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Abstract

Reprogramming a generative mechanism to produce a different object
is associated with a cost. Here we use the notion of algorithmic random-
ness to quantify such a cost when reprogramming networks. We identify
an asymmetry in a measure of reprogrammability, suggesting an analogy
with a thermodynamic asymmetry. The principle of maximum entropy
(Maxent) quantifies the evolution of entropy or the uncertainty during
state transitions in systems confined to an equilibrium condition. Here
we define a generalisation based on algorithmic randomness not restricted
to equilibrium physics, based on both distance to algorithmic randomness
and reprogrammability. We advance a constructive preferential attach-
ment algorithm approximating a maximally algorithmic random network.
Hence, as a refinement on classical Maxent, networks can be quantified
with respect to their distance to a maximally algorithmic random network.
Our analysis suggests that the reprogrammability asymmetry originates
from its non-monotonic relationship to algorithmic randomness. Our anal-
ysis motivates further work on the degree of algorithmic asymmetries in
systems depending on their reprogrammability capabilities.
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1 Classical Thermodynamics and related work

According to Arnold Sommerfield, quoted in Califano’s seminal book on thermo-
dynamics [5], the business of Entropy and thermodynamics is incredibly messy
and misunderstood even by researchers in the area:

Thermodynamics is a funny subject. The first time you go through
it, you don’t understand it at all. The second time you go through
it, you think you understand it, except for one or two small points.
The third time you go through it, you know you don’t understand
it, but by that time you are so used to it, it doesn’t bother you any
more.

Conventionally, and traditionally, agnostic thermodynamic Entropy is de-
fined as follows:

• a measure of statistical disorder;

• some quantity or property that increases but never decreases;

• a process that defines the direction of time;

• a measure of statistical information

Some of the problems surrounding the characterisations of the second law
and Entropy go back about a hundred years, when they were introduced, and
while most of the discussion around thermodynamics is not only legitimate but
central to the most pressing and important questions in physics, the statistical
version of Entropy has gained renewed application in areas as diverse as such
typicality analysis in the form of the so-called Principle of Maximum Entropy,
often denoted by Maxent.

Previous work has considered the question of replacing part or all of the
statistical machinery from statistical mechanics to arrive at an algorithmic ap-
proach to thermodynamics. Some authors have discussed the analogy between
algorithms and entropy. Perhaps the first example is the thought experiment
’Maxwell’s demon’, in which Maxwell suggested that the second law of ther-
modynamics might hypothetically be violated by introducing intelligence in
the form of a being capable of following an algorithm that enabled it to dis-
tinguish and choose between particles of high and low energy–taken together
with Szilard’s discussion of this paradox [7]. More recent examples combining
computation and entropy can be found in Seth Lloyd’s concept of thermody-
namic depth [12], heavily indebted to the work of Kolmogorov and Chaitin and
to Bennett’s notion of logical depth [3]; in Baez’s algorithmic thermodynamics
approach that is capable of defining an algorithmic version of algorithmic tem-
perature and algorithmic pressure, and in Crutchfield’s computational mechanics
using epsilon-machines [6].

The interest in introducing algorithmic complexity to questions of thermo-
dynamics and the second law derives from the standpoint of introducing an
additional dimension in the analysis. For example, testing or refining the sec-
ond law of thermodynamics by taking into consideration and ruling out appar-
ent disordered states that are not algorithmically random. Unlike statistical
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mechanical approaches, algorithmic complexity represents a generalisation over
Entropy that assigns lower Entropy (and thus higher causal content) to objects
that not only appear statistically simple but are also algorithmically simple
by virtue of having a short generating mechanism capable of reproducing the
causal content of a network. Without such an additional dimension, causal and
non-causal networks are collapsed into the same typical Bernoulli distribution
of Entropy in which maximal Entropy represents apparent statistical disorder,
without distinguishing between networks with a causal origin and actual ran-
dom states. Indeed, a random-looking system with maximal Entropy can be
recursively generated by a short computer program that Entropy would classify
as statistically random but not algorithmically random. An example of a fun-
damental limitation of Shannon Entropy is, for example, offered in [27], where
its fragility is exposed in a very simple example when trying to quantify the
deterministic vs random nature of exactly the same object (a recursive graph of
algorithmic randomness).

While we will show that the mathematics of changes in algorithmic complex-
ity and the reprogramming capabilities of computer programs show a thermodynamic-
like phenomenon that is similar, if not equivalent, to the mathematics of physical
thermodynamics, in this paper we do not aim to connect physical thermody-
namics to algorithmic thermodynamics directly. In other words, while we may
be able to count the number of operations to convert one computer program into
another by targeting a specific desired output from those programs, here we do
not enter into the details of the energetic cost of implementing these operations
in hardware. We believe, however, that these results, while abstract in nature,
have a fundamental character reminiscent of the guiding principles of classical
thermodynamics.

2 Thermodynamics of computer programming

A thermodynamic-like result can be found in a measure of sophistication based
on quantifying the difficulty of reprogramming an object or system depending
on its initial conditions. A measure of sophistication is a measure capable of
telling apart ‘sophisticated’ cases from simple and random objects, the latter
being assigned low complexity. Another measure of this kind is Bennett’s logical
depth [3] (or LD).

2.1 Measures of reprogrammability

Measures of reprogrammability (denoted by Pr(G) and PA(G) introduced in [26]
can differentiate between elements that may move an object or a system G to-
wards randomness σN (G) or away from randomness σP (G) as follows:

• Relative (re)programmability: Pr(G) := MAD(σ(G)))/n or 0 if n = 0,
where n = max {|σ(G)|} measures the shape of σP (G) and how it deviates
from other distributions (e.g. uniform or normal).
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• Absolute (re)programmability: PA(G) := |S(σP (G)) − S(σN (G))|/m,
wherem := max{S(σP (G)), S(σN (G))}, wherem = max(S(σP (G)), S(σN (G)))
and S is an interpolation function. This measure of reprogrammability
captures not only the shape of σP (G) but also the sign of σP (G) above
and below x = 0.

For a complete graph all nodes and all edges should have the same algorithmic-
information contribution, and thus σ(G) can be analytically derived (a flat uni-
form distribution x = log2 |V (G)| with |V (G)| the node count of G). Thus all
the nodes of a complete graph are ‘slightly’ positive (or more precisely, neutral,
if they are ‘positive’ by only log2 |V (G)|).

Figure 1: Thermodynamic reprogrammability. Top: The programs producing
simple versus random data have different reprogrammability properties. If re-
purposed to generate programs to print blocks of 0s, we only need a single
intervention in the generative program of (1), changing 1 to 0 inside the Print
instruction indicating that 200 0s be printed instead of 1s. In contrast, asking
a program that prints a random binary string s to print only 0s will require on
average |s|/2 interventions to manually change every bit 1 to 0. Random per-
turbations can be seen as the exploration of the possible paths through which
an object may evolve over time. Thus uniform random perturbations provide
a picture of the set of possible future states. This means that, in both cases,
the asymmetric cost of moving random to simple and simple to random from a
purely algorithmic perspective is also relevant in the case of naturally evolving
systems.

Another way to illustrate the phenomenon of asymmetric reprogrammabil-
ity is by considering networks as computer programs (Fig. 2) (or as produced
by computer programs). The algorithmic complexity K of a complete graph k
grows by its number of nodes because the generating mechanism is of the form
“connect all N nodes”, where N = |V (k)|. In contrast, the algorithmic com-
plexity of a random Erdös-Rényi (E-R) graph with edge density ∼ 0.5 grows
by the number of edges |E(E-R)| because to reproduce a random graph from
scratch the sender would need to specify every edge connection, as there is no
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way to compress the description.
As depicted in 2, removing a node n from a complete graph k produces

another complete, albeit smaller graph. Thus the generating program for both
k and k′ = k\n is also the relationship between k and k′, which is causal. In
contrast, if an edge e is removed from k, the generating program of k′′ = k\e
requires the specification of e and the resulting generating program of C(k′′) >
C(k), sending k towards randomness for every e randomly removed.

On the one hand, moving a complete graph towards a random graph (see
Fig. 1 and 2) requires random changes if we are only interested in reproducing
the statistical properties of the random graph, that is, its degree distribution,
requiring no previous knowledge. On the other hand, we see how a random
graph can also be easily rewired towards a complete graph by simply adding
the edges needed to make it complete. However, if the complete graph is re-
quired to exactly reproduce a specific random graph and not just its statistical
properties, then one would need to have full knowledge of the specific random
graph and apply specific changes to the complete graph, making the process
slow and requiring a lot of knowledge. Yet, moving the random graph to the
complete graph still requires the same effort as before, because the complete
graph is unique, given the fixed number of nodes. Nevertheless, moving a sim-
ple graph, such as the complete graph (see Fig. 2) by edge removal has a greater
impact on its algorithmic complexity than performing the same operation on a
random graph. Specifically, if S is a simple graph and R a random one, then
we have it that C(S) − C(S\e) > C(R) − C(R\e), i.e. the rate change from
S to (a non-specific) R is greater than in the other direction, thus imposing a
thermodynamic-like asymmetry related to the difficulty in reprogramming one
object into another according to its initial program-size complexity. The asym-
metric axis where the highest reprogrammability point can be found is exactly
the point at which C(S)− C(S\e) = C(R)− C(R\e) for a specific S and R.

It is clear then how analysing the contribution of each element to the object,
as shown in Fig. 2, has the potential to reveal the algorithmic nature of the
original object and how difficult it is to reprogram the underlying generative
computer program in order to produce a different output/graph.

A thermodynamic-like effect can be found in the (re)programmability capa-
bilities of an object. Moving random networks by edge removal is significantly
more difficult than moving simple networks towards randomness. For random
graphs, there are only a few elements, if any, that can be used to move then
slowly towards simplicity, as shown in Fig. 2. In contrast, a larger number of ele-
ments can move a simple network faster towards randomness. This relationship,
captured by the reprogrammability rate for S simple versus R random graphs,
induces a thermodynamic-like asymmetry based on algorithmic complexity and
reprogrammability.
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Figure 2: Networks as programs. All real-world networks lie between the ex-
treme cases of being as simple as a complete graph whose algorithmic complexity
K is minimal and grows by only log |V (k)|, or a random (also statistically ran-
dom and thus E-R) graph whose algorithmic complexity is maximal and grows
by its number of edges |E(E-R)|. If we ask what it takes to change the pro-
gram producing k to produce E-R and vice versa, in a random graph, any single
node or edge removal does not entail a major change in the program-size of
its generating program, which is similar in size to the random graph itself i.e.
|E(G)|. The curve shows how, without loss of generality, the reprogramming
capability of networks as computer programs produces an asymmetry imposed
by algorithmic complexity and reminiscent of traditional thermodynamics as
based on classical probability. A maximally random network has only positive
(blue) elements (Fig. 5) because there exists no perturbation that can increase
the randomness of the network either by removing a node or an edge, as it is
already random (and thus non-deterministic). Thus changing its (near) minimal
program-size length by edge or node removal is slow. However, a simple graph
may have elements that push its program-size length towards randomness. In
each extreme case (simple vs random) the distribution of sorted elements capa-
ble of pushing in each direction is shown in the form of what we call ‘signatures’,
both for edge and node removal. The highest reprogrammability point is the
place where a graph has as many elements to push it in one direction as in the
other.

3 Algorithmic information dynamics

At a fundamental level, Shannon Entropy and algorithmic complexity are very
similar. Indeed, the expected value of algorithmic entropy equals its Shannon
entropy up to a constant that depends only on the distribution [1]. That is, ev-
ery deterministic source has both low Entropy and low algorithmic randomness,
and algorithmically random objects surely have the highest Shannon Entropy.
However, in practical terms, they are fundamentally different. Nowhere in Shan-
non Entropy is there any indication as to how to estimate the underlying mass
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probability distribution needed to determine the random or deterministic na-
ture of a source, the availability of some other method for doing so being simply
assumed. Algorithmic complexity, however, does provide many methods, al-
beit very difficult ones, to estimate the algorithmic randomness of an object by
looking at the set of possible programs of at most the size of the program that
may produce the object. One popular way to approximate it has been by using
lossless compression algorithms, given that a compressed program is sufficient
proof of non-randomness.

The algorithmic (Kolmogorov-Chaitin) complexity of a string x is the length
of the shortest effective description of x. There are several versions of this notion.
Here we use mainly the plain complexity, denoted by C(x).

We work over the binary alphabet {0, 1}. A string is an element of {0, 1}∗.
If x is a string, |x| denotes its length. Let M be a universal Turing machine
that takes two input strings and outputs one string. For any strings x and y,
we define the algorithmic complexity of x conditioned by y with respect to M ,
as:

CM (x|y) = min{|p| such that M(p, y) = x}.

We match the machine M with a universal machine U , thereby allowing us
to drop the subscript. We then write C(x|y) instead of CM (x|y). We will also
write C(x) instead of C(x|λ) (where λ is the empty string).

3.1 A calculus of algorithmic change

At the core of the reprogrammability analysis is a causal calculus as introduced
in [26] based upon the change in complexity of a system subject to perturbations,
particularly the direction (sign) and magnitude of the change in algorithmic
information content C between two states of the same object, such as objects
G and G′, which for purposes of illustration can be graphs with a set of nodes
V (G) and a set of edges E(G).

The dynamics of a graph can then be defined as transitions between different
states, and one can always ask after the potential causal relationship between G
and G′. In other words, what possible underlying minimal computer program
can explain G′ as evolving over discrete time from state G?

For graphs, we can allow the operation of edge e removal from G denoted
by G\e where the difference |C(G) − C(G\e)| is an estimation of the shared
algorithmic mutual information of G and G\e or the algorithmic information
dynamics (or algorithmic dynamics in short) for evolving time-dependent sys-
tems (e.g. if G′ evolves from G after t steps). If e does not contribute to the
description of G, then |C(G)−C(G\e)| ∼ log2 |V (G)|, where |V (G)| is the node
count of G, i.e. the algorithmic dynamic difference will be very small and at
most a function of the graph size, and thus the relationship between G and G′

can be said to be causal and not random, as G′ can be derived from G′ with
at most log2 bits. If, however, |C(G)−C(G\e)| > log2 |V (G)| bits, then G and
G\e do not share causal information, and the removal of e results in a loss. In
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contrast, if C(G)−C(G\e) > n, then e cannot be explained by G alone nor is it
algorithmically not contained/derived from G, and it is therefore a fundamental
part of the description of G with e as a generative causal mechanism in G, or
else it is not part of G but has to be explained independently, e.g. as noise.
Whether it is noise or part of the generating mechanism of G depends on the
relative magnitude of n with respect to C(G) and on the original causal content
of G itself. If G is random, then the effect of e will be small in either case, but
if G is richly causal and has a very small generating program, then e as noise
will have a greater impact on G than would removing e from the description of
an already short description of G. However, if |C(G)− C(G\e)| ≤ log2 |V (G)|,
where |V (G)| is the vertex count of G, then e is contained in the algorithmic de-
scription of G and can be recovered from G itself (e.g. by running the program
from a previous step until it produces G with e from G\e).

For example, in a complete graph (see Fig. 2), the removal of any single node
leads to a logarithmic reduction in its algorithmic complexity, but the removal
of any single edge leads to an increase in randomness. The former because the
result is simply another complete graph of a smaller size, and the latter because
the deleted link would need to be described after the description of the complete
graph itself.

If a graph is evolving deterministically over time, its algorithmic complex-
ity remains (almost) constant up to a logarithmic term as a function of time
because its generating mechanism is still the same, but if its evolution is non-
deterministic and possible changes to its elements are assumed to be uniformly
distributed then a full perturbation analysis can simulate their next state, basi-
cally applying exhaustively all possible changes one step at a time. In this case,
any node/edge perturbation to a simple graph has a very different effect than
performing the same interventions to a random graph.

4 Principle of maximum algorithmic random-
ness

There is a wide range of applications in science, in particular in statistical
mechanics, as ways to study and model the typicality of cases and objects.
Indeed, determining how removed an object is from maximum Entropy has been
believed to be an indication of its typicality based on its information content.

Maximum entropy, or simply Maxent, is taken as the state of a system when
it is at its most statistically disordered—when it is supposed to encode the least
information.

We have seen here, however, that Entropy may collapse cases that are only
random-looking but are not truly so. Based on the ideas above we can, never-
theless, suggest a conceptual and numerical refinement of classical Maxent by an
algorithmic Maxent. Instead of making comparisons against a maximal Entropy
graph, by generating a MAR graph one can replace such a comparison by using
the MAR graph (shown in red in Fig. 3) by either comparing the original graph
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(denoted by G in Fig. 3) or a compressed version (denoted by minG) approxi-
matedby, for example, algorithmic graph sparsification [24]. Such comparisons
are marked as t and t′ in Fig. 3 and replace the need to make comparison with
a maximal Entropy graph that may not be algorithmic random. In Fig. 3 it
is shown how such a replacement can be made and what comparisons are now
algorithmic (t and t′) versus only statistical, which in the case of this illustra-
tion shows a graph that has been shown to produce a near maximally degree
sequence when it is of lowest algorithmic random [27] (in magenta, top right).

Figure 3: The paths to statistical and algorithmic randomness are different,
and they determine different principles for different purposes. Classical Maxent
quantifies statistical randomness but its algorithmic refinement quantifies both
statistical and algorithmic randomness. This opens up the range of possibili-
ties for moving toward and reaching a random graph, by not only considering
whether it is random-looking but also whether it is actually algorithmically
random.

4.1 Maximal Algorithmic Randomness Preferential At-
tachment (MARPA) algorithm

Once the number of nodes is fixed, a MAR graph is of density 0.5, just like
a classical E-R graph. This is because the highest algorithmic complexity is
reached when K(G) ∼ |E(G)| is maximised exactly between the 2 extreme cases
in which fully disconnected and complete graphs reach minimum complexity
K(G) ∼ |V (G)|.

This means that, without loss of generalisation to other objects, a Maximal
Algorithmic Random graph G is an Erdös -Rényi (E-R) graph that is algo-
rithmically random, i.e. whose shortest possible computer description is not
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(much) shorter than |E(G)|, where |E(G)| is the number of edges of G; or,
|E(G)| − C(G) < c.

MARPA seeks to maximise the information content of a graph G by adding
new edges (or nodes) at every step. The process approximates a network of
a given size that has the largest possible algorithmic randomness and is also
an Erdös-Rényi (ER) graph. An approximation of a ‘Maximal’ Algorithmic-
Random (MAR) graph can be produced as a reference object whose generating
program is not smaller than the network (data) itself and can better serve in
maximum (algorithmic-) entropy modelling.

MARPA allows constructions of a maximally random graph (or any object)
by edge preferential attachment, in such a manner that randomness increases
for any given graph. Let G be a network and C(G\e) the information value of
e with respect to G such that C(G)−C(G\e) = n. Let P = {p1, p2, . . . , pn} be
the set of all possible perturbations. P is finite and bounded by P < 2|E(G)|
where E(G) is the set of all elements of G, e.g. all edges of a network G. We
can find the set of perturbations e′ in P such that C(G) − C(G\e′) = n′ with
n′ < n. As we iterate over all e in G and apply the perturbations that make
n′ < n, for all e, we go through all 2|E(G)| possible perturbations (one can
start with all |E(G)| single perturbations only) maximising the complexity of
G′ = max{G|C(G)− C(G\e) = {max among all p in P and e ∈ G}.

Figure 4: While many objects can look statistically random, there are less that
are actually algorithmic random and finding approximations to it will converge
given that algorithmic complexity is upper semi-computable meaning one can
approximate it from above hence tighter bounds for a MAR graph can always
be found with greater computational power. This algorithmic version expands
and improves over classical Maxent which is based classical information theory
and over Shannon Entropy.

The purpose of MARPA (see Fig. 4) is to estimate the algorithmic com-
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plexity of an object by traditional means such as popular lossless compression
algorithms (e.g. LZW), which are limited but are an improvement over En-
tropy [18] and go in the algorithmic direction, or more sophisticated means can
be used as introduced in in [10, 15, 20, 25, 23] based on algorithmic probability.

Alternatively, there is a configuration of all edges in G that maximises the
algorithmic randomness of G. Let such a maximal complexity be denoted by
maxC(G). Then we find the sequential set of perturbations {P} such that
maxC(G) − C(G) = 0, where C(G) −maxC(G) is a measure, related to ran-
domness deficiency, of how removed G is from its (algorithmic-)randomized
version maxC(G) (notice that C(G) is upper bounded by maxC(G), and so the
difference is always positive).

Theorem 1. (Existence) There is an E-R graph that is not algorithmically
random.

Proof. We can build an E-R graph by using a pseudo-random generator such
that the edge density of the graph is exactly 0.5, and having all the required
statistical properties found in any typical E-R graph, yet being by definition of
low algorithmic complexity because a pseudo-random generator is a computer
program of fixed length, exhibiting an E-R graph that is not algorithmically
random.

Corollary 2. (Not uniqueness) There is more than one E-R graph that is not
algorithmically random.

It follows then that an E-R graph with density 0.5 may be of maximal
entropy, but of high or low algorithmic randomness, i.e. either recursively gen-
erated or not.

One can also consider the absolute maximum algorithmic-random graph,
that we will denote by maxC(G). maxC(G) is a graph comprising the same
number of nodes but with an edge rearrangement operation such that C(G) <
C(max(G)) ≤ 2k, where k = (|E(G)|(|E(G)|−1))/4 is the maximum number of
edges in G divided by 2 where at edge density 0.5 it reaches maximal algorithmic
randomness. The process of pushing a given network thus approximates a target
network of a size that has the greatest possible algorithmic randomness and is
also an Erdös-Rényi (E-R) graph. The pseudo-code is as follows:

1. Start with graph G.

2. Perform on G to produce G′ such that C(G′) > C(G).

3. G := G ∪ ej′
4. Repeat 1 until final target size and quality of algorithmic randomness

desired (e.g. by rate divergence from a statistical random graph).

Operations to produce G′ can be of many types, edge rearrangement, ede
addition or edge removal.

Notice that the algorithm can also start from empty, for which one would be
generating approximations to all MAR graphs (for that operation) of all sizes
from the bottom up.
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Figure 5: Generating approximations to small MAR graphs by using methods
introduced in [19, 20, 25, 23]. The progression of the complexity estimations
(top) indicates the progression. For complete graphs, their estimation grows log-
arithmic as theoretically predicted. Between E-R and MAR graphs a difference
is shown for the same number of nodes and edges with their values diverging
(see also Fig. 5) numerically showing that not all E-R graphs are also the highest
algorithmic random as they can be identified to have been produced by short
generative programs. Bottom plot: Estimations of the complexity of a complete
graph, for any method, including Shannon Entropy and popular lossless com-
pression algorithms (such as LZW, Compress) will only grow logarithmically as
predicted by the theory, here depicted are values of complexity as approximated
by methods based on algorithmic probability as introduced in [20, ?, 25, 23]. In
contrast, E-R are of maximal Entropy by definition yet they are not necessarily
algorithmic random. The greatest approximations to maximal algorithmic ran-
dom graphs (MAR) are shown for the same number of nodes than the complete
and E-R graphs. The jumps in the plot are explained by a bounded and con-
vergent error coming from a partition function used in the implementation of
the estimating method and fully explained in [25]. The trend of the functions
are, however, not only clear but in line with theoretical expectations.
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Approximating a MAR candidate is computationally very expensive, with
exponential time complexity in O(2n

2

) because at every step all possible at-
tachments have to be tested and evaluated (i.e. all possible permutations of the
adjacency matrix of size n × n). But small MAR graphs and minor but fun-
damental improvements over only random-looking graphs, are computationally
feasible.

Unlike some E-R graphs, MAR graphs cannot, in principle, be generated by
computer programs of much smaller size than the edge count of the networks
themselves. The intuition behind the construction of a MAR graph is that the
shortest computer program (measured in bits) that can produce the adjacency
matrix of a MAR graph, is of about the size of the adjacency matrix and not
significantly shorter.

4.2 Numerical examples

Using methods based on algorithmic probability as introduced in [20, 19] and
[15, 25, 23] moves simple and complex networks towards and away from random-
ness. The reversed history of the structure found in a random graph provides
an alternative path for moving networks and graphs towards randomness. The
structure found indicates what must be deleted to push an E-R graph towards
a maximally algorithmic random (MAR) graph.

In Fig. 5 it is shown how the complexity of graphs with exactly the same
number of nodes and edges that comply with the properties of an E-R graph
(e.g. edge density 0.5) do not comply with the property of maximum algo-
rithmic randomness and their values will diverge for typical randomly chosen
examples of growing graphs by node count. It is also shown how the numer-
ical approximations, both for simple (complete) and MAR graphs follow the
theoretical expectations.

5 Discussion and conclusion

We have established parallels between computer programming as based on the
dynamics of computer programs to be repurposed and emphasising a thermodynamic-
like phenomena when considering rewiring along an axis defined by algorithmic
randomness. The lack of symmetry in the operation of rewiring networks with
regards to algorithmic randomness implies a direction or an asymmetry. We
have also introduced a principle akin of maximum entropy but based on al-
gorithmic complexity. The principle of maximum algorithmic randomness can
therefore be viewed as a refinement of Maxent together with algorithms to esti-
mate algorithmic random graphs, including some small cases which we numeri-
cally calculated and included in this study.

13



Acknowledgements

H.Z. wishes to acknowledge the support of Swedish Research Council (Veten-
skapsr̊adet) grant No. 2015-05299.

References

[1] A. Teixeira, A. Matos, A. Souto, L. Antunes, Entropy 13 (3), pp. 595–611,
2011.

[2] J.C. Baez, M. Stay, Algorithmic Thermodynamics, Computability of the
Physical, Mathematical Structures in Computer Science, 22, 771–787,
2012.

[3] C.H. Bennett, Logical Depth and Physical Complexity, in R. Herken, The
Universal Turing Machine: a Half-Century Survey, Oxford University
Press, pp. 227-257, 1988.
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