
Resource
An Atlas of Combinatorial
Transcriptional Regulation
in Mouse and Man
Timothy Ravasi,1,4,5,23 Harukazu Suzuki,1,2,3,6,23 Carlo Vittorio Cannistraci,1,4,5,7,8,9,23 Shintaro Katayama,1,2,6,23

Vladimir B. Bajic,1,5,10,23 Kai Tan,1,4,24 Altuna Akalin,1,11 Sebastian Schmeier,1,10 Mutsumi Kanamori-Katayama,1,2,6

Nicolas Bertin,1,2,6 Piero Carninci,1,2,6 Carsten O. Daub,1,2,6 Alistair R.R. Forrest,1,2,6,12 Julian Gough,1,13

Sean Grimmond,1,14 Jung-Hoon Han,1,15 Takehiro Hashimoto,1,2,6 Winston Hide,1,10,16 Oliver Hofmann,1,10

Atanas Kamburov,1,17 Mandeep Kaur,1,5 Hideya Kawaji,1,2,6 Atsutaka Kubosaki,1,2,6 Timo Lassmann,1,2,6

Erik van Nimwegen,1,18 Cameron Ross MacPherson,1,5 Chihiro Ogawa,1,2,6 Aleksandar Radovanovic,1,5 Ariel Schwartz,1,4

Rohan D. Teasdale,1,14 Jesper Tegnér,1,19,20 Boris Lenhard,1,11 Sarah A. Teichmann,1,15 Takahiro Arakawa,1,2,6

Noriko Ninomiya,1,2,6 Kayoko Murakami,1,2,6 Michihira Tagami,1,2,6 Shiro Fukuda,1,2,6 Kengo Imamura,1,2,6

Chikatoshi Kai,1,2,6 Ryoko Ishihara,1,2,6 Yayoi Kitazume,1,2,6 Jun Kawai,1,2,6 David A. Hume,1,21 Trey Ideker,1,4,22,*
and Yoshihide Hayashizaki1,2,3,6,*
1The FANTOM Consortium
2RIKEN Omics Science Center
3General Organizers
4Departments of Medicine and Bioengineering

University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
5Red Sea Integrative Systems Biology Laboratory, Division of Chemical & Life Sciences and Engineering, Computational Bioscience
Research Center, King Abdullah University for Science and Technology, Jeddah, Kingdom of Saudi Arabia
6RIKEN Omics Science Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho Tsurumi-ku Yokohama, Kanagawa, 230-0045 Japan
7Department of Mechanics, Politecnico di Torino, I-10129 Turin, Italy
8Proteome Biochemistry, San Raffaele Scientific Institute, 20132 Milan, Italy
9CMP Group Microsoft Research, Politecnico di Torino, I-10129 Turin, Italy
10South African National Bioinformatics Institute, University of the Western Cape, Private Bag X17, Bellville, 7535 South Africa
11Bergen Center for Computational Science, Høyteknologisenteret Thormøhlensgate 55, N-5008 Bergen, Norway
12The Eskitis Institute for Cell and Molecular Therapies, Griffith University, QLD 4111, Australia
13Department of Computer Science, University of Bristol, Merchant Venturers Building, Woodland Road, Bristol, BS8 1UB, UK
14Australian Research Council Special Research Centre for Functional and Applied Genomics, Institute for Molecular Bioscience,

The University of Queensland, St. Lucia, QLD 4072, Australia
15MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
16Biostatistics Department, Harvard School of Public Health, 655 Huntington Avenue, Boston, MA 02115, USA
17Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Ihnestr, D-14195 Berlin, Germany
18Biozentrum, University of Basel, and Swiss Institute of Bioinformatics, Klingelbergstrasse 50/70, CH-4056 Basel, 4056, Switzerland
19Computational Medicine Group, Atherosclerosis Research Unit, Center for Molecular Medicine, Department of Medicine, Karolinska

Institutet, Karolinska University Hospital Solna SE- 171 76 Stockholm, Sweden
20Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping, Sweden
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SUMMARY

Combinatorial interactions among transcription
factors are critical to directing tissue-specific gene
expression. To build a global atlas of these combina-
tions, we have screened for physical interactions
among the majorityof humanand mouseDNA-binding
transcription factors (TFs). The complete networks
contain 762 human and 877 mouse interactions. Anal-
ysis of the networks reveals that highly connected TFs
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are broadly expressed across tissues, and that
roughly half of the measured interactions are
conserved between mouse and human. The data
highlight the importance of TF combinations for deter-
mining cell fate, and they lead to the identification of
a SMAD3/FLI1 complex expressed during develop-
ment of immunity. The availability of large TF combi-
natorial networks in both human and mouse will
provide many opportunities to study gene regulation,
tissue differentiation, and mammalian evolution.
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INTRODUCTION

Tissue specificity is enabled by spatial and temporal patterns of

gene expression which in turn are driven by transcriptional regu-

latory networks (Naef and Huelsken, 2005; Zhang et al., 2004).

Such networks involve assemblies of control proteins, such as

DNA-binding transcription factors (TFs) connected to the sets

of promoters of genes they induce or repress (Tan et al.,

2008b). Typically, TFs do not act independently but form

complexes with other TFs, chromatin modifiers, and cofactor

proteins, which bind together and assemble upon the regulatory

regions of DNA to affect transcription (Fedorova and Zink, 2008).

Mapping the combinatorial interactions among TFs would repre-

sent a significant leap forward in our understanding of how tissue

specificity is determined.

In recent years, a variety of genome-scale technologies have

been introduced which allow mammalian transcriptional regula-

tory networks to be investigated at high resolution and depth.

Many such studies have inferred transcriptional networks

through mRNA expression profiling combined with genome-

wide active promoter mapping and promoter motif analysis

(e.g., Suzuki et al., 2009). These data have been supplemented

with fluorescence-activated cell sorting (FACS) (Shachaf et al.,

2008) or reverse transcriptase quantitative polymerase chain

reaction (qRT-PCR) (Roach et al., 2007; Wen et al., 1998).

Another technology that has revolutionized the study of tran-

scriptional networks is chromatin immunoprecipitation (ChIP),

which when coupled with microarrays or high-throughput

sequencing (Johnson et al., 2007), enables genome-wide

measurements of TF binding locations in vivo. A complementary

approach is the protein binding microarray (PBM) (Berger et al.,

2008), which rapidly characterizes the complete DNA sequence

repertoire bound by a TF in vitro. ChIP and PBMs have been

applied to map transcriptional networks in a variety of human

cell types, including stem cells (Cole et al., 2008; Lee et al.,

2006) and lymphocytes (Marson et al., 2007; Schreiber et al.,

2006), and to characterize the binding motifs of many mamma-

lian TF families (Berger et al., 2008).

Although these studies have led to the construction of very

large models of transcriptional networks, they are based on

experiments that largely treat each TF in isolation. For instance,

ChIP-chip measures binding locations for one TF at a time,

although separate profiles for several TFs can be later combined

into networks (Mathur et al., 2008). However, it is well known that

the transcriptional output of a gene is due to the joint activity of

many TFs whose binding and activation are highly interdepen-

dent. This cooperation is often mediated by direct physical

contact between two or more TFs, forming homodimers, hetero-

dimers, or larger transcriptional complexes. In fact, it has been

estimated that approximately 75% of all metazoan TFs heterodi-

merize with other factors (Walhout, 2006). Newman and Keating

used protein arrays to reveal a network of severalhundreddomain

interactions among the bZIP TF family alone (Grigoryan et al.,

2009). Other studies have successfully assembled large networks

of protein interactions using technologies such as coimmunopre-

cipitation and two-hybrid screening (Park et al., 2005; Yu et al.,

2008), but to date these have not been systematically applied to

map networks of transcription factors. Thus, a clear and imme-
diate task is to map which combinations of TFs act together

and how these combinations lead to modes of regulation that

are not evident when each factor is considered separately.

Toward this goal, we have pursued an integrative approach to

systematically map combinatorial interactions among mammalian

TFs. Our approach draws from two systems-wide data sets gener-

ated inbothhumanandmouse:physicalprotein-protein interaction

among TFs measured using the mammalian two-hybrid (M2H)

system and quantitative TF expression levels measured across

tissues by qRT-PCR. Analysis of these data identifies a database

of TF complexes and networks that can be used to elucidate the

regulatory programs behind developmental processes and

disease. Chief among these results is a network of homeobox

TFs, which we show can predict tissue type in mammals.

RESULTS

Mammalian Transcription Factor Protein-Protein
Interaction Networks
We compiled a list of 1988 human and 1727 mouse DNA-binding

transcription factors using information from public gene data-

bases (Table S1). Of these, 1222 and 1112 cDNA clones were

captured, in human and mouse, respectively, that could be

verified to express full-length protein (Table S1). All pair-wise

combinations of TF cDNAs were systematically screened for

protein-protein interaction using the M2H system (Suzuki et al.,

2001). Bait and prey constructs were cotransfected in CHO-K1

cells, and the interaction of the expressed proteins was monitored

by luciferase reporter activity. This process identified 762 and

877 high-stringency TF-TF interactions in human and mouse,

respectively (Tables S2 and S3). The use of M2H meant that the

human and mouse TF interactions were measured in near-phys-

iological conditions including mammalian posttranslational and

other modifications. The web-accessible atlas of all pairwise TF

interactions mapped by M2H is available at http://fantom.gsc.

riken.jp/4/tf-ppi. This resource is searchable by gene ID or func-

tion and provides network visualizations as well as raw lists of

interactions.

To estimate the sensitivity of the screening approach (the

percentage of all true TF-TF interactions that are identifiable by

M2H), we assembled a gold-standard set of high-confidence

TF-TF dimers reported in previous literature. To obtain this gold

standard, a set of 289 mouse TF-TF interactions were downloaded

from publicdatabasesand further curated toselect 91 interactions

supported by two or more independent lines of evidence or

primary experimental reports (Supplemental Information and

Table S3). We found that M2H recovered protein-protein interac-

tions for 23 of these heterodimers, yielding a sensitivity of 25%.

Apart from sensitivity, we were also interested in precision (the

percentage of reported interactions that are true, equal to 1� false

discovery rate). Precision is more difficult to estimate than sensi-

tivity, because it requires a gold standard that contains not only

known interactions but also a large number of protein pairs that

are known to be noninteracting. Since such data are not available,

we sought to confirm the M2H positives using in vitro pull-down

assays as a second technology. Of 34 randomly chosen mouse

M2H positives, 18 (53%) were detected by in vitro pull-down

(Table S4). This second assay is not a gold standard, such that
Cell 140, 744–752, March 5, 2010 ª2010 Elsevier Inc. 745
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Figure 1. TF Expression versus Connectivity

(A) Distribution of tissue specificity for all TFs. The green curves fit the bi-modal

distribution as a mixture of two Gaussians.

(B) Scatterplot of tissue specificity (y axis) versus number of neighbors (x axis).

Red points are defined as specifier hubs and blue points as facilitator hubs

(Table S1).

(C) TFs are binned into four groups of approximately equal size based on their

number of interactions (x axis). The tissue specificity distribution of each bin is

represented by stacks of colored segments. Segment height represents the

fraction of TFs in an expression group (left y axis), and segment color repre-

sents the number of tissues in which TFs in that group are expressed. The

black line displays the median TSPS of each group (right y axis). The results

shown are for human M2H interactions supplemented with TF-TF interactions

downloaded from literature (Table S2); similar results are obtained for mouse
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failure to confirm an M2H positive by in vitro pull-down does not

negate the corresponding protein-protein interaction, which might

be transient or unstable under conditions of the pull-down.

However, this analysis does show that the M2H network recovers

approximately one quarter of known TF heterodimers and that the

majority of M2H interactions can be replicated by a second tech-

nology. These figures are consistent with high quality interaction

networks published elsewhere recently (Yu et al., 2008).

We now describe four case studies that use the atlas to

address questions of how transcriptional control contributes to

tissue specificity in mammals. These case studies cover: (1) inte-

gration of the atlas with quantitative TF abundance levels across

human and mouse tissues, revealing a prominent relationship

between TF connectivity and expression; (2) identification of

a subnetwork of homeobox factors that is highly discriminative

and predictive of tissue type; (3) a proteome-wide map of

conserved transcriptional complexes in mammals, many of

which have tissue-specific expression patterns that are also

highly conserved; and (4) examples of how the atlas can be

used to recognize and further explore TF heterodimers in control

of tissue differentiation.
Integration of TF Interaction and Expression Reveals
Insights into Network Structure
In order to physically interact, TFs must be coexpressed in the

same tissue or cell type. To investigate the tissue specificity of

TF interactions, we obtained quantitative mRNA profiles of all

TFs using qRT-PCR across a panel of 34 human and 20 mouse

tissues (Table S5). For each TF, we computed a tissue-specificity

score (TSPS), which uses relative entropy to quantify the extent

to which the observed TF expression pattern departs from the

null distribution of uniform expression across all tissues (Exper-

imental Procedures, Table S1, and Table S5). Examination of

tissue specificity over all TFs suggested a mixture of two distinct

TF populations, with one population of TFs having widespread

tissue expression (TSPS < 1) and a second smaller population

at higher tissue specificity (TSPS R 1, Figures 1A and 1B). We

called the TFs with widespread expression ‘‘facilitators,’’ based

on the hypothesis that they facilitate transcriptional programs

across many different tissues, and we called those with high-

specificity tissue ‘‘specifiers.’’ For example, the TFs JUN and

FOS, which form the AP-1 heterodimer, were classified as strong

facilitators owing to low TSPS (average around 0.6; Table S5).

This score is consistent with the classical view of AP-1 as a broad

activator of expression in major cellular processes including

differentiation, proliferation, and apoptosis (Ameyar et al.,

2003). In contrast, many TFs with known roles in tissue differen-

tiation were classified as ‘‘specifiers,’’ such as MYOD1, which

regulates muscle development and members of the Paired box

(Pax) TF family involved in tissue morphogenesis. The observed

bimodal distribution of TF expression is in agreement with recent

findings from a meta-analysis of publicly-available expression

profiles in humans (Vaquerizas et al., 2009).
interactions or for M2H interactions only (Table S3; see also Table S4 for con-

firmation of the M2H positives using in vitro pull down assays as a second

technology).



Figure 2. A Homeobox Network Associated

with Tissue Differentiation

(A) Performance of tissue separation with (green

solid curve) or without (black solid curve) in-

formation about TF protein-protein interactions

(Table S2). The Bezdek cluster validity index (CVI,

y axis) is a measure of separation between the

four tissue classes. CVI is plotted for increasing

kernel standard deviation (x axis), the only tuning

parameter of the ncKPCA algorithm used for tissue

separation. Performance was also evaluated for TF

pairs predicted to cooperate based on co-occur-

rence of TF binding sites (yellow curve) (Yu et al.,

2006) as well as for random features (dashed

curves).

(B) Tissue dimensionality reduction by ncKPCA

into the first two Principle Components (PCs),

considering features derived from the six most

informative TF-TF interactions. Points represent

tissues derived from ectoderm (green), mesoderm

(yellow), or endoderm (red), or a monocyte cell line

(blue). Gray circles denote four clusters obtained

by affinity propagation in the (PC1, PC2) space,

with each point connected to its cluster exemplar.

This figure is related to Figure S1.

(C) Informative subnetwork containing six interac-

tions (green) used to generate features for tissue

separation. Also shown are the immediate network

neighbors of the interacting TFs.

(D) CVI for the separation of stem cells (Table S6)

using Sammon Mapping. Four feature sets are

shown: the original expression values from Muller

et al., the expression of the TFs only, the entire

set of TF protein-protein interactions, or the fea-

tures corresponding to the six interactions in panel

C (5* indicates that the interaction HOXA9-MEIS1

was not considered because HOXA9 expression

was not measured in the stem cell investigation

of Muller et al.).

(E) Stem cell dimensionality reduction obtained by

Sammon Mapping using the panel C interaction

set. Points represent stem cell lines derived from

ectoderm (green), mesoderm (yellow), or endo-

derm (red).

(F) Good performance of tissue separation

observed with two different algorithms. ncKPCA

(green curve) and Sammon Mapping (blue curve). CVI (y axis) is plotted against the number of PC2-ranked interactions used to separate tissues (x axis). In

both cases, the maximum performance is observed using the first six PC2-ranked interactions to separate tissues.
Examining the relationship between expression and interac-

tion, we observed a strongly negative Pearson correlation of

�0.79 between a TF’s number of protein interactions and its

TSPS. That is, we found that TFs with few interactions tend to

be expressed in a tissue-specific pattern while TFs with many

interactions—so called network ‘‘hubs’’ (Jin et al., 2007;

Yu et al., 2006)— tend to be expressed across many tissues

(Figure 1C). The observed correlation was highly significant, as

assessed by 10,000 random trials in which the assignment of

expression values to TFs was permuted (r = 0.00 ± 0.03). Such

widespread expression of TF hubs bears some similarity to

previous studies of TF-DNA (transcriptional) interactions, in

which the number of promoters bound by a TF was found to

correlate with the number of growth conditions in which it is ex-

pressed (Luscombe et al., 2004; Zhou et al., 2008).
A Homeobox Network Associated with Specification
of Tissue Type
Combinatorial interaction among transcription factors is critical

for differentiation of tissues (Davidson et al., 2002). To identify

TF interaction networks involved in tissue development, we clus-

tered the TF expression profiles across the 34 human tissues

(see above) using two approaches: a basic tissue separation

approach using expression levels only, and a ‘‘network-trans-

formed’’ approach in which we exploited as features the differ-

ences in expression level across TF-TF interactions, as sug-

gested by a recent study (Taylor et al., 2009). We found that

network transformation resulted in an increased separation of

tissues into four well-formed clusters (a 38% increase, Figures

2A and 2B and Figure S1). These corresponded to well-defined

tissue classes according to embryonic origin: ectoderm
Cell 140, 744–752, March 5, 2010 ª2010 Elsevier Inc. 747



(including central nervous system or CNS), mesoderm, endo-

derm, and cell lines. Strikingly, only six TF interactions were suffi-

cient to classify tissue type with a high accuracy of 82% (Figures

2B and 2C). Moreover, we found that these interactions fell into

the same small network neighborhood defined by a subnetwork

of 15 proteins (Figure 2C). This subnetwork was highly enriched

for homeobox factors (7/15 proteins) many of which have, at

least individually, known roles in tissue-type specification during

development (Duverger and Morasso, 2008). Although we ex-

pected that many of these TFs would be tissue specifiers, we

found that 10 of the 15 were in fact facilitators expressed broadly

across most tissue types. These results support the notion that it

is the interactions among transcription factors more than their

expression levels alone that help to determine tissue identity.

Given the ability of the homeobox-related subnetwork to

separate tissues based on their embryological origin, we sought

to test whether this subnetwork was also able to discriminate

the embryological origin of different types of stem cells. Under-

standing the transcriptional events that commit stem cells to

different tissue lineages is one of the major goals of stem cell

research (Jaenisch, 2009). For this purpose, we downloaded

the publicly-available gene expression profiles of 219 stem

cell lines derived from a variety of different tissue types (Muller

et al., 2008) (Table S6 lists the tissue origin of each cell line).

As shown in Figures 2D and 2E, the homeobox-related subnet-

work was indeed able to separate these stem cell expression

profiles by ectoderm, mesoderm, and endoderm origin. This

separation was 33% better than that achieved using other

methods (Figure 2D). This analysis suggests that the good

performance of the homeobox-related subnetwork (Fig-

ure 2C) is not the result of overfitting to a specific set of tis-

sue expression profiles. Moreover, it provides further evidence

that the combinatorial interactions revealed in this subnetwork

play an important role in cell commitment to different tissue

lineages.

Conservation of TF Complexes across Mammalian
Evolution
A strong line of evidence that a particular TF interaction is func-

tional is observation of cross-species conservation of that inter-

action. For each human TF, we used the InParanoid algorithm

(O’Brien et al., 2005) to identify its set of amino acid sequence or-

thologs in mouse. We then identified pairs of TFs for which the

orthologs were observed to interact in both species. In total,

80 conserved interactions were identified between the M2H

data of human and mouse—this number rose to 305 conserved

interactions when supplementing M2H data with literature (Table

S2 and Table S3). Considering this number together with the

M2H sensitivity and precision estimates above, we computed

the fraction of conserved TF-TF interactions between human

and mouse to be in the range of 34%–64% (depending on the

value one uses for the precision of M2H screening, see Supple-

mental Information).

We next used NetworkBLAST (Kalaev et al., 2008) to examine

how these conserved interactions clustered within the network,

i.e., whether they fell within common subnetworks suggestive

of conserved transcriptional complexes. In total, 68 conserved

complexes were identified which contained approximately six
748 Cell 140, 744–752, March 5, 2010 ª2010 Elsevier Inc.
TFs on average. Examples of conserved complexes are shown

in Figures 3A–3F; the complete set is included as part of the atlas

at http://fantom.gsc.riken.jp/4/tf-ppi. Eighty percent of the

conserved complexes were enriched for gene ontology biolog-

ical process annotations. These conserved TF complexes

provide a first-draft map of the combinatorial regulatory circuits

common to mammals.

The conserved complexes also suggest combinations of het-

erodimers in specific biological contexts for future investigation.

Figure 3C shows a conserved complex of six TFs in which five

are broadly expressed across all tissues in both species, and

one TF (LHX2) is restricted to frontal cortex also in both species

(Table S5). Figures 3D–3F show three conserved TF complexes

consisting of proteins coexpressed in cerebellum. Messenger

RNA in situ hybridization analysis of mouse cerebellum, obtained

from the Allen Brain Atlas (Lein et al., 2007), confirms that the in-

teracting TFs are indeed expressed in cerebellum and that this

localization is cerebellum-specific at single-cell resolution.

FLI1 and SMAD3 Form a Heterodimeric Complex
Associated with Monocyte Development
The vast majority of TF-TF interactions recorded in the atlas

represent new combinations not yet documented in the litera-

ture. Thus, an important question is how particular interactions

of interest should be carried forward in the laboratory to identify

new transcriptional heterodimers and to study their regulatory

functions. As an example use of the atlas to identify tissue-

restricted heterodimers, four interactions were selected for

which at least one TF had moderate to high tissue specificity

(Figure 4A). For example, Peroxisome Proliferator-Activated

Receptor Gamma (PPARG) is expressed in adipose, skin, lung,

and breast, with little or no expression in other tissues . Although

its interaction partner, Retinoid X Receptor Beta (RXRB), is ex-

pressed ubiquitously the interaction requires the presence of

both TFs and thus remains tissue restricted (Table S5).

Given these tissue-restricted TF combinations, a first step

was to characterize and further establish their physical interac-

tion. We used bidirectional in vitro pull-down assays to examine

whether each TF pair could exhibit strong, stable, and direct

physical binding under the conditions of the pull-down, inde-

pendent of other proteins or factors. As shown in Figure 4B,

all four TF interactions were recapitulated as in vitro pull-downs,

making them strong candidates for functional transcriptional

complexes.

Next, we sought detailed information on the dynamic expres-

sion of a TF combination in the tissue(s) in which both TFs were

active. One of the identified TF interactions was between Friend

Leukemia virus Integration 1 (FLI1) and SMAD family member

3 (SMAD3), in which FLI1 was restricted primarily to macro-

phage-related tissues (THP-1, spleen, lymph) while SMAD3

was found to be expressed more generally (Figure 4A and

Table S5). Thus, we investigated the role of the FLI1/SMAD3

interaction in macrophage differentiation, using qRT-PCR to

record a time-course of expression of both TFs during differen-

tiation of THP-1 monoblasts to monocytes following stimulation

by PMA. Strikingly, both TFs were coordinately downregulated

at early time points during differentiation (Figure 4C). These

data are supported by previous findings in which SMAD3 has

http://fantom.gsc.riken.jp/4/tf-ppi


Figure 3. TF Subnetworks Conserved

across Human and Mouse

(A–F) Examples of TF subnetworks conserved in

specific tissues. Human proteins are circles and

mouse proteins are diamonds, colored in

increasing shades of red representing increasing

tissue specificity (TSPS), (Table S1). Stars indicate

hubs. Horizontal dashed links indicate protein or-

thology relationships across species, whereas

solid links indicate protein-protein interactions

within species (red links are newly-discovered,

black links are literature-curated).

(D–F) Conserved TF subnetworks that are specific

to cerebellum, as first indicated by qRT-PCR (red

nodes and Table S5) and subsequently confirmed

by in situ hybridization to mouse brain tissue

samples. All conserved subnetworks are available

at http://fantom.gsc.riken.jp/4/tf-ppi.
been shown to regulate cell proliferation through TGF-b1

signaling (Meran et al., 2008), and FLI1 has been shown to re-

activate NOTCH pathways resulting in p53-dependent cell-cycle

arrest (Ban et al., 2008). A hypothesis for future work is that FLI1/

SMAD3 may function together as a repressor complex that

controls cell proliferation during differentiation (Figure 4D).

DISCUSSION

In this study, we have mapped an atlas of combinatorial interac-

tions among the majority of human and mouse TFs. This work

makes available a number of significant resources for the

biomedical community, including a database of over 1600

human or mouse TF-TF interactions (Tables S2 and S3) and

quantitative TF expression measurements across human and

mouse tissues (Table S5). The data highlight conserved TF

subnetworks whose patterns of interaction and tissue specificity

suggest transcriptional complexes in control of tissue identity.

Our analysis, derived by the integration of these datasets,

supports a model whereby the transcriptional network structure

is dominated by facilitator TFs expressed broadly across tissues
Cell 140, 744–7
(Figure 1 and Table S1). The implication is

that tissue identity is not determined by

tissue-restricted TFs, but relies on

tissue-restricted interaction among TFs.

Each TF may be expressed in a variety

of tissues, but it is only where two TFs

are coexpressed and colocalized that an

interaction, and its functional conse-

quences, may occur. In this model,

tissues restricted TFs (specifiers) tend to

interact with TFs that are broadly-ex-

pressed (Figure 1), increasing the number

of possible combinatorial events only in

certain tissues or during tightly-regulated

developmental processes. In support of

this interaction-centric model, we identi-

fied a subnetwork of just 15 TFs that

was sufficient to confer maximal separa-
tion of tissues and stem cell lines into the three germ layers asso-

ciated with embryogenesis (Figure 2). This network significantly

outperformed tissue separation based on the expression of indi-

vidual factors alone. Two thirds of these ‘‘germ layer’’ factors

were facilitator TFs expressed in the majority of tissues.

The theme of specificity through interaction is also evident

among the conserved TF subnetworks (Figure 3). The majority

of TFs in these networks are broadly expressed, and it is the

minority of TFs that confer tissue specificity. Further evidence

comes from the four identified TF complexes we validated and

placed into biological contexts (Figure 4 and Table S5). Although

they were not selected on this basis, at least three of these

complexes involve combination of a tissue restricted TF (i.e.,

NR3C1, PPARG, FLI1) with a partner whose expression pattern

is more widespread (RXRB, RXRB, SMAD3).

The availability of large TF-TF combinatorial interaction

networks in both human and mouse will provide many opportu-

nities to study network conservation and divergence over the

course of mammalian evolution. Debate is still ongoing regarding

the rate at which various types of molecular networks evolve.

Here, we found that conservation between human and mouse
52, March 5, 2010 ª2010 Elsevier Inc. 749
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Figure 4. Physical and Functional Explora-

tion of Tissue-Restricted Heterodimers

(A) Four heterodimers that display combinatorial

logic across tissues. The heatmap shows the

mRNA copy number of each heterodimeric TF

across tissues measured by qRT-PCR (Table S5).

(B) In vitro pull down experiment shows clear bidi-

rectional physical interaction for each of the four

heterodimers as detected originally by M2H assay

(Table S2).

(C) mRNA levels of FLI1 and SMAD3 during THP-1

differentiation induced by PMA, as measured by

qRT-PCR.

(D) Graphical representation of FLI1/SMAD3

control during myeloid differentiation.
TF-TF interactions was moderate (Figure 3), in the range of 34 to

64 percent. In contrast, a recent comparison of transcriptional

(protein-DNA) interactions reported that this type of network is

highly divergent over even very short evolutionary timescales

(Tuch et al., 2008). A comparison of genetic networks (synthetic

lethal and epistatic interactions) also found extreme rates of

divergence (Roguev et al., 2008). On the other hand, protein-

protein interactions, especially those that form major structural

and functional components of the eukaryotic cell, were found

to be highly conserved (Tan et al., 2008a). Protein-protein inter-

actions forming transcriptional complexes, as we have studied

here, appear to be conserved at an intermediate level some-

where between the extremes. That is, TF-TF complexes are likely

more mutable than the major complexes of cell structure and

central metabolism, but much less so than the rapid rewiring

that appears to take place in networks of transcription factor /

promoter binding.

It has long been appreciated that gene regulation involves

combinatorial interactions among transcription factors. The

contribution of the present work is to map, on a global scale,
750 Cell 140, 744–752, March 5, 2010 ª2010 Elsevier Inc.
precisely what many of these connec-

tions are. With few exceptions, almost

all of the uncovered connections are

undocumented in the existing literature.

Future work will dissect more precisely

how each of these combinations contrib-

utes to developmental programs and to

an individual’s relative state of health or

disease.

EXPERIMENTAL PROCEDURES

Mammalian Two-Hybrid Assays

Following PCR amplification of full-length TFs,

M2H was carried out as previously described

(Usui et al., 2005). To assess potential for self-acti-

vation each BIND TF fragment (bait) was trans-

fected into CHO-K1 cells containing the luciferase

reporter plasmid pG5luc. Reporter activity was

measured after 20 hr and BIND samples with

high self-activation (more than 53 larger than

average) were removed. For non-self-activating

baits, eight BIND TF fragments (baits) and two

ACT TF fragments (preys) were cotransfected
into CHO-K1 cells with pG5luc, and luciferase reporter activity was measured

after 20 hr. The screen was also performed using two BIND TFs combined with

two ACT TFs. For transfections with positive reporter activity, the assay was

repeated using all 2 3 2 or 8 3 2 BIND/ACT combinations to identify the inter-

acting TF pairs. Positive interactions were scored as those that showed at least

three times higher luciferase activity than background (measured using trans-

fection of either an ACT-TF or BIND-TF alone). For more details see Supple-

mental Information, Table S2, and Table S3.

In Vitro Pull-Down Assay

PCR products encoding the TF coding sequence and the SV40LPAS fragment

were used to construct a template for in vitro transcription/translation. The

products were combined by overlapping PCR using the primer pair T7-RBS-

KOZAK (50-GAGCGCGCGTAATACGACTCACTATAGGGGAAGGAGCCGCC

ACCATG-30) and LGT10L (50-AGCAAGTTCAGCCTGGTTAAG-30), yielding

a final template encoding a 50 T7 RNA polymerase promoter. In vitro pull-

down assays were carried out as previously described (Suzuki et al., 2004).

Briefly, biotinylated or [35S]-labeled TF was synthesized in vitro from the

template using Transcend Biotinylated lysine-tRNA (Promega) or Redivue

L-[35S]-methionine (Amersham Biosciences) in combination with the TNT T7

Quick Coupled Transcription/Translation System (Promega). After confirma-

tion of [35S]-labeled protein synthesis by SDS–PAGE and autoradiography, bi-

otinylated protein and [35S]-labeled protein were mixed 1:1 and incubated on



ice for one hour. Control reactions containing [35S]-labeled protein alone were

conducted in parallel. The reaction was then incubated with streptavidin Dyna-

beads (Dynal Biotech, Milwaukee, WI) for 30 min at 4�C on a rotary shaker. Dy-

nabeads were isolated with a magnet and washed 5 times with ice-cold TBST

buffer (50 mM Tris-HCl [pH 8.0], 137 mM NaCl, 2.68 mM KCl, 0.1% Tween 20).

The amount of radio-labeled protein coprecipitated with the biotinylated

protein was measured by scintillation counting or was detected by SDS-

PAGE. The ratio of scintillations with and without biotinylated protein was

calculated to measure the interaction between the two proteins (Table S4).

Tissue Specificity Score

The value f i
j , the fractional expression level of TF i in tissue j, was computed as

the ratio of the TF expression level in tissue j (qRT-PCR) to its sum total expres-

sion level across all tissues. Tissue specificity TSPSi was then computed using

relative entropy:

TSPSi =
X

j

f i
j log2f i

j =
�
qi
�

where qi is the fractional expression of TFi under a null model assuming

uniform expression across tissues. According to this definition, a minimal

TSPS = 0 would be reported for TFs expressed uniformly across all tissues,

while a maximal TSPS y 5 would be reported for TFs expressed only in a sin-

gle tissue. The threshold chosen for classifying TFs as tissue ‘‘specifiers’’

(TSPS R 1) was based on the observed bimodal distribution of expression

over all TFs and tissues (Figure 1A). This threshold is conservative, as it selects

TFs with roughly a 20-fold expression difference or greater across tissues

(Tables S1 and S5).

Unsupervised Tissue Separation

Two different feature sets were considered for tissue separation: (1) TF expres-

sion values and (2) TF-TF interaction values. For both feature sets the raw qRT-

PCR expression values were normalized so that each tissue had the same

average value over all TFs, then log transformed (Tables S1 and S5). Following

(Taylor et al., 2009) interaction values were computed for each interaction

between a hub and any other TF, with hubs taken as TFs with > 12 interactions

(Figure 1C, Table S2, and Table S3). Separations were performed using

a hybrid two-phase procedure. The first phase was noncentered Principal

Components Analysis (ncPCA), in which the second principal component re-

sulting from this analysis (PC2) was found to be the main direction informative

for tissue separation (either feature set). The features were then ranked ac-

cording to their absolute PC2 loadings and a second phase of dimensionality

reduction was performed using the ranked features. For this second phase,

noncentered Kernel PCA (ncKPCA) was used with two parameters: (1) the

standard deviation of the Gaussian kernel and (2) the number of top-ranked

features selected for separation. Performance of separation into the tissue

classes was measured by the Bezdek cluster validity index (CVI) considering

the first two dimensions (PC1, PC2). Further details are provided in the Supple-

mental Information.

We also examined the dependence of tissue specification on the particular

network used. Although the M2H network reported here (Tables S2 and S3) is

the first large-scale experimental screen for TF-TF interactions, previous

studies have sought to predict relevant TF combinations based on co-occur-

rence of TF binding sites within gene promoters (Yu et al., 2006). However, we

found that a network of TF pairs predicted using binding site co-occurrence

did not perform as well as the network of physical TF interactions elucidated

by M2H and previous literature (Figure 2A). We also found that the perfor-

mance of network-based tissue specification was not dependent on the

particular algorithm used for separation. Both ncKPCA and Sammon Mapping

approaches yielded very similar performance with Cluster Validity Index

(CVI) y 1, and in both cases CVI was maximized for exactly six interactions

(Figure 2F).

Data and Analysis Results

The data and analysis results of the paper are available from http://fantom.gsc.

riken.jp/4/tf-ppi.
SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, one

figure, and six tables and can be found with this article online at doi10.1016/

j.cell.2010.01.044.
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