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Abstract  

Rapid advances in single-cell assays have outpaced methods for analysis of those data types. 

Different single-cell assays show extensive variation in sensitivity and signal to noise levels. In 

particular, scATAC-seq generates extremely sparse and noisy datasets. Existing methods 

developed to analyze this data require cells amenable to pseudo-time analysis or require datasets 

with drastically different cell-types.  We describe a novel approach using self-organizing maps 

(SOM) to link scATAC-seq and scRNA-seq data that overcomes these challenges and can 

generate draft regulatory networks.  Our SOMatic package generates chromatin and gene 

expression SOMs separately and combines them using a linking function. We applied SOMatic 

on a mouse pre-B cell differentiation time-course using controlled Ikaros over-expression to 

recover gene ontology enrichments, identify motifs in genomic regions showing similar single-

cell profiles, and generate a gene regulatory network that both recovers known interactions and 

predicts new Ikaros targets during the differentiation process.  The ability of linked SOMs to 

detect emergent properties from multiple types of highly-dimensional genomic data with very 

different signal properties opens new avenues for integrative analysis of single-cells. 
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Introduction  

 The ability to analyze hundreds to thousands of individual cells using new functional 

sequencing assays has revolutionized the current state of scientific and biomedical research1.  For 

example, single-cell gene expression studies have allowed the identification of rare cell 

populations in a variety of samples ranging from immune cell systems2 to circulating tumor 

cells3.  Comprehensive atlases of gene expression are being built for tissues such as the 

Drosophila brain throughout its lifespan4 to an entire mouse5.  Inspired by the wealth of new 

insights from single-cell RNA-seq, there has been a plethora of single cell genomic technologies 

developed in the last few year (reviewed in6) .  For example, single-cell  profiling of chromatin 

accessibility7-9 has generated a lot of excitement because of the wealth of insights generated 

within large scale surveys of chromatin accessibility and gene regulation through projects like 

ENCODE10.  

However, unlike single-cell RNA-seq, chromatin accessibility mapping from individual 

cells yields sparse information of the open chromatin landscape11, 12 due to the intrinsic limitation 

of numbers of chromosomes per nucleus.  It has been difficult for previous analysis platforms to 

handle the scarcity and noise inherent in data of this type.   

Recently, a number of tools have been developed to try and combat this issue. 

chromVAR13 uses cells with the highest proportion of reads to build a model of the expected 

number of fragments per total reads for every respective motif site in the genome, and computes 

deviation scores from this model to cluster single-cells.  This method, while effective, requires 

the generation of a list of transcription factor binding sites through mass motif scanning which, 

in this work, necessitated the loosening of strict Type I error control and the creation of a 

custom, well-curated list of transcription factor motifs.  Another application, scABC13, manages 
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to cluster cells of different cell-types well by using the total cell accessibility signal to provide 

weights to an unsupervised clustering of the cells using K-mediods and thus identifies landmark 

regions that are only open in each found population.  The cells are then re-clustered using the 

respective landmarks.  However, this technique would likely become confused by time course 

data from the same cell-type as it may be too similar to generate proper landmarks.    

More recent techniques attempt to correct for the scarcity of scATAC-seq data by 

leveraging imputed pseudo-time orderings14.  For example, Cicero15 uses the ordering of cells to 

make small aggregate pools before computing correlations.  Alternatively in a study of human 

hematopoietic cell differentiation, Buenrostro and colleagues16 also assigned pseudotime 

ordering so that accessibility peaks could be smoothed by a lowess function.  Both of these 

methods make extensive use of pseudotime orderings, and thus, require systems that have a 

strong differentiation lineage (with preferably known markers).  Here we introduce a method for 

jointly analyzing scRNA-seq and scATAC-seq data that cannot be ordered by pseudotime by 

taking a “gene/region-centric” approach using self-organizing maps. 

Self-organizing maps (SOMs) are a type of artificial neural networks, also referred to as a 

Kohonen network17, 18(Supp. Fig. 1). SOMs are trained using unsupervised learning to generate a 

low-dimensional representation of data and can be visualized using two-dimensional maps, 

which allows for a low-dimensional representation of this high-dimensional data. Individual 

SOM nodes (or neurons) have a weight vector that is in the same dimension as the input data 

vectors and neighboring nodes on a SOM reflect similarities across the input data space vector. 

Thus, trained SOMs provide an intuitive platform for identifying clusters in high-dimensional 

datasets. For example, SOMs trained on gene expression data or chromatin data19 from multiple 

cell types in human and mouse have identified complex relationships across high-dimensional 
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genomic data10, 20-22.  Additionally, SOMs have been used to structure and interrogate the 

transcriptome in single-cells during cellular reprogramming23.  SOMs provide a natural visual 

and powerful platform for the analysis and integration of high-dimensional data of different 

types.   

 As part of our work in the STATegra consortium (STATegra.eu), we performed single-

cell RNA-seq and single-cell ATAC-seq using a mouse pre-B cell model system24 during cellular 

differentiation.  This system provides a high-resolution view into a narrow transition in pre-B 

cell development, whereby we induce cell differentiation in response to a sudden doubling of 

Ikaros expression.  Our data only contains two time points and represents a fairly drastic change 

in chromatin accessibility and gene expression over that period, and thus, would be a poor 

candidate for pseudo-time analysis.  In addition, this data is sufficiently sparse and noisy to give 

even powerful algorithms like UMAP25 difficulty from a gene or genome region perspective 

(Supp. Fig. 2, 3). 

We used SOMatic to create two SOMs in order to identify significant groups of 

expressed genes and chromatin elements that jointly change during the time course.  The two 

SOMs were then linked using a novel algorithm to find metaclusters of genes and associated 

genomic regions that show similar profiles during pre-B cell differentiation.  The regulatory 

regions in these clusters were mined for enriched motifs that allowed us to infer a predicted 

regulatory network downstream of Ikaros. Our flexible and comprehensive approach is first of its 

kind to provide an analysis platform that combines these different single-cell data types without 

leveraging cell ordering and effectively identifies regulatory programs.  
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Results  

Integration of single-cell data types using SOM  

 In order to study changes in gene expression and chromatin accessibility for single-cells, 

we utilized an inducible pre-B model system24 and performed single-cell RNA-seq and single-

cell ATAC-seq before and after cellular differentiation (Experimental methods).  The goal was to 

link the data from these methods in a meaningful way to study individual genome region/gene 

interactions, and this was accomplished by developing the computational pipeline shown in 

Figure 1.  We began by training separate self-organizing maps (SOMs) for each dataset.  The 

result is a set of SOM units that contain genes and genome regions that have a very similar signal 

profile across each of the single cells at both time points (Summary maps in Supp. Fig. 4).  To 

reduce the signal dropout and technical noise prevalent in single cell data, our SOM analysis tool 

produces clusters of these units, called metaclusters19, which maintain the SOM’s scaffold 

topology by only combining adjacent units and contain similar gene expression and chromatin 

accessibility profiles. Finally we combine the patterns found in each SOM using a pipeline that 

links metaclusters from both gene expression and chromatin accessibility.  These linked 

metaclusters (LM) contain sets of chromatin regions that have similar open chromatin signal 

profiles that are in the proximity of genes that also share a similar profile (although not 

necessarily the same profile in RNA and ATAC) and can be mined using gene ontology, 

pathway analysis, and motif discovery. Our method easily extends a traditional single data-type 

analysis to one that focuses on the integration of fundamentally different data like single-cell 

RNA-seq and ATAC-seq in order to recover evidence of co-regulation.  
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Identification of dynamic gene expression metaclusters  

We trained a 40x60 SOM on the 127 scRNA-seq datasets (62 single-cells for 0-hour; 65 

single-cells for 24-hour) using 11,702 genes that had expression greater than 1 FPKM in at least 

5% of cells.  As expected, slices of this map (Fig. 2a), which correspond to single cells, show a 

general reduction of gene expression over time.  SOMatic identified 43 RNA metaclusters that 

reflect the various gene expression profiles present in the data (Fig. 2b).  We validated that these 

metaclusters were properly determined by calculating the UMatrix and density map for this SOM 

and overlaying the metacluster boundaries on top of these maps (Supp. Fig. 5) for visual 

inspection. The metaclusters followed the breaks in these maps as expected and thus provide a 

robust representation of the different profiles present in the single-cell data.   

One of the strengths of the SOM approach is that we can perform logical operations on 

the feature maps. We computed a map by averaging maps from the cells in each time point and 

subtracting them to determine which metaclusters reflect meaningful gene expression differences 

across time (Fig. 2c).  We performed a correlation analysis to determine which metaclusters were 

consistently enriched across the cells in each time-point as previously described19. We found 

statistically-significant differences across time in 11 RNA metaclusters, 8 of which were 

enriched in 0-hour and 3 in 24-hour (Fig. 2d, p-value <10-4-10-10).  For example, RNA 

metacluster 8 consists of 21 SOM units and contains 69 genes enriched in 0-hour single-cells 

such as Igll1 and Vpreb1 (Fig. 2e). Similarly, metacluster 25 consists of 33 units and contains 

151 genes enriched in 24-hour cells such as Mier1 and Foxp1, which has been shown to control 

mature B-cell survival in mice26 (Fig. 2e).  Gene ontology analysis revealed a series of genes 

enriched for negative regulation of apoptosis in 24-hour cells, while DNA replication genes were 
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represented in 0-hour cells (Fig. 2f). This is consistent with the transition of gene programs 

necessary for coordinating pre-B cell differentiation27. 

 

Mapping the pre-B single-cell chromatin landscape architecture using SOMs 

 We performed single-cell ATAC-seq8 with a total of 229 cells passing our quality 

controls to explore the change in chromatin accessibility over the differentiation time-course. We 

recovered on average 53,864 unique chromatin fragments per cell (Supp. Fig. 6e). Using peaks 

taken from a set of pooled ATAC-seq experiments over three biological replicates with 50,000 

cells for each time-point, we quantified the ATAC-seq signal in these peaks for each cell. We 

built a data matrix from chromatin regions detected in at least 2% of cells (5 cells) for a total 

20,103 ATAC-seq peaks due to the sparse nature of single-cell ATAC-seq. 

A 20x30 SOM was trained on this scATAC data matrix.  Similar to the RNA SOM, 

scATAC feature maps (Fig. 3a) revealed a general closing of the chromatin in 24-hour cells, 

which is normal for cells undergoing differentiation.  Clustering the units from this SOM 

resulted in the identification of 103 chromatin metaclusters (Fig. 3b).  Visual inspection of these 

clusters confirmed that these clusters properly follow the breaks in the UMatrix and density map 

(Supp. Fig. 7).  

A SOM difference map and hypothesis analysis for all 103 chromatin metaclusters 

revealed 39 metaclusters that exhibit open chromatin signal in 0-hour cells and 3 metaclusters in 

with higher signal in the 24-hour cells (Fig. 3c-d). Gene ontology enrichments for genes in the 

vicinity of the regions from two of the most significant metaclusters (Fig 3e), 48 (0-hour 

enriched; 231 peaks) and 88 (24-hour enriched; 136 peaks), reveal that these genes are enriched 

for cell signaling and DNA replication programs as predicted (Fig. 3f). Thus, SOMs are capable 

.CC-BY 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/438937doi: bioRxiv preprint first posted online Oct. 9, 2018; 

http://dx.doi.org/10.1101/438937
http://creativecommons.org/licenses/by/4.0/


of revealing patterns of chromatin accessibility from sparse single-cell ATAC-seq data in a 

dynamic model system. 

 

Application of multi-omic single-cell data integration using Linked SOMs  

 Cellular differentiation occurs as a consequence of dynamics in expression of networks of 

genes controlled by cis-regulatory elements, which must be open in order to function properly.  

The linker pipeline within SOMatic attempts to convolve the metaclusters from RNA and 

chromatin accessibility SOMs in order to interrogate the dynamics of the system.   In brief, the 

pipeline subsets chromatin regions within the same chromatin metacluster into linked 

metaclusters (LM) using the expression of the gene whose regulatory region (using the same 

algorithm as GREAT28) overlaps the element.  Thus, if a set of regions are in a LM, these regions 

share a similar chromatin accessibility profile and are in the vicinity of genes that also share a 

similar gene expression profile (See Supp. Fig. 8 for an overview).  This coherence of joint 

profiles gives a much higher expectation that these regions will be similarly regulated than 

grouping on accessibility or gene expression alone.  

We applied this new pipeline to our scRNA and scATAC SOMs and analyzed a total of 

103 x 43 = 4,429 LMs to identify 462 LMs that were significantly dynamic in both chromatin 

accessibility and their nearby genes (Fig 4a).  Based on our assumption that these LMs were 

similarly regulated, we mined each LM separately for known transcription factor binding site 

motifs using FIMO with a q-value cutoff of .05.  This generated ~4.1 million candidate motifs, 

which is substantially more than results from motif analysis on bulk data:less than 50k and 500k 

for peaks and enriched peaks respectively (Supp. Fig. 9); random LMs also gave us fewer 

candidate motifs, with an average of ~1.46 million motif positions in 100 trials (Supp. Fig. 10).  
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Additionally, to determine enrichment, LMs with a percentage of regions containing each 

transcription factor motif that was significantly (pvalue < .05) enriched over the baseline were 

reported, (Fig. 4b), reducing the ~4.1 million candidate motifs to 112,550 high-confidence 

potential gene regulatory network connections or 3,480 high-confidence active transcription 

factor/active transcription factor connections.   

The differentiation of this B3 cell line is initiated by a doubling the amount of Ikaros in 

the nucleus of each cell and we therefore focused our analysis on Ikaros as the root node of a 

gene regulatory network.  Several of the LMs are enriched for the Ikaros motif, including 12 of 

the LMs showing both RNA expression and chromatin accessibility differences.  In total, we 

found 199 genes, with 205 nearby potential cis-regulatory regions that contain the motif, that 

may be regulated directly by Ikaros (Fig. 4c), including genes known to be differentially 

expressed in this system, such as Igll1 (Supp. Fig. 11) and Vpreb229 as well as the transcription 

factor Nr3c130.  This factor has been previously implicated as being downstream of Ikaros and 

was the only transcription factor (with a motif) in the list of the top 30 differentially-expressed 

genes.  To validate these connections, Ikzf1 ChIP data27 was interrogated at the same 0hr and 

24hr time points at each of the 205 potential cis-regulatory regions.  Of these, 200 (~98%) of 

these regions had Ikzf1 ChIP signal (more than 1 RPKM) in one or both of the time points and 79 

(~39%) had a significant change over the time course (more than 2x fold change).  Loci for the 4 

transcription factors predicted to be regulated by Ikaros were further visually inspected and each 

of the nearby potential cis-regulatory regions had a significant change over the time course 

(Supp. Fig. 12-15). 

We built a gene regulatory network of transcription factors that we predicted were 

connected to Ikaros to identify indirect, secondary changes to gene expression as a direct result 
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of changes in Ikaros concentration at the direct targets TFs.  This network is tied directly to the 

model system in that it only uses genome segments that are open in either time-point.  We 

determined which factors downstream of Ikaros showed a significant change in expression across 

the time-series (Fig. 4d) and determined the connections between them (Fig. 4e).  Each of these 

genes has been shown to be important in B-cell differentiation.  For example, the activation of 

Hbp1 has been shown to prevent c-Myc-mediated transcription31 and, together with a down-

regulation of Myc expression, stops B-cell proliferation.  The temporal enrichment of predicted 

targets downstream of Myc can be found in Supp. Fig. 16.     

About 15% of connections in this network have been previously described30, 32-35, which 

include Mef2c to Ikaros36 and Pax5 and Myc’s negative feedback loop37, 38, or have been 

previously computationally predicted39, 40(50%), and we identify new connections like Rreb1 to 

Myc(~35%)(Supp. Fig. 17).   The identification of both direct and indirect regulation from a 

sudden doubling of Ikaros demonstrates the power of the Linked SOMs for analyzing highly-

dimensional multi-omics data.  

   

Discussion  

 In this work, we used a gene- and chromatin-centric analysis using SOMs on a mouse 

pre-B time-course data of single-cell RNA-seq and ATAC-seq separately and, then, convolved 

them to find synergistic effects.  Combining the metaclusters from multiple SOMs as a pair-wise 

set generates a data-space that combines the properties from both without any assumptions about 

how the data relates to each-other.  Due to the inheritance of each SOM’s properties, the linked 

metaclusters (LMs) contain genome regions that should be similarly regulated: not only is the 

chromatin accessibility of those regions similar across the cells, but the nearby genes they 
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regulate share expression patterns.  Thus, these LMs can be mined for motif enrichment and 

return a higher number of significant motif sites than simply dividing the data set randomly or by 

signal changes in either data set separately.  

We used this SOM linking technique to explore the regulatory control of the lymphoid 

regulator Ikzf1 during one step of B-cell development. 12 LMs enriched in the Ikzf1 motif 

contained regions that had similarly-differential chromatin accessibility between time points and 

had had differentially expressed genes.  Our analysis successfully recovers known biology about 

Ikzf1 regulation on target genes Igll1, Vpreb2, and Nr3c1 and novel regulatory information 

through discovery of possible downstream mechanisms for B-cell activation.  Following the 

interactions around the network provides many exciting, new avenues for research.   

It is important to note, however, that these predicted regulatory connections use an 

extremely stringent statistical cutoff to be as confident as possible, and thus, do not recover some 

of the linkages predicted based on Ikzf1 ChIP data27 such as Ikaros’s involvement in the 

regulation of Myc and Foxo1. While we do detect these connections at an early portion of the 

pipeline, the genome sequence in those regulatory regions are too different from the canonical 

motif to pass our stringent filters.  Foxo1 had an Ikaros motif in an open chromatin region near 

its transcription start site, but the motif only had a q-value of 0.112, which was far above the 

threshold. 

Our approach for combining multi-omic data through linked SOMs is amenable to 

integrating other single-cell technologies for the purpose of multi-omic data analysis as long as a 

linking function can be found.  For example, the profiling of small RNAs, such as miRNAs41, in 

single cells could be linked with a standard scRNA-seq experiment through the use of target 

prediction algorithms. The hypothetical LMs in that case would include groups of miRNAs with 
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similar expression patterns such that their target RNA also has similar expression patterns.  

Following identification of these groups, functional analysis could be done on each group target 

RNAs and these functions could be passed back to the miRNA in the group.  This is just one 

example of an exciting experimental and computational design that linked SOMs enable.    The 

ability to perform multi-omic experiments from a single-cell is now achievable for several 

biochemical and genomic platforms42-45 with more being developed every day.  We foresee the 

ability to connect the patterns in multi-omic data using algorithms like linked SOMs to be 

integral in using this new technology to the fullest. 

 

Methods 

Pre-B cell differentiation 

ERt2-Ikaros inducible B3 cells were cultured in Iscove’s Modified Dulbecco’s Medium 

(IMDM) supplemented with 10% FBS. Differentiation was induced as previously shown27. 

Briefly, cells were induced with 20mM of 4-hydroxytamoxifen (4OHT), over the course of 24 

hours. Prior to performing single-cell experiments, cells were washed twice with cold 1X PBS. 

 

Single-cell RNA-seq 

Single cells were isolated using the Fluidigm C1 System. Single cell C1 runs were 

completed using the smallest IFC (5-10 um) based on the estimated size of B3 cells. Briefly, 

cells were collected for 0 and 24-hour time-points at a concentration of 400 cells/μl in a total of 

50 μl. To optimize cell capture rates on the C1, buoyancy estimates were optimized prior to each 

run. Each individual C1 capture site was visually inspected to ensure single-cell capture and cell 

viability. After visualization, the IFC was loaded with Clontech SMARTer kit lysis, RT, and 
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PCR amplification reagents. After harvesting, cDNA was normalized across all libraries from 

0.1-0.3 ng/μl and libraries were constructed using Illumina’s Nextera XT library prep kit per 

Fluidigm’s protocol. Constructed libraries were multiplexed and purified using AMPure beads. 

The final multiplexed single-cell library was analyzed on an Agilent 2100 Bioanalyzer for 

fragment distribution and quantified using Kapa Biosystem’s universal library quantification kit. 

The library was normalized to 2 nM and sequenced as 75bp paired-end dual indexed reads using 

Illumina’s NextSeq 500 system at a depth of ~1.0-2.0 million reads per library.  

 

 

Single-cell ATAC-seq 

Single-cell ATAC-seq was performed using the Fluidigm C1 system as done previously8.  

Briefly, cells were collected for 0 and 24-hours post treatment with tamoxifen, at a concentration 

of 500 cells/μl in a total of 30-50 μl. Additionally, 3 biological replicates of ~50,000 cells were 

collected for each measured time-point to generate bulk ATAC-seq measurements. Bulk ATAC-

seq was performed as previously described46. ATAC-seq peak calling was performed using bulk 

ATAC-seq samples. ATAC-seq peaks were then used to estimate single-cell ATAC-seq signal. 

Our C1 single-cell capture efficiency was ~70-80% for our pre-B system. Each individual C1 

capture site was visually inspected to ensure single-cell capture. In brief, amplified transposed 

DNA was collected from all captured single-cells and dual-indexing library preparation was 

performed. After PCR amplification of single-cell libraries, all subsequent libraries were pooled 

and purified using a single MinElute PCR purification (Qiagen). The pooled library was run on a 

Bioanalyzer and normalized using Kappa library quantification kit prior to sequencing. A single 

pooled library was sequenced as 40bp paired-end dual indexed reads using the high-output (75 
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cycle) kit on the NextSeq 500 from Illumina. Two C1 runs were performed for 0 and 24-hour 

single-cell ATAC-seq experiments.  

 

Single-cell RNA-seq data processing 

Single-cell RNA-seq libraries were mapped with Tophat47 to the mouse Ensembl gene 

annotations and mm10 reference genome. Single-cell libraries with a mapping rate less than 50% 

and less than 450,000 mapped reads were excluded from any downstream analysis. Analysis was 

performed using 0 and 24-hour single-cells. Cufflinks48 version 2.2.1 was used to quantify 

expression from single-cell libraries using Cuffquant. Gene expression measurements for each 

single-cell library were merged and normalized into a single data matrix using Cuffnorm. 

 

Bulk and single-cell ATAC-seq data processing 

Single-cell libraries were mapped with Bowtie49 to the mm10 reference genome using the 

following parameters (bowtie -S -p 2 --trim3 10 -X 2000). Duplicate fragments were removed 

using Picard (http://picard.sourceforge.net) as previously performed8.  We considered single-cell 

libraries that recovered > 5k fragments after mapping and duplication removal. Bulk ATAC-seq 

replicates were mapped to the mm10 reference genome using the following parameters (bowtie -

S --trim3 10 -p 32 -m 3 -k 1 -v 2 --best -X 2000). Peak calling was performed on bulk replicates 

using HOMER with the following parameters (findPeaks <tags> -o <output> -localSize 50000 -

size 150 -minDist 50 –fragLength 0). The intersection of peaks in three biological replicates was 

performed. A consolidated list of peaks was generated from the union of peaks from 0 and 24 

hour time-points.  
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ChIP-seq analysis 

Ikzf1 ChIP-seq data for 0 and 24-hour pre-B cells24 was mapped to the mm10 reference 

genome using Bowtie250. For all samples, we filtered duplicated reads and those with a mapping 

quality score below 20. To identify peaks, we used the CLCbio Peak Finder 

software_ENREF_3851 with default parameters and control input libraries. We defined significant 

peaks with an adjusted p-value <0.01 also using biological replicates.  

 

Training and Metaclustering of the individual RNA and ATAC SOMs 

We use the SOMatic package, which is a combination of tools written in C++ and R 

designed for the analysis and visualization of multidimensional genomic or gene expression data, 

to train our individual SOMs. The SOMatic package also builds a customized, optional javascript 

viewer to mine the results visually. Installation information for this package can be found at 

https://github.com/csjansen/SOMatic.  

 For the RNA-seq SOM, we built a matrix of 11,702 expressed genes in 127 single cells 

and we used half the genes (5851) to train a self-organizing map with a toroid topology with size 

40x60 with 5,851,000 million time steps (1000 epochs) as previously described20 to select the 

best of 100 trials based on lowest fitting error. The entire matrix was used for scoring this best 

trial to generate the final SOM.  The SOMatic website for this SOM can be viewed at 

http://crick.bio.uci.edu/STATegra/RNASOM/ 

Similarly, the ATAC-seq data was organized into a matrix consisting of scATAC signal 

in 227 cells at 20,103 ATAC-seq peaks (from pooled data) and half of the peaks were used to 

train a SOM with a toroid topology with size 40x60 using 19,955,000 time steps (1000 epochs) 

as previously described20. The best of 100 trials based on lowest fitting error was selected and 
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the entire matrix was used for scoring the final SOM.  The SOMatic website for this SOM can be 

viewed at http://crick.bio.uci.edu/STATegra/ATACSOM/ 

SOM units with similar profiles across cells were grouped into metaclusters19, 20 using 

SOMatic. Briefly, metaclustering was performed using k-means clustering to determine centroids 

for groups of units. Metaclusters were built around these centroids so that each cluster is in one 

piece to maintain the SOM topology. SOMatic’s metaclustering function attempts all metacluster 

numbers within a range given and scores them based on Akaike information criterion (AIC)52.  

The penalty term for this score is calculated using a parameter called the “dimensionality,” 

which is the number of independent dimensions in the data. We performed a hierarchical 

clustering on the SOM unti vectors and counted the number of clusters that were present at a 

height level equal to 30% of the total distance in the clustering. For the ATAC-seq SOM, the 

dimensionality was calculated to be 37, and for the RNA-seq SOM, the dimensionality was 

calculated to be 62.  

For the RNA metaclustering, we tried all k between 20 and 50, whereas for the ATAC 

metaclustering we tried all k between 80 and 120. The metacluster number with the lowest AIC 

score was the one chosen for each SOM. For ATAC-seq, 103 metaclusters had the best score, 

and for RNA-seq, 43 metaclusters had the best score. R scripts for generating metacluster reports 

are provided in the SOMatic package. Metatcluster/Trait correlation and hypothesis testing 

analysis were done as previously described19. 

 

Hyperparameter Variation 

 There are inherent trade-offs that have to be kept in mind when choosing SOM 

parameters for training and metaclustering.  For example, the size of a SOM is typically one of 
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the most important decisions to be made in analyses of this type.  A smaller SOM may group 

elements together that do not belong together and will reduce the statistical power of down-

stream analysis, and a larger SOM may separate elements that belong in the same cluster but are 

separated due to noise, causing down-stream analysis to miss patterns that may exist.  Similarly, 

the number of timesteps and the learning rate will change the chances of under and over-

clustering by changing how the SOM scaffold morphs into the topology of the data.  Proper 

metaclustering can improve the robustness of the SOM by easily revealing improper training due 

to poor parameters.   

 The scRNA-seq SOM was built with additional sizes 20x30 and 80x120 with little 

change to the calculated number of metaclusters, with 41 and 44 respectively.  The 20x30 SOM 

was not chosen for the final analysis due to the occurrence of multiple 1-unit metaclusters, which 

indicates an underclustering.  The 80x120 SOM was not chosen due to having a metacluster that 

contained a unit in each row which indicated a possible overclustering.  The number of timesteps 

and learning rate chosen were determined to be sufficient due to the smoothness of the final 

summary map (Supp. Fig. 4a).  An insufficient value in either of these parameters would cause 

the summary to have large breaks in total signal between neighboring units, indicating under-

training. 

The scATAC-seq SOM was also built with sizes 10x15 and 40x60 with little change to 

the calculated number of metaclusters, with 95 and 117 respectively.  Again, the smaller SOM 

was not chosen for the final analysis due to multiple 1-unit metaclusters, which indicates an 

underclustering.  The 40x60 SOM was not chosen due to the map focusing too much on regions 

that were unique to each cell, indicating overclustering.  The number of timesteps and learning 
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rate chosen were determined to be sufficient due to the smoothness of the final summary map 

(Supp. Fig. 4b).   

 

Linked SOMs 

In order to define this, a few preliminary definitions are required.  For a set A of data 

vectors, it is possible to define a set of n vectors, B, indexed on a 2D lattice to partition A into n 

subsets with each vector assigned to the subset i iff Bi is the closest element of B to that vector.  

Due to the 2D indexing lattice that they are placed on, each vector in B is adjacent to its closest 

member in B, with “closest” defined by an unsupervised neural network.  The set of vectors, B, is 

the set of SOM units.   

Similarly, it is possible to define a set of m vectors, M, to partition B into m subsets, S, 

with each vector assigned to the subset i iff Mi is the closest element in M to that vector such that 

a path can be drawn on the lattice using only elements of Si.  This path requirement is in place to 

maintain the SOM topology calculated in training of the neural network.  The subsets, S, are the 

metaclusters defined previously. 

Let G be the set of gene vectors from a number of RNA-seq experiments and let R be the 

set of genome region vectors defined by ATAC-seq peaks.  Using the procedure above, it is 

possible to segment these sets into metaclusters, named N and M respectively.  Between these 

two metacluster partitions, we can define a linker mapping, h, from R to G. Using a linker 

mapping designed to link the individual SOM datatypes, we can define a set of partitions, FM,N,h, 

where (r,g) ϵ (R,G) is an element of FM,N,h
 ij iff h(r)=g, g ϵ Nj, and r ϵ Mi.  In this case, the linker 

mapping that we use to link RNA and open chromatin data is an implementation of the GREAT28 

OneClosest algorithm with a cutoff of 50kb to build regulatory regions around transcription start 
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sites for each gene and check if these regions overlap with the ATAC-seq peaks.   The resulting 

Linked SOM metaclusters (LMs) contain clusters of similar genome regions such that their 

linked genes are also similar.   

 

Motif Analysis 

            The regulatory regions in each Linked SOM metacluster were separately scanned for 

motifs from the HOCOMOCOv11 mouse motif database53 with FIMO v4.9.0_454 using a q-value 

threshold of .05.  Then, for each transcription factor in the database, the percentage of regions in 

each LM with a motif for that factor was calculated.  To determine enrichment, the percentages 

for each transcript factor were separately compared in a one-tailed z-score analysis.  LMs with a 

percentage that was significantly (pvalue < .05) enriched over the baseline, the average 

percentage across all LMs for that transcription factor motif, was reported for each transcription 

factor.  Finally, transcription factors with a statistically significant number of 

motifs were mapped to the gene fused to the regulatory region the motif was found within.  The 

full list of these potential connections can be found here: 

http://crick.bio.uci.edu/STATegra/LinkedMotifMappings.txt. 

GEO Accession   

GEO accession number for data is GSE89285. 
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Figure 1. Single-cell multi-data integration using SOMs 
(a) An inducible Ikzf1 mouse pre-B cell-line was used to track changes in gene expression 
and chromatin accessibility during differentiation (0 and 24-hours) in single-cells. (b) Single-cell 
RNA-seq and ATAC-seq data from an inducible mouse pre-B cell-line were independently 
trained using SOMatic to generate single-cell SOMs and metaclustered using AIC scoring. These 
clusters were convolved with the new SOM fusion algorithm to generate pair-wise metaclusters 
of chromatin regions with similar profiles across the single-cell dataset that regulate genes that 
also share similar profiles.  These pair-wise clusters were mined for regulatory connections 
through motif enrichment analysis.  
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Figure 2. Single-cell gene expression patterns during cellular differentiation are profiled 
using SOMatic 
(a) A SOM was generated for the single-cell RNA-seq dataset (0-hour 62 cells, 24-hour 65 cells). 
Maps for 3 cells from each time point were arbitrarily selected for display. (b) 43 metaclusters 
were identified using AIC scoring.  Metacluster number and color were arbitrarily assigned for 
visualization purposes.  (c) SOM difference map comparing 0-hour and 24-hour time-points. 
Maps for cells from 0 and 24-hour timepoints were averaged to generate a single map for each 
and then subtracted to create a map that represented gene expression fold change during pre-B 
cell development. Overlaid metacluster divisions generally follow contours of the map. (d) Trait 
enrichment analysis deployed on gene metaclusters revealed which are enriched in each time 
point.  Metaclusters of interest are highlighted in panel b. (e-f) Summary showing the 
representative expression profile for metaclusters 8 and 25.  Columns are individual cells color-
coded for 0 and 24-hour time-points ordered by hierarchical clustering on every metacluster 
representative gene expression profile. Cell subpopulations are represented by a 40% cut on that 
clustering. (f-g) Top gene ontology terms for the 69 genes in metacluster 8 and the 151 genes in 
metacluster 25.   
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Figure 3. SOMatic reveals the dynamic chromatin landscape in single-cells 
(a) A chromatin SOM was generated for the single-cell ATAC-seq dataset (0-hour 96 cells, 24-
hour 133 cells). Maps for 3 cells from each timepoint were arbitrarily selected for display. (b) 
103 metaclusters were identified using AIC scoring.  Metacluster number and color were 
arbitrarily assigned for visualization purposes. (c) SOM difference map comparing 0-hour and 
24-hour time-points. Maps for cells from 0 and 24-hour timepoints were averaged to generate a 
single map for each and then subtracted to create a map that represented chromatin accessibility 
fold change during pre-B cell development. Overlaid metacluster divisions generally follow 
contours of the map. (d) Trait enrichment analysis deployed on gene metaclusters revealed which 
are enriched in each time point.  Metaclusters of interest are highlighted in panel b. (e-f) 
Summary showing the representative accessibility profile for SOM metaclusters 48 and 88.  
Columns are individual cells color-coded for 0 and 24-hour time-points ordered by hierarchical 
clustering on every metacluster representative gene expression profile. Cell subpopulations are 
represented by a 40% cut on that clustering. (f-e) Top gene ontology terms for genes associated 
to chromatin elements from SOM metaclusters 48 and 88.  Association was determined through 
use of the GREAT algorithm (See methods). 
  

.CC-BY 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/438937doi: bioRxiv preprint first posted online Oct. 9, 2018; 

http://dx.doi.org/10.1101/438937
http://creativecommons.org/licenses/by/4.0/


a Chromatin region counts
Number of 

regions R
N

A
-se

q
M

e
tac

lu
s

ters
41
8
16
9
32
1
25
19
6
20
11

ATAC-seq Metaclusters
80 62 44 68  8  35 93 31  6  28 19 52  2  37  3   4  18 48 15  1  16 17 26 30 33 47 51 54 57 61 63 65 66 69 70 75 85 96 88 90 95 96

4

3

2

1

0

Lo
g 2

(x
+

1)

Number of 
TF motifs

5
4
3
2
1
0

Lo
g 2

(x
+

1)

b

R
N

A
-s

eq
M

eta
clu

ste
rs

41
8
16
9
32
1
25
19
6
20
11

ATAC-seq Metaclusters
80 62 44 68  8  35 93 31  6  28 19 52  2  37  3   4  18 48 15  1  16 17 26 30 33 47 51 54 57 61 63 65 66 69 70 75 85 96 88 90 95 96

Unique enriched motif counts

Ikaros Motif
c

Lo
g 2

(f
ol

dc
ha

ng
e)

199 Ikzf1 
regulated genes

2

1

0

-1

-2

Higher in 
0-hour

Higher in 
24-hour

Tspo
Kynu
Iqsec1
Klhl24
Zscan2
Map4k4
Aph1b

Eif4ebp1
Col6a6
Dusp7
S100a1
Pfkp
Vpreb2
Igll1

Mier1
Chd9
B9d2
Nr3c1
Gbf1
Csnk1g2
Rnh1

Psph
Acp6
Slc1a4
Grwd1
Eef1e1
Selm
Tpi1

d

Hbp1
Tcf7l2
Pbx3
Hmga1
Ebf1
Foxo1
Nr3c1
Elf1
Cux1
Pax5
Elf2
Ikzf1
Mef2c
Stat1
Cebpz
Vbp1
Tcf3
Rela
Pou2fl1
Rreb1
Smad3
Hes1
Myc

e

Higher in 0-hour

Higher in 24-hour

 
Figure 4. Transcriptional regulation by Ikzf1 recovered using SOM fusion 
(a) Size of pair-wise metaclusters that contain both differentially-expressed genes and 
differentially-accessible chromatin sites.  Metaclusters of genes and regions with a higher 
enrichment at 24-hours are colored blue and are ordered to place larger pair-wise metaclusters in 
the bottom left.  (b) Number of statistically-significant motifs found in each pair-wise 
metacluster from (a).  Presence of the Ikzf1 motif in the pair-wise metacluster is noted.  (c) 
Heatmap of expression fold change for genes predicted to be regulated by Ikzf1.  Genes with the 
largest change between time points are noted.  Nr3c1 is the only listed gene that is labeled as a 
transcription factor. (d) Predicted downstream targets of Ikzf1 with significant change over the 
time course.  Each gene is labels with the fold change between time points with the same scale as 
4c. (e)  Predicted gene regulatory network downstream of Ikzf1.  Genes are ordered left to right 
by their fold change over the time course.  Connections are dashed if their signal is significantly 
lower at the 24-hour time point.  Connections at each gene are labeled by level of evidence found 
in existing literature.  Green triangles indicate experimental evidence and orange triangles 
indicate previous computational prediction. 
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Supplementary Figure 1. Self-Organizing Map Clustering Overview 
(a) Example heatmap for 5 genes’ expression in a typical single-cell RNA-seq with 2 time points.  
Genes G1 and G2 are enriched at 0h with two 0h cells missing that signal due to technical noise 
and gene G4 is enriched at 24hr.  Genes G3 and G5 also have a similar expression pattern with 
two cells missing signal in G5 due to technical noise, but are not particularly enriched in either 
time point.  (b) 2D representation of the genes’ expression profile with an initial SOM scaffold.  
The colors in the scaffold correspond to those the map below.  (c) 2D representation of the 
genes’ expression profile with a typical trained SOM scaffold overlaid.  The maps below 
represent the signal for each unit in the labeled experiment’s dimension.  For example, only gene 
G4 has signal in 24h Cell #1, and thus, only the unit near G4 has signal on the map.  (d) 
Neighboring units with similar expression profiles are metaclustered to fix the overclustering of 
genes G1 and G2 into separate units.  (e) Multiple individual maps can be combined into one 
through arithmetic.  This map represents the average of each 24h map subtracted from the 
average of each 0h map.  (f) Trait enrichment analysis can be applied on each metacluster to 
provide a p-value for enrichment in a particular time point.  Here, metacluster 1, containing 
genes G1 and G2, is enriched in 0h, and metacluster 3, containing gene G3, is enriched in 24h. 
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Supplementary Figure 2. scRNA-seq gene UMAP 
UMAP25 generated using uwat55 from scRNA-seq data with each point representing a gene’s 
expression in each cell.  The umap is separated into 4 large clusters, which provides a poor level 
of resolution for downstream analysis.  Points were colored by RNA SOM metacluster, which 
divides the large clusters into many sub-clusters. 
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Supplementary Figure 3. scATAC-seq region UMAP 
UMAP25 generated using uwat55 from scATAC-seq data with each point representing a genome 
region’s ATAC-seq signal in each cell.  The umap could not be separated into any significant 
clusters.  Points were colored by ATAC SOM metacluster, which divides the large cluster into 
many sub-clusters. 
  

.CC-BY 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/438937doi: bioRxiv preprint first posted online Oct. 9, 2018; 

http://dx.doi.org/10.1101/438937
http://creativecommons.org/licenses/by/4.0/


a

b

RNA Summary

ATAC Summary

 
 
Supplementary Figure 4. SOM summary maps (total signal in every cell) 
(a-b) Summary maps for the (a) RNA and (b) ATAC SOMs.  Each unit’s value is generated by 
totaling the values in the full SOM unit’s vector.  A blue-white-red color spectrum was used.  
These graphs are mainly used to determine ‘smoothness’ of the SOM fit and to see if more 
timesteps or changes to the learning rate are needed. 
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Supplementary Figure 5. Statistic maps for scRNA-seq SOM  
(a) U-Matrix for the SOM built with the single-cell RNA-seq dataset.  Each unit contains the 
average of the distance to all neighboring units.  Metacluster divisions are overlaid.  Areas of 
high distance correspond primarily to a metacluster division.  (b) Density map for the RNA-seq 
SOM.  The color corresponds to the number of genes found in each unit.  Metacluster divisions 
are overlaid.  Most metaclusters are ruled by a few high density units. 
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Supplementary Figure 6. Single-cell ATAC-seq library statistics 
(a-b) 0-hour ATAC-seq Picard mapped fragment distribution for single-cell libraries between 
two C1 runs. (c-d) 24-hour ATAC-seq Picard mapped fragment distribution for single-cell 
libraries between two C1 runs. (e) ATAC-seq Picard mapped fragment distribution of all 227 
single-cell libraries. (f-g) Pearson correlation between C1 runs for 0 and 24-hour data sets. 
Averaged ATAC-seq fragments were determined for each C1 run. (h) Distribution of 20,103 
ATAC-seq regions to nearest single gene TSS.  
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Supplementary Figure 7. Statistic maps for scATAC-seq SOM  
(a) U-Matrix for the SOM built with the single-cell ATAC-seq dataset.  Each unit contains the 
average of the distance to all neighboring units.  Metacluster divisions are overlaid.  Areas of 
high distance correspond primarily to a metacluster division.  (b) Density map for the ATAC-seq 
SOM.  The color corresponds to the number of chromatin regions found in each unit.  
Metacluster divisions are overlaid.  Most metaclusters are ruled by a few high density units. 
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Supplementary Figure 8. SOM Linking Overview 
(a) An example SOM after training on RNA-seq data.  Metaclusters 1, 2, and 3 contain genes 
(G1, G2), (G3, G5), and (G4) respectively.  (a) An example SOM after training on ATAC-seq 
data.  Metaclusters 1, 2, and 3 contain genome regions (R3, R5), (R1, R2, R7), and (R4, R6) 
respectively.  (c) An example of how the genes in (a) and the genome regions in (b) could be 
arranged with their respective metaclusters.  (d) The final list of linked metaclusters (LM) that 
result from the above system.  Note that Region 1 and 2 both end up in the same LM (ATAC 2, 
RNA 1) because they are both in ATAC metacluster 2 and their nearby genes, G1 and G2, are 
both in RNA metaclusters 1. (e) Example motif enrichments for each gene in (a) in each LM.  
Bolded genes have a significant enrichment over the background.  G1 is found too highly in 
many LMs and might have an extremely permissive motif.  In LM (ATAC 1, RNA 3), G3 motif 
is found, but would not be called significant due to it being only 1 observation.  (f) An example 
gene regulatory network generated from (e). 
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Supplementary Figure 9. Motif mining efficiency using various techniques 
Graph detailing the number of motifs found using the same set of peaks with different groupings 
using the same q-value<.05 cutoff.   
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Supplementary Figure 10. Motif scanning statistics for random separation validation 
The distribution of motifs found by randomly splitting the peaks from Supp. Fig. 6 into 103 x 43 
= 4,429 synthetic linked metaclusters(LM).  The mean was ~1,469,000 motifs which is 
significantly fewer than the ~4 million found in the real LMs. 
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Supplementary Figure 11. Chromatin accessibility patterns around Igll1 and Vpreb1 locus 
revealed by scATAC-seq labeled by SOMatic 
(a-b) UCSC genome browser screenshots of the Igll1 and Vpreb1 loci with bulk (50,000 cells), 
aggregate (95 single-cells averaged) and single-cell ATAC-seq for 0 (a; 95 single-cells) and 24-
hour (b;132 single-cells) pre-B cells. Linked SOM ids (ATAC, RNA) are depicted for all 
chromatin elements.  
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Supplementary Figure 12. ChIP-seq validation of Ikaraos binding near Nr3c1 
UCSC genome browser snapshots of Ikaros ChIP data taken at the 0-hour and 24-hour 
timepoints near Nr3c1.  The location of the predicted motif is noted along with its linked 
metacluster ID.  The marked location has a significant change in binding at the marked location 
over the time course. 
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Supplementary Figure 13. ChIP-seq validation of Ikaraos binding near Elf2 
UCSC genome browser snapshots of Ikaros ChIP data taken at the 0-hour and 24-hour 
timepoints near Elf2.  The location of the predicted motif is noted along with its linked 
metacluster ID.  The marked location has a significant change in binding at the marked location 
over the time course. 
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Supplementary Figure 14. ChIP-seq validation of Ikaraos binding near Hes1 
UCSC genome browser snapshots of Ikaros ChIP data taken at the 0-hour and 24-hour 
timepoints near Hes1.  The location of the predicted motif is noted along with its linked 
metacluster ID.  The marked location has a significant change in binding at the marked location 
over the time course. 
  

.CC-BY 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/438937doi: bioRxiv preprint first posted online Oct. 9, 2018; 

http://dx.doi.org/10.1101/438937
http://creativecommons.org/licenses/by/4.0/


Pou2f1: Decrease in RNA signal

*(63,24)
Linked 
metacluster

0hr ChIP

24hr ChIP

* Ikaros motif present

 
 
Supplementary Figure 15. ChIP-seq validation of Ikaraos binding near Pou2f1 
UCSC genome browser snapshots of Ikaros ChIP data taken at the 0-hour and 24-hour 
timepoints near Pou2f1.  The location of the predicted motif is noted along with its linked 
metacluster ID.  The marked location has a significant change in binding at the marked location 
over the time course. 
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Supplementary Figure 16. Downstream Myc target gene expression and chromatin 
accessibility dynamics 
Myc (whose signal drops dramatically from 0- to 24- hour) downstream targets were predicted in 
a method similar to that in Figure 4.  Around half of these react with a drop in signal with a small 
portion reacting with an increase.  This is similar to the change in chromatin accessibility at the 
predicted binding sites near these genes. 
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Supplementary Figure 17. Gene regulatory connections downstream of Ikaros with levels 
of known evidence 
A list of transcription factors with significant changes over the time course and the transcription 
factors were predicted to regulate.  Each regulated gene is followed by a label for the level of 
existing evidence and reference number if relevant. 
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