects are known to be produced
from local dynamics, then restricting the algorithmic comparisons by considering pairs based on their
respective position on the tensors will, with high probability, yield the best approximation to their
algorithmic distance.

4.3.1 The Relationship Between Coarse and Strong BDM

It is easy to see that under the same partition strategy, strong conditional BDM will always present a
better approximation toK than its coarse counterpart. If the partition of two tensors 〈rxi 〉 and 〈rxi 〉 does
not share an algorithmic connection other than subtensor equality, i.e. there exists rxi = ryj , then this
is the best case for coarse BDM, and applying both functions will yield the same approximation to K.
However, if there exist two base blocks where CTM(rxi |r

y
j ) < CTM(rxi ) then K(X|Y )−O(log2A) ≤

strong BDM(X|Y ) < coarse BDM(X|Y ) where A is the diminishing error incurred in proposition
1 in [47]. Moreover, unlike coarse conditional BDM, the accuracy of the approximation offered with
the strong variant will improve in proportion to the size of the base objects, ultimately converging
towards CTM and then K itself.

The properties of strong and coarse conditional BDM and their relation with entropy are shown
in the appendix (Section 9). In particular, we show that conditional BDM is well behaved by defining
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joint and mutual BDM (Section 9.1), and we show that its behavior is analogous to the corresponding
Shannon’s entropy functions. We also discuss the relation that both measures have with entropy
(Section 9.2), showing that, in the worst case, we converge towards conditional entropy.

5 Algorithmic Optimization Methodology

In the previous sections we proposed algorithmic loss and cost functions (Def. 1) for supervised learning
tasks, along with means to compute approximations to these theoretical mathematical objects. Here we
ask how to perform model parameter optimization based on such measures. Many of the most widely
used optimization techniques rely on the cost function being (sufficiently) differentiable, smooth and
convex ([3]), for instance gradient descent and associated methods ([6, 23]). In the next section we
will show that such methods are not adequate for the algorithmic cost function.

5.1 The Non-smooth Nature of the Algorithmic Space

Let us start with a simple bilinear regression problem. Let

f(a, b) = 0.1010101 · · · × a+ 0.01010 · · · × b (2)

be a linear function used to produce a set of 20 random data points X̂ of the form (a, b, f(a, b)), and
M(a, b) = s1×a+ s2× b be a proposed model whose parameters s1 and s2 must be optimized in order
to, hopefully, fit the given data.

Figure 1: On the left we have a visualization of the algorithmic cost function, as approximated by
coarse BDM, corresponding to a simple bilinear regression problem. From the plot we can see the
complex nature of the optimization problem. On the right we have confirmation of these intuitions in
the fact that the best performing optimization algorithm is a random pooling of 5000 points.

According to the Def. 1, the loss function associated with this optimization problem is J(X̂,M) =∑
(a,b,y)∈X̂ K(y|M(a, b))2. A visualization of the surface resulting from this function, where K was

approximated by coarse conditional BDM (Def. 5) with a partition of size 3 can be seen on the left
of Figure 1. From the plot we observe that the resulting curve is not smooth and that gradient
based approaches would fail to converge toward a non-local minimum. This observation was evaluated
by applying several optimization techniques: gradient descent (constrained to a square of radius 0.25
around the solution), random search, and a purely random search. The purely random algorithm simply
pooled 5000 random points and chose the point where the cost function evaluated was the lowest. At
the right of the Fig. 1 we can see that this random pooling of points yielded the optimization technique.
It is well understood that a random pooling optimization method like the one we performed is not
scalable to larger, more complex problems. However, the function f has an algorithmic property that
will allow us to construct a more efficient optimization method, that we will call algorithmic parameter
optimization.

7



5.2 Algorithmic Parameter Optimization

The established link between algorithmic information and algorithmic probability theory ([29]) pro-
vides a path for defining optimal (under the only assumption of computable algorithms) optimization
methods. The central question in the area of parameter optimization is the following: Given a data
set X̂ = 〈x, y〉, what is the best model M that satisfies M(x) = y, and hopefully, will extend to pairs
of the same phenomena that are not present in X̂?

Algorithmic probability theory establishes and quantifies the fact that themost probable computable
program is also the least complex one [38, 28], thereby formalizing a principal of parsimony such as
Ockham’s razor. Formally, we define the algorithmic parameter optimization problem as the problem
of finding a model M such that (a) minimizes K(M) and (b) minimizes the cost function

Ja(X̂,M) =
∑

(x,y)∈X̂

K(y|M(x))2.

By searching for the solution using the algorithmic order we can meet both requirements in an
efficient amount of time. We start with the least complex solution, therefore the most probable one,
and then we move towards the most complex candidates, stopping once we find a good enough value
for Ja or after a determined number of steps, in the manner of other optimizations methods.

Definition 7. Let M be a model, Ja the algorithmic cost function, X̂ the training set and finally let
Σ = {σ1, σ2, . . . , σi, . . . } be the parameter space which is ordered according to their algorithmic order
(from least to most algorithmically complex). Then the simple algorithmic parameter optimization (or
algorithmic search) is performed by

minCost =∞;
while condition do

i++;
if Ja(M̂, σi) < minCost then

minCost = Ja(M̂, σi);
param = σi;

end
end
Return σi

where the halting condition is defined in terms of the number of iterations or a specific value for Ja.

The algorithmic cost function is not expected to reach zero. In a perfect fit scenario, the loss of
a sample is the relative algorithmic complexity of y with respect to the model itself, which can be
unbounded. Depending on the learning task, we can search for heuristics to define an approximation
to the optimum value for Ja, and thus end the search when a close enough optimization has been
reached, resembling the way in which the number of clusters is naturally estimated with algorithmic
information itself [48], stopping the process when the model’s complexity starts to increase rather
than decrease when given the data as conditional variable. Given the semi-uncomputable nature of
K, there is no general method to find such conditions, but they can be approximated. Another way
to define a stopping condition is by combining other cost functions, such as the MSE or accuracy over
a validation set in the case of classification. What justifies Def. 7 is the importance of the ordering of
the parameter space and the expected execution time of the program provided.

By Def. 7, it follows that the parameter space is countable and computable. This is justified, given
that any program is bound by the same requirements. For instance, in order to fit the output of the
function f (Eq. 2) by means of the modelM , we must optimize over two continuous parameters s1 and
s2. Therefore the space of parameters is composed of the pairs of real numbers σi = [σi1 σ

i
2]. However,

a computer cannot fully represent a real number, using instead an approximation by means of a fixed
number of bits. Since this second space is finite, so is the parameter space and the search space which
is composed of pairs of binary strings of finite size, the algorithmic information complexity value of
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which can be approximated by BDM or CTM. Furthermore, as the next two examples will show, for
algorithmic optimization a search space based on binary strings can be considered an asset that can
be exploited to speed up the algorithm and improve performance, rather than a hindrance because of
its lower accuracy in representing continuous spaces. This is because algorithmic search is specifically
designed to work within a computable space.

Now, consider a fixed model structure M . Given that the algorithmic parameter optimization
always finds the lowest algorithmically complex parameters that fit the data X̂ within the halting
condition, the resulting model is the most algorithmically plausible model that meets the restrictions
imposed by the Def. of M . This property results in a natural tendency to avoid over-fitting. Fur-
thermore, algorithmic optimization will always converge significantly more slowly to overly complex
models that will tend to over-fit the data even if they offer a better explanation of a reduced data set
X̂. Conversely, algorithmic parameter optimization will naturally be a poor performer when inferring
models of high algorithmic complexity. Finally, note that the method can be applied to any cost
function, preserving the above properties. Interestingly, this can potentially be used as a method of
regularization in itself.

5.2.1 On the Expected Optimization Time

Given the way that algorithmic parameter optimization works, the optimization time, as measured by
the number of iterations, will converge faster if the optimal parameters have low algorithmic complexity.
Therefore they are more plausible in the algorithmic sense. In other words, if we assume that, for
the model we are defining, the parameters have an underlying algorithmic cause, then they will be
found faster by algorithmic search, sometimes much faster. How much faster depends on the problem
and its algorithmic complexity. In the context of artificial evolution and genetic algorithms, it has
been previously shown that, by using an algorithmic probability distribution, the exponential random
search can be sped up to quadratic ([9, 10, 20]).

Following the example of inferring the function in section 5.1, the mean and median BDM value
for the parameter space of pairs of 8-bit binary strings are 47.6737 and 47.7527, respectively; while
the optimum parameters {0.10101011, 0.01010101} have a BDM of 44.2564. This lower BDM value
confirms the intuition that binary representations of both parameters have an algorithmic source
(repeating 10 or 01). The difference in value might seem small on a continuum, but in algorithmic
terms it translates into an exponential absolute distance between candidate strings: the optimum
parameters are expected to be found at least 23.4 times faster by algorithmic optimization (compared
to a search within the space). The optimum solution occupies position 1026 out of 65,281 pairs of
strings. Therefore the optimum for this optimization problem can be found within 1026 iterations, or
nearly 65 times faster.

The assumption that the optimum parameters have an underlying simplicity bias is strong, but has
been investigated [15, 44] and is compatible with principles of parsimony. This bias favours objects
of interest that are of low algorithmic complexity, though they may appear random, For example, the
decimal expansions of the constant π or e to an accuracy of 32 bits have a BDM value of 666.155
and 674.258, respectively, while the expected BDM for a random binary string of the same size is
significantly larger: ≈ 681.2. This means that we can expect them to be found significantly faster,
according to algorithmic probability— about 28 and 27 time steps faster, respectively, compared to a
random string— by using algorithmic optimization methods.

At the same time, we are aware that, for the example given, mathematical analysis-based opti-
mization techniques have a perfect and efficient solution in terms of the gradient of the MSE cost
function. While algorithmic search is faster than random search for a certain class of problems, it may
be slower for another large class of problems. However, algorithmic parameter optimization (Def. 7)
is a domain and problem-independent general method. While this new field of algorithmic machine
learning that we are introducing is at an early stage of development. in the next sections we set forth
some further developments that may help boost the performance of our algorithmic search for specific
cases, such as greedy search over the subtensors, and there is no reason to believe that more boosting
techniques will not be developed and introduced in the future.
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6 Methods

6.1 Traversing Non-smooth Algorithmic Surfaces for Solving Ordinary Differen-
tial Equations

Thus far we have provided the mathematical foundation for machine learning based on the power
of algorithmic probability at the price of operating on a non-smooth loss surface in the space of
algorithmic complexity. While the directed search technique we have formulated succeeds with discrete
problems, here we ask whether our tools generalize to problems in a continuous domain. To gain
insight, we evaluate whether we can estimate parameters for ordinary differential equations. Parameter
identification is well-known to be a challenging problem in general, and in particular for continuous
models when the data-set is small and in the presence of noise. Following [16], as a sample system
we have dz1

dt = −θ1z1 and dz2
dt = −θ1z1 − θ2Z2 (Eq. 2) with hidden parameters [θ1 θ2] = [5 1] and

z(t = 0) = [1 0]. Let Ev(t, [θ1 θ2]) be a function that correctly approximates the numerical value
corresponding to the given parameters and t for the ODE system. Let us consider a model composed
of a binary representation of the pair [θ1 θ2] by a 16 bit string where the first 8 bits represent θ1, the
last 8 bits θ2 for a parameter search space of size 216 = 65 536, and where within these 8 bits the first
4 represent the integer part and the last 4 the fractional part. Thus the hidden solution is represented
by the binary string ‘0101000000010000’.

6.2 Finding Computable Generative Mechanisms

An elementary cellular automaton (ECA) is a discrete and linear binary dynamical system where
the state of a node is defined by the states of the node itself and its two adjacent neighbours ([42]).
Despite their simplicity, the dynamics of these systems can achieve Turing completeness. The task
was to classify a set of 32 × 32 black and white images representing the evolution of one of eleven
elementary cellular automata according to a random 32-bit binary initialization string. The automata
were

C = {167, 11, 129, 215, 88, 32, 237, 156, 173, 236, 110}.

Aside from the Turing-complete rule with number 110, the others were randomly selected among
all 256 possible ECA. The training set was composed of 275 black and white images, 25 for each
automaton or ‘class’. An independent validation set of the same size was also generated, along
with a test-set with 1 375 evenly distributed samples. An example of the data in these data sets is
shown in figure 2.

Figure 2: Two 32× 32 images and their respective classes. The images represent the evolution of the
automata 167 and 110 for two different randomly generated 32-bits binary strings.

First we will illustrate the difficulty of the problem by training neural networks with simple topolo-
gies over the data. In total we trained three naive2 neural networks that consisted of a flattened layer,
followed by either 1, 2, 3 or 4 fully connected linear layers, ending with a softmax layer for classifica-
tion. The networks were trained using ADAM optimization for 500 rounds. Of these 4 models, the
network with 3 linear layers performed best, with an accuracy of 40.3%.

2We say that a NN topology is naive when its design does not use specific knowledge of the target data.
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Figure 3: The evolution of the centre for the four steps of the greedy algorithmic information opti-
mization method used to train the model in the first experiment. This classifier centre corresponds to
class 11.

However, as shown in [18], it is possible to design a deep network that achieves a higher accuracy
for this particular classification task. This topology consists of 16 convolutional layers with a kernel
of 2×3, which was specifically chosen to fit the rules of ECA, a pooling layer that aggregates the data
of all the convolutions into a vector of one dimension of length 16, and 11 linear layers (256 in the
original version) connected to a final softmax unit. This network achieves an accuracy of 98.8% on the
test set and 99.63% on the training set after 700 rounds. This specialized topology is an example
of how, by using prior knowledge of the algorithmic organization of the data, it is possible to guide
the variance of a neural network towards the algorithmic structure of the data and avoid overfitting.
However, as we will show over the following experiments, this is a specialized ad-hoc solution that
does not generalize to other tasks.

6.2.1 Algorithmic-probability Classifier Based on Coarse conditional BDM

The algorithmic probability model chosen consists of eleven 16×16 binary matrices, each corresponding
to a sample class, denoted by M , encompassing members mi ∈M . Training this model, using Def. 2,
the loss function ∑

xi∈test set

K(xi|M(yi)),

is minimized, where M(yi) = mj is the object that the model assigns to the class yi. Here we approx-
imate the conditional algorithmic complexity function K with the coarse conditional BDM function,
then proceed with algorithmic information optimization over the space of the possible 16× 16 binary
matrices in order to minimize the computable cost function J(test set,M) =

∑
xi∈test setBDM(xi|M(yi)).

However, an elementary cellular automaton can potentially use all the 32-bits of information contained
in a binary initialization string, and the algorithmic difference between each cellular automaton is
bounded and relatively small (within 8-bits). Furthermore, each automaton and initialization string
was randomly chosen without regard to an algorithmic cause. Therefore we cannot expect a signifi-
cant speed-up by using an algorithmic search, and it would be nearly equivalent to randomly searching
through the space of 16× 16 matrices, which will take a length of time of the order of O(2256). Nev-
ertheless, we perform a greedy block optimization version of algorithmic information optimization:

• First, we start with the eleven 16× 16 matrix of 0s.
• Then, we perform algorithmic optimization, but only changing the bits contained in the upper

left 8 × 8 submatrix. This step is equivalent to changing all the 28×8 bits in the quadrant,
searching for the matrix that minimizes the cost function.
• After minimizing with respect to only the upper left quadrant, we minimize over the upper right

8× 8 quadrant.
• We repeat the procedure for the lower left and lower right quadrants.

These four steps are illustrated in Fig. 3for the class corresponding to the automaton 11.
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6.3 Finding the Initial Conditions for Cellular Automata

The next problem was to classify black and white images representing the evolution of elementary cel-
lular automata. In this case, we are classifying according to the initialization string that produced the
corresponding evolution for a randomly chosen automaton. The classes for the experiment consisted
of 10 randomly chosen binary strings, each 12 bits in length. These strings correspond to the binary
representation of the following integers:

704, 3572, 3067, 3184, 1939, 2386, 2896, 205, 828, 3935.

The training, validation and test sets each consisted of two hundred 12×4 binary images. These
images represent the evolution to 4 steps of one of the 10 strings within the first 128 cellular automata
rules (to avoid some trivially symmetric cases) by means of a randomly chosen cellular automaton. It
is important to note that the first row of the evolution (the initialization) was removed. Otherwise
this classification task would be trivial.

We trained and tested a group of neural network topologies on the data in order to establish the
difficulty of the classification task. These networks were an (adapted version of) Fernandes’ topology
and 4 naive neural networks that consisted of a flattened (fully-connected) layer, followed by 1, 2, and
5 groups of layers, each consisting of a fully connected linear layer with rectilinear activation (ReLU)
function followed by a dropout layer, ending with a linear layer and a softmax unit for classification.
The adaptation of the Fernandes topology was only for the purpose of changing the kernel of the
pooling layer to 2×9 to take into account the non-square shape of the data. All networks were trained
using the ADAM optimizer.

The best performing network was the shallower one, which consists of a flattened layer, followed by
a fully connected ReLU, a dropout layer, a linear layer with 10 inputs and a sotfmax unit. This neural
network achieved an accuracy of 60.1%. At 18.5%, the performance of Fernandes’ topology was very
low, being barely above random choice. This last result is to be expected, given that the topology is
domain specific, and should not be expected to extend well to different problems, even though at first
glance the problem may seem to be related.

6.3.1 Algorithmic-probability Classifier Based on Strong conditional BDM

The algorithmic probability model M chosen for these tasks consisted of eleven 12-bit binary vectors.
The model was trained using algorithmic information greedy block optimization by first optimizing the
loss function over the 6 leftmost bits and then over the remaining six.

However, for this particular problem, the coarse version of conditional BDM proved inadequate for
approximating the universal algorithmic distance K(xi|M(yi)), for which reason we opted to use the
stronger version. For the stronger version of conditional BDM we approximated the local algorithmic
distance CTM(x|s), where x is a binary matrix of size 6 × 4 and s is a binary vector of length 6, in
the following way.

• First, we computed all the outputs of all possible 12-bit binary strings for each of the first 128
ECA for a total of 528,384 pairs of 12 bit binary vectors and 12 × 4 binary matrices, forming
the set of pairs (s, x) ∈ P .
• Then, by considering only the inner 6 bits of the vectors (discarding the 3 bits on the left and

the 3 bits on the right) and, similarly, the inner 6× 4 submatrix, we defined

CTM(x|s) = log2

 ∑
(s,x)∈P

1

|P |

 ,

where |P | is the cardinality of P . This cropping was done to solve the frontier issue of finite
space ECA.
• If a particular pair (s, x) was not present in the database, then considering that− log2(1/528, 384) =

19.01, we defined CTM(x|s) = 20. This means that the algorithmic complexity of x given s is
at least 20 bits.
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• In the end we obtained a database of the algorithmic distance between all 6 bit vectors and their
respective 6× 4 possible outputs.

The previous procedure might at first seem to be too computationally costly. However, just as
with Turing Machine based CTM ([35, 47]), this computation only needs to be done once, with the
data obtained being reusable in various applications.

The trained model M consisted of 10 binary vectors that, as expected, corresponded to the binary
expansion of each of the classes. The accuracy of the classifier was 95.5% on the test set.

6.4 Classifying NK Networks

An NK network is a dynamical system that consists of a binary Boolean network where the parameter
n specifies the number of nodes or vertices and k defines the number of incoming connections that each
vertex has ([17, 22, 1]). Each node has an associated k-ary Boolean function which uses the states of
the nodes corresponding to the incoming connections to determine the new state of the nodes over a
discrete time scale. The number of incoming connections k defines the stability (or lack thereof) of
the network.

Given the extensive computational resources it would require to compute a CTM database, such as
the one used in section 6.4, for Boolean networks of 24 nodes we opted to do a classification based only
on the algorithmic complexity of the samples as approximated by BDM. This approach is justified,
considering that according to the definition 2, an algorithmic information model for the classifier can
consist of three sets. Each of these sets is composed of all possible algorithmic relations, including the
adjacency matrix and related binary operations, corresponding to the number of incoming connections
per node (the parameter k). Therefore, given the combinatorial order of growth of these sets, we
can expect the quantity of information required to specify the members of each class to increase as a
function of k.

Specifically, the number of possible Boolean operations of degree k is 22
k and the number of possible

adjacency matrices is n×
(
n
k

)
. It follows that the total number of possible network topologies is n2 ×

22
k×
(
n
k

)
, and the expected number of bits required to specify a member of this set is log(n2×22

k×
(
n
k

)
).

Therefore, the expected algorithmic complexity of the members of each class increases with k and n.
With n fixed at 24 we can do a coarse algorithmic classification simply according to the algorithmic
complexity of the samples, as approximated by BDM.

Following this idea we defined a classifier where the modelM consisted of the mean BDM value for
each of the classes in the training setM = {1→ 2671.46, 2→ 4937.35, 3→ 6837.64}. The prediction
function measures the BDM of the sample and assigns it to the class centre that is the closest. This
classifier achieved an accuracy of 71%. Alternatively, we employed a nearest neighbour classifier using
the BDM values of the training set, which yielded virtually identical results. For completeness sake,
we recreated the last classifier using entropy to approximate the algorithmic information theory K.
The accuracy of this classifier was 37.66%.

For classifying according to the Boolean rules assigned to each node, we used 10 randomly generated
(ordered) lists of 4 binary Boolean rules. These rules were randomly chosen (with repetitions) from
And, Or, Nand and XOr, with the only limitation being that Nand had to be among the rules. Since
the initial state for the network was the vector {0, 0, 0, 0}, at least one XOr was needed in order to
generate an evolution other than forty 0s. Then, to generate the samples, each list of binary rules
was associated with a number of random topologies (with k=2). The training and validation sets
were composed of 20 samples for each class (200 samples in total) while the test set contained 2000
samples.

To classify according to network topology we used 10 randomly generated topologies consisting of
10 binary matrices of size 10× 10, which represented the adjacency matrices of the chosen topologies.
The random matrices had the limitation that each column had to contain two and only two 1s, so the
number of incoming connections corresponds to k = 2. Then, to generate a sample we associated one
of the chosen topologies with a random list of rules. This list of rules was, again, randomly chosen from
the same 4 Boolean functions and with the limitation that XOr had to be a member. The training
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and validation sets were composed of 20 samples for each class (200 samples in total) while the
test set contained 2000 samples.

6.5 Classifying Kauffman networks

Kauffman networks are a special case of Boolean NK networks where the number of incoming connec-
tions for each node is two, that is, k = 2 ([4]). This distinction is important because when k = 2 we
have a critical point that “exhibits self-organized critical behaviour ”; below that (k = 1) we have too
much regularity, a (frozen state) and beyond it (K ≥ 3) we have chaos.

6.5.1 Algorithmic-probability Classifier based on conditional CTM

For this problem we used a different type of algorithmic cluster centre. For the Boolean rules classifier,
the model M consisted of ten lists of Boolean operators. More precisely, the model consisted of binary
strings that codified a list composed of each of the four Boolean functions used (And, Or, Nand and
XOr) as encoded by the Wolfram Language. For the topology classifier, the model consisted of 10
binary matrices representing the possible network topologies.

The use of different kinds of models for this task showcases another layer of abstraction that can
be used within the wider framework of algorithmic probability classification: context. Rather than
using binary tensors, we can use a structured object that has meaning for the underlying problem.
Yet, as we will show next, the underlying mechanics will remain virtually unchanged.

Let’s go back to the definition 2, which states that to train both models we have to minimize the
cost function

J(X̂,M) =
∑

xi∈test set

K(xi|M(yi)).

So far we have approximated K by means of conditional BDM. However, given that at the time of
writing this article a sufficiently complete conditional CTM database has yet to be computed, we
have estimated the CTM function by using instances of the computable objects, as previously shown
in section 6.3.1. Moreover, owing to the non-local nature of NK networks and the abstraction layer
that the models themselves are working at, rather than using BDM, we have opted to use a context
dependent version of CTM directly. In the last task we will show that BDM can be used to classify a
similar, yet more general problem.

Following similar steps to the ones used in section 6.3.1, by computing all the 331,776 possible NK
networks with n = 4 and k = 2, we compiled two lists of pairs P1 and P2 that contained, respectively,
the pairs (t, x) and (r, x), where t is the topology and r is the list of rules that generated the 40-bit
vector x, which represents the evolution to ten steps of the respective networks. Next, we defined the
CTM(x|s) as:

CTM(x|s) = log2

 ∑
(s,x)∈Pi

1

|Pi|

 ,

or as 19 if the pair is not present on either of the lists. Then we approximated K by using the defined
CTM function directly.

6.6 Hybrid Machine Learning

So far we have presented supervised learning techniques that, in a way, diverge. In this section we
will introduce one of the ways in which the two paradigms can coexist and complement each other,
combining statistical machine learning with an algorithmic-probability approach.

6.6.1 Algorithmic Information Regularization

The choice of an appropriate level of model complexity that avoids both under- and over-fitting is a
key hyperparameter in machine learning. Indeed, on the one hand, if the model is too complex, it will
fit the data used to construct the model very well but generalize poorly to unseen data. On the other
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hand, if the complexity is too low, the model will not capture all the information in the data. This is
often referred to as the bias-variance trade-off, because a complex model will exhibit large variance,
while an overly simple one will be strongly biased. Most traditional methods feature this choice in the
form of a free hyperparameter via, e.g., what is known as regularization.

A family of mathematical techniques or processes that has been developed to control over-fitting
of a model goes under the rubric ’regularization’, which can be summarized as the introduction of
information from the model to the training process in order to prevent over-fitting of the data. A
widely used method is the Tikhonov regularization ([41, 32]), also known as ridge regression or weight
decay, which consists in adding a penalty term to the cost function of a model, which increases in
direct proportion to the norms of the variables of the model. This method of regularization can be
formalized in the following way: Let J be the cost function associated with the model M trained over
the data set x̂, p a model weighting function of the form p : M 7→ µ, where µ ∈ R+, and λ a positive
real number. The (hyper)parameter λ is called a regularization parameter ; the product λp(M) is
known as the regularization term and the regulated cost function J ′ is defined as

J ′(x̂,M, λ) = J(x̂,M) + λp(M). (3)

The core premise of the previous function is that we are disincentivizing fitting towards certain pa-
rameters of the model by assigning them a higher cost in proportion to λ, which is a hyperparameter
that is learned empirically from the data. In current machine learning processes, the most commonly
used weighting functions are the sum of the L1, L2 norms of the linear coefficients of the model, such
as in ridge regressions ([21]).

We can employ the basic form of equation 3 and define a regularization term based on the algorith-
mic complexity of the model and, in that way, disincentivize training towards algorithmically complex
models, thus increasing their algorithmic plausibility. Formally:

Definition 8. Let J be the cost function associated with the model M trained over the data set x̂, K
the universal algorithmic complexity function, and λ a positive real number. We define the algorithmic
regularization as the function

JK(x̂,M, λ) = J(x̂,M) + λK(M).

The justification of the previous definition follows from algorithmic probability and the coding
theorem: Assuming an underlying computable structure, the most probable model that fits the data
is the least complex one. Given the universality of algorithmic probability, we argue that the stated
definition is general enough to improve the plausibility of the model of any machine learning algo-
rithm with an associated cost function. Furthermore, the stated definition is compatible with other
regularization schemes.

Just as with the algorithmic loss function (Def. 2), the resulting function is not smooth, and
therefore cannot be optimized by means of gradient-based methods. One option for minimizing this
class of functions is by means of algorithmic parameter optimization (Def 7). It is important to recall
that computing approximations to the algorithmic probability and complexity of objects is a recent
development, and we hope to promote the development of more powerful techniques.

6.7 Algorithmic-probability Weighting

Another, perhaps more direct way to introduce algorithmic probability into the current field of machine
learning, is the following. Given that in the field of machine learning all model inference methods must
be computable, the following inequality holds for any fixed training methodology:

K(M∗) ≤ K(X̂) +K(M I) +O(1), (4)

where M∗ is the fitted model, X̂ is the training data, M I is the model with the parameters during its
initialization and O(1) corresponds to the length of the program implementing the training procedure.
Now, using common initialization conventions, M I either has very low algorithmic complexity or very
high (it’s random), in order to not induce a bias in the model. Thus the only parameter on the
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right side of the inequality that can be optimized is K(X̂). It follows that increasing the algorithmic
plausibility of a model can be achieved by reducing the algorithmic complexity of training set X̂, which
can be achieved by preprocessing the data and weighting each sample using its algorithmic information
content, thus optimizing in the direction of samples with lower algorithmic complexity.

Accordingly, the heuristic for our definition of algorithmic probability weighting is that, to each
training sample, we assign an importance factor (weight) according to its algorithmic complexity value,
in order to increase or diminish the loss incurred by the sample. Formally:

Definition 9. Let J be a cost function of the form

J(X̂,M) = g(L(y1, y
′
1), . . . , L(yi, y

′
i), . . . , L(yn, y

′
n)).

We define the weighted approximation to the algorithmic complexity regularization of J or algorithmic
probability weighting as

Jw,k(X̂,M, f) = g(f(K(x1)) · L(y1, y
′
1), . . . , f(K(xi)) · L(yi, y

′
i), . . . , f(K(xn)) · L(yn, y

′
n)),

where f(K(xi)) is a function that weights the algorithmic complexity of each sample of the training
data set in a way that is constructive with respect to the goals of the model.

We have opted for flexibility regarding the specification of the function f . However taking into
account the noncontinuous nature ofK, we have recommended a discrete definition for f . The following
characterization has worked well with our trials and we hold that it is general enough to be used in a
wide number of application domains:

f(xi, X, 〈γk〉, 〈ϕk〉) =



γ1 if K(xi) ∈ Q(ϕ1,K(C(xi)))

γ2 if K(xi) ∈ Q(ϕ2,K(C(xi)))

. . .

γk if K(xi) ∈ Q(ϕk,K(C(xi)))

. . .

γj if K(xi) ∈ Q(ϕj ,K(C(xi)))

where γk and ϕk are hyperparameters and K(xi) ∈ Q(ϕk,K(C(xi))) denotes that K(xi) belongs
to the ϕk-ith quantile of the distribution of algorithmic complexities of all the samples belonging to
the same class as xi.

As its names implies, the previous Def. 9 can be considered analogous to sample weighting, which
is normally used as a means to confer predominance or diminished importance on certain samples
in the data set according to specific statistical criteria, such as survey weights and inverse variance
weight [19]. However, a key difference of our definition is that traditional weighting strategies rely on
statistical methods to infer values from the population, while with algorithmic probability weighting we
use the universal distribution for this purpose. This makes algorithmic probability weighting a natural
extension or universal generalization of the concept of sample weighting, and given its universality, it
is domain independent.

Now, given that the output of f and its parameters are constant from the point of view of the
parameters of the model M , it is easy to see that if the original cost function J is continuous, dif-
ferentiable, convex and smooth, so is the weighted version Jw,k. Furthermore, the stated definition
is compatible with other regularization techniques, including other weighting techniques, while the
algorithmic complexity of the samples can be computed by numerical approximation methods such as
the Block Decomposition Method.

7 Results

7.1 Estimating ODE parameters

A key step to enabling progress between a fundamentally discrete theory such as computability and
algorithmic probability, and a fundamentally continuous theory such as that of differential equations
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and dynamical systems, is to find ways to combine both worlds. As shown in Section 5.1, optimizing the
parameters with respect to the algorithmic cost function is a challenge (Fig. 4). Following algorithmic
optimization, we note that parameters (5 and 1) have low algorithmic complexity due to their functional
relation. This is confirmed by BDM, which assigns the unknown solution to the ODE a value of
153.719 when the expected complexity is approximately 162.658, which means that the number of more
complex parameter candidates than [θ1 θ2] = [5 1] must be on the order of 28. Within the parameter
space, the solution is at the position 5 093 out of 65 536. Therefore the exact ODE solution can be
found within less than 6 thousand iterations following the simple algorithmic parameter optimization
(Def. 7) by consulting the function Ev. Furthermore, for the training set of size 10 composed of the
pairs z1(t), z2(t) corresponding to the list

t = 0.1, 0.2, . . . , 0.8, 0.9, 1.0,

, we need only 2 samples to identify the solution, supporting the expectation that algorithmic parameter
optimization ensures a solution with high probability, despite a low number of samples as long as the
solution has low complexity in a relatively low number of iterations. This is proof-of-principle that our
search technique can not only be used to identify parameters for an ODE problem, but also affords
the advantage of faster convergence (fewer iterations), requiring less data to solve the parameter
identification problem. In Fig. 5, equivalent to the pixel attacks for discrete objects, we show that
the parameter identification is robust to even more than 25% of additive noise. Operating in a low
complexity regime— as above—is compatible with a principal of parsimony such as Ockham’s razor,
which is empirically found to be able to explain data simplicity bias [46, 15, 45], suggesting that the
best explanation is the simplest, but also that what is modelled is not algorithmically random [44].

Figure 4: A visualization of the algorithmic cost function, as approximated by coarse BDM, corre-
sponding to the parameter approximation of an ordinary differential Eq. 2. From the surface obtained
we can see the complexity of finding the optimal parameters for this problem. Gradient based methods
are not optimal for optimizing algorithmic information based functions.

7.2 Finding Generative Rules of ECA

Following optimization, a classification function was defined to assign a new object to the class corre-
sponding to the centremj to which it is the closest according to the algorithmic distance BDM(x|mj).
The classifier obtained reaches an accuracy of 98.1% on the test set and of 99.27% on the training set
(table 1).

From the data we can see that the algorithmic classifier outperformed the four naive (or simple)
neural networks, but it was outperformed slightly by the Fernandes classifier, built expressly for the
purpose. But as we will show over the following sections, this last classifier is less robust and is domain
specific.

Last but not least, we have tested the robustness of the classifiers by measuring how good they
are at resisting one-pixel attacks ([40]). A one-pixel attack occurs when a classifier can be fooled into
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Figure 5: The average Euclidean distance between the solution inferred by algorithmic optimization
and the hidden parameters of the ODE in Section 6.1 when a number of bits of the binary representation
of the labelled data has been randomly corrupted (flipped), from 1 to 8 bits. The binary representation
of the states z1 and z2 has an accuracy of 8 bits each, or 16 bits for the pair. At the maximum corruption
level, 50% of the bits that represent a pair of outputs in the sample set are being flipped, destroying
any kind of information within each sample. The average was taken from ten random sample sets of
size 5, 7, and 10. Each set was computed by randomly selecting times t between 0 and 1 in intervals
of size 0.05, then corrupting the corresponding output by the specified number of bits (y axis). From
the results it can be seen that algorithmic optimization is resilient up to corruptions of 4 to 5 bits, or
> 25% percent of the data, even when using relatively small training data sets.

Table 1: The accuracy of the Tested Classifiers

Classifier Test Set Training Set

Naive Networks

1 38.88% 95.63%
2 39.70% 95.63
3 40.36% 100%
4 39.05% 100%

Fernandes’ 98.8% 99.63%

Algorithmic Class. 98.1% 99.27%

misclassifying an object by changing just a small portion of its information (one pixel). Intuitively,
such small changes should not affect the classification of the object in most cases, yet it has recently
been shown that deep neural network classifiers present just such vulnerabilities.

Algorithmic information theory tells us that algorithmic probability classifier models should have
a relatively high degree of resilience in the face of such attacks: if an object belongs to a class
according to a classifier it means that it is algorithmically close to a centre defining that class. A
one-pixel attack constitutes a relatively small information change in an object. Therefore there is a
relatively high probability that a one-pixel attack would not alter the information content of an image
enough to increase the distance to the centre in a significant way. In order to test this hypothesis, we
systematically and exhaustively searched for vulnerabilities in the following way: (a)One by one, we
flipped (from 0 to 1 or vice versa) each of the 32×32 pixels of the samples contained in the test data.
(b) If a flip was enough to change the assigned classification for the sample, then it was counted as a
vulnerability. (c)Finally, we divided the total number of vulnerabilities found by the total number of
samples in order to obtain an expected number of vulnerabilities per sample. The results obtained are
shown in Table ref.

From the results we can see that for the DNN, 13.56% of the pixels are vulnerable to one-pixel
attacks, and that only 1% of the pixels manifest that vulnerability for the algorithmic classifier. These
results confirm our hypothesis that the algorithmic classifier is significantly more robust in the face
of small perturbations compared to the deep network classifier designed without a specific purpose
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Table 2: Expected Number of Vulnerability Per Sample

Classifier Total Vulnerabilities Per Sample Percentage of Pixels

Fernandes’ (DNN) 190,850 138.88 13.56%
Algorithmic Classifier 15,125 11 1%

in mind. It is important to clarify that we are not stating that it is not possible to increase the
robustness of a neural network, but rather pointing out that algorithmic classification has a high
degree of robustness naturally.

7.3 Finding Initial Conditions

The accuracy obtained using the different classifiers is represented in Table 3. Based on these results we
can see that the algorithmic classifier performed significantly better than the neural networks tested.
Furthermore, the first two naive topologies have enough variance present to have a good fit vis-a-vis
the training set, in an obvious case of over-fitting. The domain specific Fernandes topology maintained
a considerably high error rate—exceeding 80%—over 3,135 ADAM training rounds. It is important
to note that in this case collisions, that is, two samples that belong to two different classes, can exist.
Therefore it is impossible to obtain 100% perfect accuracy. An exhaustive search classifier that searches
through the space for the corresponding initialization string reached an accuracy of 97.75% over the
test set.
In order to test the generalization of the CTM database computed for this experiment, we tested our
algorithmic classifying scheme on a different instance of the same basic premise: binary images of size
24× 4 that correspond to the output of twenty randomly selected binary strings of 24 bits each for a
randomly chosen ECA. The number of samples per class remains at 20 for the training, validation
and test sets. The results are shown in the following table. For this case the algorithmic classifier
increased its accuracy to 96.56%. Thanks to the additional data, the neural networks also increased
their accuracy to 64.11% and 61.74% for the first and second topology, respectively.

7.3.1 Network Topology Algorithmic-information Classifier

The results are summarized in Table 5. Here we can see that only the coarse BDM algorithmic
information classifier—with 70% accuracy—managed to reach an accuracy that is significantly better
than random choice, validating our method.

Furthermore, by analyzing the confusion matrix plot (Figure 6) we can see that the algorithmic
classifier performs (relatively) well at classifying the frozen and chaotic networks, while the deep
learning classifier seems to be random in its predictions. The fact that the critical stage was harder
to classify is evidence of its rich dynamics, accounting for more varied algorithmic behaviours.

A second task was to classify a set of binary vectors of size 40 that represent the evolution of an NK
network of four nodes (n = 4) and two incoming connections (k = 2). Given that an NK network is
defined by two causal features, the topology of the network and the Boolean function of each node, we
divided the second task in two: classifying according to its topology and according to the underlying
Boolean rules.

7.4 Classifying Kauffman Networks

The task was to determine whenever a random Boolean network belonged to the frozen, critical or
chaotic phase by determining when k = 1, 2 or 3. Furthermore, we used the full range of possible
unary, binary and tertiary Boolean operations corresponding to each of the functions associated with
a node. The objects to classify were binary vectors of size 240 bits that represented the evolution
of networks of 24 nodes to ten steps with incoming connections of degree 1, 2 or 3. The training,
validation and test sets were all of size 300, with 100 corresponding to each class. For this more
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Figure 6: The confusion matrix for the neural network (left) and the algorithmic information classifier
(right) while classifying binary vectors representing the degree of connection (parameter k) of 300
randomly generated Boolean NK networks. From the plots we can see that the algorithmic classifier
can predict with relatively high accuracy the elements belonging to class k = 1 and k = 3. The neural
network used is considerably more random in its predictions.

general, therefore harder classification task, we used larger objects and data sets. The objects to
classify were binary vectors of size 240 bits that represented the evolution of networks of 24 nodes to
ten steps with incoming connections of degree 1, 2 or 3. The training, validation and test sets
were all of size 300, with 100 corresponding to each class.

For the task at hand we trained the following classifiers: a neural network, gradient boosted trees
and a convolutional neural network. The first neural network had a naive classifier that consisted of
a ReLU layer, followed by a Dropout layer, a linear layer and a final softmax unit for classification.
For the convolutional model we used prior knowledge of the problem and used a specialized topology
that consisted of 10 convolutional layers with a kernel of size 24, each kernel representing a stage of
the evolution, with a ReLU, a pooling layer of kernel size 24, a flattened layer, a fully connected linear
layer and a final softmax layer. The tree-based classifier manages an accuracy of 35% on the test
set, while the naive and convolutional neural networks managed an accuracy of 43% and 31% percent
respectively. Two of the three classifiers are nearly indistinguishable from random classification, while
the naive neural network is barely above it.

For comparison purposes, we trained a neural network and a logistic regression classifier on the
data. The neural network consisted of a naive topology consisting of a ReLU layer, followed by a
dropout layer, a linear layer and a softmax unit. The results are shown in Table 4.

From the results obtained we can see that the neural network, with 92.50% accuracy, performed
slightly better than the algorithmic classifier (91.35%) on the test set. The logistic regression accu-
racy is a bit further behind, at 82.35%.

However, the difference in the performance of the topology test set is much greater, with both
the logistic regression and the neural network reaching very high error rates. In contrast, our algorith-
mic classifier reaches an accuracy of 72.4%.

7.5 A First Experiment and Proof of Concept of Algorithmic-probability Weight-
ing

As a first experiment in algorithmic weighing, we designed an experiment using the MNIST dataset
of hand written digits [14]. This dataset, which consists of a training set of 60,000 labelled images
representing hand written digits from 0 to 9 and a test set with 10,000 examples, was chosen given its
historical importance for the field and also because it offered a direct way to deploy the existing tools
for measuring algorithmic complexity via binarization without compromising the integrity of the data.

The binarization was performed by using a simple mask: if the value of a (gray scale) pixel was
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above 0.5 then the value of the pixel was set to one, using zero in the other case. This transformation
did not affect the performance of any of the deep learning models tested, including the LeNet-5
topology ([27]), in a significant way.

Next we salted or corrupted 40% of the training samples by randomly shuffling 30% of their pixels.
An example of these corrupted samples can be seen in Figure 7. With this second transformation we
are reducing the useful information within a random selected subset of samples by a random amount,
thus simulating a case where the expected amount of incidental information is high, as in the case of
data loss or corruption.

Figure 7: At left we have an image representing a binarized version of a randomly chosen sample. At
right we have the salted version of the same sample, with 30% of its pixels randomly shuffled.

Finally, we trained 10 neural networks with increasing depth, setting aside 20% of the training data
as a verification set, thereby obtaining neural networks of increasing depth and, more importantly,
variance. The topology of these networks consisted of a flattened layer, followed by an increasing
number of fully connected linear layers with rectified linear (ReLU) activation functions, and a final
softmax layer for classification. In order to highlight the effect of our regularization proposal, we
abstained from using other regularization techniques and large batch sizes. For instance, optimizing
using variable learning rates such as RMSProp along with small stochastic batches is an alternative
way of steering the samples away from the salted samples.

For purposes of comparison, the neural networks were trained with and without weighting, using
the option sample_weight for the train_on_batch on Keras.The training parameters for the networks,
which were trained using Keras on Python 3, were the following:

• Stochastic gradient descent with batch size of 5 000 samples.

• 40 epochs, (therefore 80 training stages), with the exception of the last model with 10 ReLU
layers, which was trained for 150 training stages.

• Categorical crossentropy as loss function.

• ADAM optimizer.

The hyperparameters for the algorithmic weighting function used were:

f(xi) =


0.01 if BDM(xi) ∈ Q(75, BDM(C(xi)))

0.5 if BDM(xi) ∈ Q(50, BDM(C(xi)))

2 if BDM(xi) ∈ Q(0, BDM(C(xi))),

(5)

which means that if the BDM value for the i-th sample was in the 75th quantile of the algorithmic
complexity within its class, then it was assigned a weight of 0.01; the assigned weight was 0.5 if it
was in the 50th quantile, and 2 if it was among the lower half in terms of algorithmic complexity
within its class. The value for these hyperparameters was found by random search. That is, we tried
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Figure 8: The first two (upper) plots show the difference between the mean and maximum accuracy
obtained through the training of each of the models. The last two (lower) plots show the evolution of
accuracy through training for the data sets. The data sets used are (training, test and validation),
with data from the MNIST dataset. The (training and validation) data sets were salted with %40
of the data randomly corrupted while the test set was not. From the first two plots we can see that
the accuracy of the models trained with algorithmic sample weights is consistently higher than the
models trained without them, and this effect increases with the variance of the models. The drops
observed after 4 ReLU layers are because, until depth 10, the number of training rounds was constant,
with more training rounds therefore needed to achieve a minimum in the cost function. When directly
comparing the training history of the models of depth 6 and 10 we can see that the stated effect
is consistent. Furthermore, at 10 rectilinear units, we can see significant overfitting, while for the
unweighted model, using the algorithmic weights still leaves room for improvement.

various candidates for the function on the validation set and we are reporting the one that worked best.
Although not resorted to for this particular experiment, more efficient hyperparameter optimization
methods such as grid search can be used.

Following the theoretical properties of algorithmic regularization, by introducing algorithmic prob-
ability weighting we expected to steer the fitting of the target parameters away from random noise and
towards the regularities found in the training set. Furthermore, the convergence toward the minimum
of the loss function is expected to be significantly faster, in another instance of algorithmic probability
speed-up ([20]). We expected the positive effects of the algorithmic probability weighting to increase
with the variance of the model to which it was applied. This expectation confirms the hypothesis of
the next numerical experiment.

The differences in the accuracy of the models observed through the experiments as a function of
variance (number of ReLU layers) are summarized in Figure 8. The upper plots show the difference
between the mean accuracy and the maximum accuracy obtained through the optimization of the
network parameters for networks of varying depth. A positive value indicates that the networks trained
with the algorithmic weights showed a higher accuracy than the unweighted ones. The difference in
the steepness of the loss function between the models is shown in the left plot of Figure 10, which is
also presented as a function of the number of ReLU layers. A positive value indicates that a linear
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approximation to the loss function had a steeper gradient for the weighted models when compared
to the unweighted ones. In Figure 9, we can see the evolution of this difference with respect to the
percentages of corrupted samples and the corrupted pixels within these samples.
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Figure 9: The difference in accuracy with respect to the percentage of corrupted pixels and samples
in the data set for the weighing function 5 for a neural network of depth 4 (four rectilinear units). A
positive value indicates that the network trained on the weighted samples reached greater accuracy.
The maximum difference was reached for 70% of the samples with 40% of pixels corrupted. From the
plot we can see that the networks trained over the weighed samples steadily gained in accuracy until
the maximum point was reached. The values shown are the average differences over five networks
trained over the same data.

As the data show (Figure 8), the networks trained with the algorithmic weights are more accurate
at classifying all three sets: the salted training set, the (unsalted) test set and the (salted) validation
set. This is shown when the difference of the mean accuracy (over all the training epochs) and the
maximum accuracy attained by each of the networks is positive. Also, as predicted, this difference
increases with the variance of the networks: at higher variance, the difference between the accuracy
of the data sets increases. Moreover, as shown in Figure 10, the weighted models reach the minimum
of the loss function in a lower number of iterations, exemplified when the linear approximation to the
evolution of the cost is steeper for the weighted models. This difference also increases the variance of
the model.

8 Conclusions

Here we have presented a mathematical foundation within which to solve supervised machine learning
tasks using algorithmic information and algorithmic probability theories. We think this is the first
time that a symbolic inference engine is integrated to more traditional machine learning approaches
constituting not only a path towards putting both symbolic computation and statistical machine
learning together but allowing a state-to-state and cause-and-effect correspondence between model and
data and therefore a powerful interpretable white-box approach to machine learning. This framework
is applicable to any supervised learning task, does not require differentiability, and is naturally biased
against complex models, hence inherently designed against over-fitting, robust in the face of adversarial
attacks and more tolerant to noise in continuous identification problems.

We have shown specific examples of its application to different problems. These problems included
the estimation of the parameters of an ODE system, the classification of the evolution of elementary
cellular automata according to their underlying generative rules; the classification of binary matrices
with respect to 10 initial conditions that evolved according to a random elementary cellular automaton;
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Figure 10: On the left are shown the differences between the slopes of the linear approximation
to the evolution of the loss function for the first six weighted and unweighted models. The linear
approximation was computed using linear regression over the first 20 training rounds. On the right
we have the loss function of the models with 10 ReLU units. From both plots we can see that training
toward the minimum of the loss function is consistently faster on the models with the algorithmic
complexity sample weights, and that this difference increases with the variance of the model.

and the classification of the evolution of a Boolean NK network with respect to 10 associated binary
rules or ten different network topologies, and the classification of the evolution of a randomly chosen
network according to its connectivity (the parameter k). These tasks were chosen to highlight different
approaches that can be taken to applying our model. We also assert that for these tasks it is generally
hard for non-specialized classifiers to get accurate results with the amount of data given.

While simple, the ODE parameter estimation example illustrates the range of applications even in
the context of a simple set of equations where the unknown parameters are those explored above in
the context of a neural network [16], [θ1 θ2] = [5 1]. These parameters correspond to a low algorithmic
complexity model. Given the way that algorithmic parameter optimization works, the optimization
time, as measured by the number of iterations, will converge faster if the optimal parameters have
low algorithmic complexity, and therefore are more plausible in the algorithmic sense. These low com-
plexity assumptions are compatible with a principle of parsimony such as Ockham’s razor, empirically
found to be able to explain data simplicity bias [46, 15, 45], and suggesting that the best explanation
is also the simplest, but also that what is modelled is not algorithmically random [44]. The advantage
of our approach is that it offers a means to reveal a set of candidate generative models.

From the results obtained from the first classification task (6.2), we can conclude that our vanilla
algorithmic classification scheme performed significantly better than the non-specialized vanilla neural
network tested. For the second task (Section 6.3), our algorithmic classifier achieved an accuracy of
95.5%, which was considerably higher than the 60.11% achieved by the best performing neural network
tested.

For finding the underlying topology and the Boolean functions associated with each node, the naive
neural network achieved a performance of 92.50%, compared to 91.35% for our algorithmic classifier.
However, when classifying with respect to the topology, our algorithmic classifier showed a significant
difference in performance, with over 39.75% greater accuracy. There was also a significant difference in
performance on the fourth task, with the algorithmic classifier reaching an accuracy of 70%, compared
to the 43% of the best neural network tested.

We also discussed some of the limitations and challenges of our approach, but also how to combine
and complement other more traditional statistical approaches in machine learning. Chief among them
is the current lack of a comprehensive Turing machine based conditional CTM database required for
the strong version of conditional BDM. We expect to address this limitation in the future.

It is important to emphasize that we are not stating that there is no neural network that is able
to obtain similar, or even better, results than our algorithms. Neither do we affirm that algorithmic
probability classification in its current form is better on any metric than the existing extensive meth-
ods developed for deep learning classification. However, we have introduced a completely different
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view, with a new set of strengths and weaknesses, that with further development could represent a
better grounded alternative suited to a subset of tasks beyond statistical classification, where finding
generative mechanisms or first principles are the main goals, with all its attendant difficulties and
challenges.
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9 Appendix

9.1 Joint and Mutual BDM

In classical information theory ([33, 12]) we can think of mutual entropy as the information contained
over two or more events occurring concurrently, and of joint entropy over the two communication
channels or events as the average uncertainty contained over all possible combinations of events. For
algorithmic information theory, the first concept can be understood as the “amount of information
within an object that is explained by another ” and the second concept can be interpreted as the “amount
of information contained within two or more objects”.

In contrast to classical information theory, we started by defining conditional BDM. Therefore we
think that the best way to define joint BDM is from the chain rule.

Definition 10. The joint BDM of X and Y with respect to {αi} is defined as

JointBDM(X,Y ) = BDM(Y |X) +BDM(X).

Following the same path, we could define mutual BDM thus:

Definition 11. The mutual BDM of X and Y with respect to {αi} is defined as

MutualBDM(X,Y ) = BDM(X)−BDM(X|Y ).

9.1.1 The Relationship Between Conditional, Joint and Mutual Information

The results shown in this section are evidence that our Def. for conditional BDM is well behaved, as it
is analogous to important properties for conditional, joint and mutual entropy.

Proposition 12. If X = Y then BDM(X|Y ) = 0.

Proof. is a direct consequence of the Def. 5.

It is important to note that BDM(X|Y ) = 0 does not imply that X = Y . However, it does imply
that Adj(X) = Adj(Y ). This is a consequence of the fact that BDM does not measure the information
encoded in the position of the subtensors.

Proposition 13. BDM(X) ≥ BDM(X|Y ).

Proof. As we consider subsets of Adj(X), it is a direct consequence of the Def. 5.

Proposition 14. If X and Y are independent with respect to the partition {αi}, this is equivalent to
Adj(X) ∩Adj(Y ) = ∅, then BDM(X|Y ) = BDM(X).

Proof. It is a direct consequence of the Def. 5, given that we have it that Adj(X)−Adj(Y ) = Adj(X).

Proposition 15. MutualBDM(X,Y ) = MutualBDM(Y,X).

Proof. First, consider the equation

MutualBDM(X,Y ) =BDM(X)−BDM(X|Y )

=
∑

(ri,ni)∈Adj(X)

CTM(ri) + log(ni)

−
∑

(ri,ni)∈Adj(X)−Adj(Y )

(CTM(ri) + log(ni))

−
∑

Adj(X)∩Adj(Y )

f(nxk, n
y
k).
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While on the other hand we have it that

MutualBDM(Y,X) =BDM(Y )−BDM(Y |X)

=
∑

(rj ,nj)∈Adj(Y )

CTM(rj) + log(nj)

−
∑

(rj ,nj)∈Adj(Y )−Adj(X)

(CTM(rj) + log(nj))

−
∑

Adj(Y )∩Adj(X)

f(nyk, n
x
k).

Notice that in both equations we have the sum over all the pairs that are in both sets, Adj(X) and
Adj(Y ), with the difference being in the terms corresponding to the multiplicity. Now we have to
consider two cases. If nxi = nyi we have the equality. Otherwise, in the first equation we have terms of
the form log(nxj )−f(nxk, n

y
k), which, by Def. of f , is 0; analogously for the second equation. Therefore,

we have the equality.

Proposition 16. MutualBDM(X,Y ) = BDM(X) +BDM(Y )− JointBDM(X,Y ).

Proof.

MutualBDM(X,Y ) = MutualBDM(Y,X)

= BDM(Y )−BDM(Y |X)

= BDM(Y ) +BDM(X)− (BDM(Y |X) +BDM(X))

= BDM(X) +BDM(Y )− JointBDM(X,Y )

9.2 Coarseness and Relationship With Entropy

As mentioned in the previous section, the goal behind the Def. of coarse conditional BDM,BDM(X|Y ),
is to measure the amount of information contained in X not present in Y . Ideally, this is measured by
the conditional algorithmic information K(X|Y ). The Def. 5 includes the adjective coarse given that,
as we will show in this section, its behaviour is closer to Shannon’s entropy H than the algorithmic
information measure K, relying heavily on the entropy-like behaviour of BDM.

The conditional algorithmic information content function K is an incomputable function. There-
fore it represents a theoretical ideal that cannot be reached in practice. By construction, coarse
conditional BDM is an approximation to this measure. However it differs in not taking into account
two information sources: the information content shared between base blocks and the position of each
block.

As an example of the first limitation, consider the string 101010 . . . 10 and its negation 010101 . . . 01.
Intuitively, we know that both strings are algorithmically close, but for a partition strategy that di-
vides the string into substrings of size 2 with no overlapping, the Adj sets {({10}, n)} and {({01}, n)}
are disjoint. Therefore conditional BDM assigns the maximum BDM value to the shared information
content. Within this limitation, we argue that conditional BDM represents a better approximation to
K in comparison to entropy, mainly because BDM uses the CTM approximation value for each block,
rather than just its distribution, and the information content of its multiplicity, thus representing a
more accurate approximation to the overall algorithmic information content of the non-shared base
blocks.

The second limitation can become a significant factor when the size of the base blocks is small
when compared to that of the objects analysed, given that the positional information can become the
dominant factor of the information content within an object. This is an issue shared with entropy
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Figure 11: Each point represents the normalized average of the conditional BDM (BDM(X|Y )) and
conditional entropy (H(X|Y )), respectively, corresponding to 5000 pairs of strings randomly chosen
from a distribution where the expected number of 1s is the value shown on the x axis divided between
the conditional BDM or conditional entropy of the first element of the pair and an unrelated randomly
chosen binary string. All strings are of length 20. The partition strategy used for BDM is that of
sets of size 1. From this plot we can see that conditional BDM manages to capture the statistical
relationship of finite strings generated from the same distribution.

that conditional BDM inherits from the numerical challenges of CTM in BDM. However, conditional
BDM has the added benefit that it is defined for finite tensors generated from different distributions
by assuming the so-called universal distribution ([39]) (known to dominate any other approach) as the
underlying distribution between the two ‘events’.

9.2.1 Empirical Comparison with Entropy

Owing to the origins of the BDM function, the asymptotic relationship between coarse conditional
BDM and conditional entropy follows from the relationship between BDM and entropy ([47]). In this
section we will focus on empirical evidence for this relationship, along with exploring the impact of
the partition strategy for unidimensional objects. Further theoretical properties that establish the
well-behavedness of conditional BDM are set forth in the Appendix in Section 9.1.

For this numerical experiment we generated a sample of 19,000 random binary strings of length 20
that are pairwise related, coming from one of 19 biased distributions where the expected number of
1s varies from 1 to 19. For each pair we computed the conditional BDM with partitions of size 1 and
divided it by the conditional BDM of the first string with respect to a random string coming from an
uniform distribution. To both, the divisor and the dividend, we added 1 to avoid divisions by zero.
We repeated the experiment for conditional entropy. Both results where normalized by dividing the
quotients obtained by the maximum value obtained for each distribution. In the plot 11 we show the
average obtained for each biased distribution.

From the plot 11 we can see that as the underlying distribution associated with the strings is in-
creasingly biased, the expected shared information content of two related strings is higher (conditional
BDM is lower) when compared to the conditional BDM of two unrelated strings. This behaviour is
congruent with what we expect and observe for conditional entropy. That the area under the normal-
ized cube is smaller is expected, given that BDM is a finer-graded information content measure than
entropy and is not perfectly symmetric, as BDM and CTM are computational approximations to an
uncomputable function and are also inherently more sensitive to the fundamental limits of computable
random number generators.
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Figure 12: Each point represents the average of the conditional BDM from 30,000 pairs of binary
strings of size 20 randomly generated from four different distributions: uniform (ten 1s expected),
biased 3/20 (three 1s expected), biased 1/4 (five 1s expected) and biased 7/20 (seven 1s expected).
The x axis indicates the partition size used to compute the respective conditional BDM value, which
was normalized by dividing it by the partition size.

9.3 The Impact of the Partition Strategy

As shown in previous results ([47]), BDM better approximates the universal measure K(X) as the
number of elements resulting from applying the partition strategy {αi} to X. However, this is not
the case for conditional BDM. Instead BDM(X|Y ) is a good approximation to K(X|Y ) when the
Adj(X) and Adj(Y ) share a high number of base tensors, and the probability of this occurring is lower
in inverse proportion to the number of elements of the partition. For this reason we must point out
that conditional BDM is dependent on the chosen partition strategy {αi}.

As a simple example, consider the binary string X = 11110000 and its inverse Y = 00001111. Since
we have the CTM approximation for strings of size 8, the best BDM value for each string is found when
Adj(X) = {(11110000, 1)} and Adj(Y ) = {(00001111, 1)}. However, given that the elements of the
partitions are different, we have it that BDM(11110000|00001111) = BDM(11110000) = 25.1899,,
even when intuitively we know that, algorithmic information-wise, they should be very close. However,
conditional BDM is able to capture this with partitions of size 1 to 4 with no overlapping, assigning
a value of 0 to BDM(X|Y ).

We conjecture that there is no general strategy for finding a best partition strategy. This is an
issue shared with conditional block entropy, and just like the original BDM definition. At its worst,
conditional BDM will behave like conditional entropy when comparable, while maintaining best cases
close to the ideal of conditional algorithmic complexity. Thus the partition strategy can be considered
an hyperparameter that can be empirically optimized from the available data.

We performed a numerical experiment to observe this behaviour by generating 2 400 000 random
binary strings of size 20 with groups of 600,000 strings belonging to one of four different distributions:
uniform (ten 1s expected), biased 3/20 (three 1s expected), biased 1/4 (five 1s expected) and biased
7/20 (seven 1s expected). Then, we formed pairs of strings belonging to the same distribution and
computed the conditional BDM using different partition sizes from 1 to 20, for a total of 30,000 pairs
per data point, normalizing the result by dividing it by the partition size to avoid this factor being
the dominant one. In the plot 12 we show the average obtained for each data point.

In figure 12 we can observe two main behaviours. The first is that as the partition size increases so
does the conditional BDM value. This is because bigger partitions take into account more information
from the position of each bit, and we do not expect randomly generated strings to share positional
information. The drop observed after partitions of size 12 is the result of CTM values being available
up to strings of size 12, the point where the program starts to rely on BDM for the computation.
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Table 3: Accuracy for the first task

Classifier Accuracy on Test Set Accuracy on Training Set

Simple Networks

1 60.11% 98.86%
2 57.30% 98.86
5 25.84% 32.95%

Fernandes 18.54% 50.56%

Algorithmic Class. 95.50% 96.02%

Table 4: Accuracy for the second task

Classifier Rules Test Set Topology Test Set

Logistic Regression 82.35% 20.75%
NN 92.50% 32.75%

Algorithmic Class. 91.35% 72.4%

Additionally the partition strategy ignores smaller partitions than the ones stated, thereby reducing
the overall amount of information taken into account. The second is that not only is conditional BDM
able to capture the discrepancies expected from the different distributions for partition sizes where
there is no loss of statistical information (this being from size 1 to 10), but seems to improve on its
ability to do so with larger partition sizes up to 10, therefore improving upon the results presented in
Section 9.2.1.

It is important to note that an important reduction in accuracy for partitions of sizes larger than 10
was expected, given that the partition strategy used discarded substrings of smaller sizes than the ones
stated. For instance, the partition of size 3 of the string 10111 is just {101}, thus losing information.
Furthermore, for big partition sizes with respect to the string length, the statistical similarity vanishes,
given that now each substring is considered a different symbol of an alphabet. Therefore, the abrupt
change of behaviour observed beyond partitions of size 15 is expected and is the product of causation.

9.4 Experiments and models

M =


704 → {0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0}, 3572 → {1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0},

3067 → {1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1}, 3184 → {1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0},
1939 → {0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1}, 2386 → {1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0},
2896 → {1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0}, 205 → {0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1},
828 → {0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0}, 3935 → {1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1}

 (6)

9.5 Other result details
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Table 5: Accuracy for the third task

Model Test Set Training Set

Neural Networks

Naive 43% 100%
Convolutional 31.66% 97.66%

Boosted Trees 35% 64.33%

Algorithmic Classifiers

BDM 70% 71%
Entropy 37.66% 46.33%
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