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Abstract

We examine the conditions under which spike-timing-dependent plasticity (STDP) normalizes
post-synaptic 0ring rates. Our simulations show that the rate normalization property of STDP
is fragile and small changes in the LTD=LTP ratio or pre-synaptic input rates can lead to high
0ring rates. We propose an adaptive scheme to dynamically control the LTP=LTD ratio. The
biophysics of synapses lead us to suggest a control mechanism using action potential-induced
calcium in4ux, a known mediator of synaptic plasticity. This adaptive STDP rule is shown to
stabilize the post-synaptic 0ring rates under a variety of perturbations. c© 2002 Published by
Elsevier Science B.V.
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1. Introduction

Spike-timing-dependent plasticity (STDP) has been proposed to solve two funda-
mental issues of learning in neural networks [9]. First, how synaptic competition is
achieved and second, how neuronal 0ring rates are stabilized in the presence of a large
number of excitatory recurrent collaterals. Song and Abbott have shown the conditions
under which SDTP leads to synaptic competition [9]. Gerstner et al. argued that STDP
will normalize 0ring rates [4]. Recent work by van Rossum et al. [13] has demonstrated
that an STDP type of rule does not necessarily guarantee competition between synaptic
a@erents. It has been clear, however, that the competition and normalization properties
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are strongly dependent on the ratio between LTD and LTP in the STDP learning rule
[9]. Here, we further examine the sensitivity of the normalization property on the
learning ratio. We propose an adaptive rule which dynamically regulates the learning
ratio.

2. Methods

We use a model of STDP developed by Song et al. [9]. The learning kernel L(�) =
ALTP exp(�=�LTP) if �¡ 0 and −ALTD exp(−�=�LTD) if �¿ 0 (Fig. 1A). Following [9]
and use �LTP = �LTD = 20 ms for the time window of learning. The learning ratio is
�= ALTD=ALTP = 1:05, which re4ects the net dominance of depression during learning.
Synaptic weights changes according to

dwi
dt

=
∫
L(�)spre(t + �)spost(�) d�; wi�[0; wmax]; (1)

where s(t) denotes a delta function representing a spike at time t. Correlations between
input rates were generated as in [9] by adding a common bias rate in a graded man-
ner across synapses. If Fig. 2, an adaptive scheme is used to change � dynamically,
according to the equations discussed in the text.

3. Results

3.1. The learning ratio controls neuronal gain

We use computer simulations to examine the normalization property of the STDP
rule (Fig. 1A). As shown in Fig. 1B, the input–output relationship of our simulated
neuron is approximately normalized after learning. We refer to the slope of the resulting
input–output function as the e@ective neuronal gain. In the presence of input correlations
neuronal gain is not normalized (Fig. 1C). Increasing the strength of input correlations
increases the slope of the input–output curve leading to larger e@ective neuronal gain.
Next, we examined how neuronal gain depends on the depression=potentiation ratio in
the STDP rule. We de0ne �= LTD=LTP. In Fig. 1B and C we used �= 1:05 [9]. By
changing �, the neuronal gain call be controlled. Fig. 1D shows that the high-gain-
and high-rate mode induced by strong input correlations is reduced to a lower-gain
and lower-rate mode by increasing the � ratio.

3.2. Biophysical basis for an adaptive STDP learning rule

These observations suggest that if synaptic input is correlated it would be useful to
dynamically regulate the depression=potentiation ratio. Guided by the known biophysics
of synaptic plasticity we propose that Ca2+ dynamics in post-synaptic spines can control
the neuronal plasticity. When a neuron 0res, high-voltage activated calcium channels
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Fig. 1. (A) The STDP learning kernel. (B) STDP controls neuronal gain. The slope of the dependence of the
post-synaptic output rate on the pre-synaptic input rate is referred to as e@ective neuronal gain. The initial
0ring rate is shown by the top curve while the lower line displays the 0nal post-synaptic 0ring rate. The gain
is reduced provided that the depression=potentiation ratio (1.05 here) is large enough. Uncorrelated input.
(C) Increasing input correlations increases neuronal gain. When the synaptic input is strongly correlated the
post-synaptic neuron operates in a high-gain mode characterized by a larger slope and larger baseline rate.
Input correlations were uniformly distributed between 0 and a maximal value. The maximal correlation in
the direction of the arrow: 0:0; 0:2; 0:3; 0:4; 0:5; 0:6; 0:7. � ratio is 1.05. Note that for further increases in
the pre-synaptic rates, post-synaptic 0ring can increase above 1000 Hz. Data not shown here as it probably
represents a non-physiological regime. (D) The depression=potentiation ratio sets the neuronal gain. The �
ratios are in the direction of arrow: 1:024; 1:05; 1:076; 1:1025; 1:155; 1:2075. Maximal input correlation is 0.5.

open. This process allows calcium levels to track changes in the 0ring rate on a rapid
time scale. When the resting Ca2+ is elevated in a spine, several changes occur. First,
the calcium level required for synaptic depression is easier to reach. Second, increased
resting calcium levels inhibit NMDA channels and thus calcium in4ux due to synaptic
input. Both of these e@ects in turn increase the probability of LTD induction. Because
of bu@ering, changes in the resting calcium levels are transient, thus, the time-scale
of changes in our adaptive rule is very fast. This chain of events can be captured by
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Fig. 2. Correlation and rate sensitive regimes with an adaptive STDP learning rule. (A) The post-synaptic rate
(y-axis) is essentially unchanged when the pre-synaptic rate is increased. Increased synaptic input correlations
(dots) have a small e@ect on the post-synaptic 0ring rate (�= 1:25). (B) Reducing the parameter (�= 0:75)
controlling the strength of the calcium on the post-synaptic 0ring rate slightly increases the dependence of
the post-synaptic 0ring rate on the amount of synaptic input correlations. (C) and (D) show how the neuronal
gain (the slope) increases further when � is reduced (0.5 and 0.25, respectively), p = q = 1; �Ca = 50 ms,
�Ca = 500 ms.

the following 0rst-order kinetic system:

d[Ca]
dt

=−[Ca]=�Ca + �

[∑
i

�(t − ti)
]p
; (2)

��
d�
dt

=−� + [Ca]q: (3)

The parameter p determines how the calcium concentration scales with the post-synaptic
0ring rate (delta spikes � above) and q controls the learning sensitivity. � controls the
rise of steady-state calcium with increasing post-synaptic rates (rpost). The time con-
stants �Ca and �� determine the calcium dynamics and the time course of the adaptive
rule, respectively. Note that this formulation controls the asymmetry of the learning
rule, � = �− 1.
We coupled this adaptive scheme to the STDP rule used previously. Our simula-

tions demonstrate that the adaptive STDP rule controls the e@ective neuronal gain. As
shown in Fig. 2 the postsynaptic 0ring rate after learning depends on both the rate as
well as the correlation of the input. Fig. 2A shows perfect normalization and thus the
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post-synaptic response does not depend on either the pre-synaptic rate or the strength of
input correlations. This happens when � is high, which could be interpreted as a large
calcium channel conductance. Decreasing the conductance of the calcium channel, �,
results in less than perfect rate normalization. Fig. 2B shows an intermediate regime,
where post-synaptic response is only weakly dependent on input rates. Increasing input
correlations, however, does increase response.

4. Discussion

We show that the normalization property of the STDP rule is highly sensitive to the
LTD=LTP ratio. Changing either the neuronal dynamics (not shown) or the input corre-
lations (Fig. 1) can drive the neuron out of the balanced 0ring regime [2]. We propose
that an adaptive control of the LTD=LTP ratio can stabilize the STDP rule. Interestingly,
the known biochemical and biophysical processes in synaptic spines provide the phys-
iological basis for the adaptive control scheme. Calcium levels can track the 0ring rate
[5] and calcium is a crucial mediator of synaptic plasticity [7]. Recently, experimental
observations show that NMDA-receptors are inhibited by calcium [8]. Taken together,
these 0ndings lead us to propose a scheme where calcium levels track post-synaptic
0ring, and in turn inhibit the NMDA conductance. Lowering calcium in4ux through
NMDA channels shifts the balance between LTP and LTD. We found that this scheme
could control the e@ective neuronal gain after learning and increase the robustness of
the learning rule. Depending on the maximal calcium conductance, neurons can be
di@erentially sensitive to input correlation and=or input rates (Fig. 2). Further mathe-
matical analysis of the adaptive STDP rule is presented elsewhere [10]. The adaptive
scheme introduces new parameters into the learning equations. These parameters deter-
mine the learning mode (correlation=rate sensitive) of the neuron and are robust against
small mistuning. Therefore, meta-plasticity controlling these second order learning pa-
rameters could enable neurons to operate in di@erentially rate and correlation sensitive
regimes.
Our adaptive scheme is akin to a number of known homeostatic mechanisms and

models. It has been suggested that intrinsic conductances and synaptic strengths are
under the control of homeostatic mechanisms [3,6,11,12]. Our work is a natural exten-
sion of learning algorithms by incorporating homeostatic principles [1]. While we also
use calcium as the mediator of homeostatic control, the biophysics of spines lead us
to use a very fast (millisecond) time-scale in contrast to the hours or days observed
for intrinsic plasticity and synaptic scaling.
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