
Articles
https://doi.org/10.1038/s42256-018-0005-0

1Algorithmic Dynamics Lab, Unit of Computational Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden. 2Oxford Immune
Algorithmics, Oxford University Innovation, Oxford, UK. 3Unit of Computational Medicine, Center for Molecular Medicine, Department of Medicine,
Karolinska Institutet, Stockholm, Sweden. 4Algorithmic Nature Group, LABORES for the Natural and Digital Sciences, Paris, France. 5Living Systems
Laboratory, Biological and Environmental Sciences and Engineering Division and Computer, Electrical and Mathematical Sciences and Engineering Division,
King Abdullah University of Science and Technology, Jeddah, Saudi Arabia. 6Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden.
7Escuela de Matemática, Facultad de Ciencias, UCV, Caracas, Venezuela. *e-mail: hector.zenil@ki.se; narsis.kiani@ki.se; jesper.tegner@kaust.edu.sa

We have introduced a suite of algorithms based on math-
ematical notions acknowledged to fully characterize the
concept of randomness1 . These algorithms enable us to

study the algorithmic information dynamics of evolving systems,
and to devise methods of reducing the dimensions of data2 grounded
on the first mathematical principles of randomness. Deconvolution
of data by generative sources can be viewed as the ultimate goal of
some supervised and unsupervised machine learning algorithms.
This is a hard problem. Unsurprisingly, these approaches often lose
sight of their goal of causal decomposition and instead seek to iden-
tify shared features of data, construed as evidence of their possible
common origin. For example, in signal processing, popular meth-
ods such as k-means3 or k-medoids4 define heuristics based on the
minimization of distance among data points according to a specific
metric. Other popular methods, such as support vector clustering5
and some traditional machine learning techniques, draw on proba-
bility distributions, regression and correlation techniques to achieve
linear separation and produce different groups. For instance, most
deep neural networks use gradient-based learning techniques to sta-
tistically map elements to a differentiable landscape. Another type
of separation method relies on graph-theoretic properties. Methods
that separate graphs by indices such as edge betweenness or the fre-
quency of over-representation of certain subgraphs (for example,
see ref. 6), or by more sophisticated criteria such as shared graph
spectral features, fall into this category7–10. All these methods make
the assumption that, because the objects they study share statistical,
topological or algebraic features11, such objects may be generated by
the same means or from the same sources.

Causality in machine learning
Despite their wide use and popularity, current approaches to causa-
tion are still both fundamentally and pragmatically dependent on

linear regression and correlation tests, ranging from Granger’s cau-
sality12 to transfer entropy13 and Pearl’s interventionist do-calculus14.
Nevertheless, considerable progress has been made in these areas,
in particular through the introduction of Pearl’s interventionist do-
calculus14, even when they are limited by their high dependency on
probability distributions.

Our approach contributes to the discussion of disruptive tech-
niques for introducing symbolic computation and causation into
machine learning so as to better deal with hierarchically structured
data and inductive inference. To this end, we combine techniques
from perturbation analysis as introduced by Pearl14 and algorithmic
probability15.

For illustration purposes, let us consider the area of convolu-
tional neural networks, one of the most promising approaches to
image classification in machine learning, in which a set of primi-
tive features is extracted from a distribution of images. In con-
trast, or in addition to convolutional neural networks, algorithmic
causal deconvolution requires separating features by their most
likely common generative mechanisms rather than by their most
discriminative statistical features, with those combinations that
have the greatest variance serving to distinguish an image from
all others. Synthesizing generative computer programs rather
than using traditional pattern recognition amounts to producing a
truly algorithmic explanatory generative model based on a deeper
understanding of a causal mechanism than is possible through
(non)linear regression. By way of analogy, storing angles in a deep
convolutional neural network layer from a distribution of images
does not (necessarily) mean that these angles put together in some
order are responsible for generating the object itself, just as the dig-
its of the Fibonacci sequence do not build the Fibonacci sequence
by simply arranging themselves in the right order (something that
may be difficult to scale and generalize), but are constructed from

Causal deconvolution by algorithmic generative
models
Hector Zenil   1,2,3,4,5,6*, Narsis A. Kiani1,3,4,6*, Allan A. Zea   1,4,7 and Jesper Tegnér   3,5,6*

Complex behaviour emerges from interactions between objects produced by different generating mechanisms. Yet to decode
their causal origin(s) from observations remains one of the most fundamental challenges in science. Here we introduce a uni-
versal, unsupervised and parameter-free model-oriented approach, based on the seminal concept and the first principles of
algorithmic probability, to decompose an observation into its most likely algorithmic generative models. Our approach uses
a perturbation-based causal calculus to infer model representations. We demonstrate its ability to deconvolve interacting
mechanisms regardless of whether the resultant objects are bit strings, space–time evolution diagrams, images or networks.
Although this is mostly a conceptual contribution and an algorithmic framework, we also provide numerical evidence evaluat-
ing the ability of our methods to extract models from data produced by discrete dynamical systems such as cellular automata
and complex networks. We think that these separating techniques can contribute to tackling the challenge of causation, thus
complementing statistically oriented approaches.

NATure MACHiNe iNTelligeNCe | VOL 1 | JANUARY 2019 | 58–66 | www.nature.com/natmachintell58

mailto:hector.zenil@ki.se
mailto:narsis.kiani@ki.se
mailto:jesper.tegner@kaust.edu.sa
http://orcid.org/0000-0003-0634-4384
http://orcid.org/0000-0002-4042-3775
http://orcid.org/0000-0002-9568-5588
http://www.nature.com/natmachintell

ArticlesNAture MACHiNe iNtelligeNCe

an algorithmic process implementing a formula able to produce
the digits of the Fibonacci sequence in the natural order according
to a generative process.

We complement our work with techniques borrowed from clas-
sical information theory when we cannot do better, but at the core
of our approach is the seminal concept of Solomonoff induction15.

information theory and complexity in machine learning
The notion of deconvolution is similar and related to the notion of
decomposition in methods of pattern recognition16, classical infor-
mation theory17 (a survey can be found in ref. 18) and clustering by
lossless compression19 such as those methods based on information
distances20 and compression—for instance, the so-called ‘normal-

ized information distance’21, and its related measure, the ‘normal-
ized compression distance’22, and other variations.

Classical information theory23 has provided techniques for
capturing and encoding statistical properties from data that affect
almost all areas of science. For example, mutual information cap-
tures various averages based on associated distributions of statistical
properties that are contained in one variable about another; that is,
it captures how information can be combined and decomposed in
purely statistical terms. Recent developments based on information
decomposition have been introduced17,24 with the purpose of sepa-
rating multivariate signals into their alleged generative sources. A
proposal that has gained some traction is the so-called ‘partial infor-
mation decomposition’17, which falls short24, among other reasons,

a b

c d

e

f g

Bit string initial segment Reversed bit string

Simple segment
(high disruptiveness

low resiliency)

Longer program

Shorter program

State diagram
Turing machine
transition table

Output

Interacting computer programs Deconvoluted regions

String deconvolution String deconvolution

0.50

0.10

1

0.05

0 20

(Print 0, move right)

(Print 1, move right)

40 60 80 100

0.8

Inflection
point

Inflection
point

Ran
do

m
 s

eg
m

en
t

(lo
w d

isr
up

tiv
en

es
s

hi
gh

 re
sil

ie
nc

y)

0.6

0.4

N
or

m
al

iz
ed

 c
om

pl
ex

ity
 e

st
im

at
io

n

G
en

er
at

in
g

pr
og

ra
m

N
or

m
al

iz
ed

 c
om

pl
ex

ity
 e

st
im

at
io

n

0.2

1.0

0
0 20 40 60 80 100

State 1 State 2

Fig. 1 | Proof of concept applied to a binary string composed of two segments with different underlying generating mechanisms (computer programs).
a, Plot of complexity estimation of a regular segment (blue) consisting of the repetition of ‘01’ 25 times followed by a random-looking segment (red).
b, Log–linear plot reversing the order of a, yet preserving the qualitative behaviour of the different segments. We note that if the observation scale is at the
level of single bits and they have a causal order according to individual observations, an order can be imposed over the generating programs to produce
the string in the right order. c, The code of the smallest generating program (a non-terminating Turing machine) depicted visually (states are arrows in
different directions), producing the string of 01n for any n (0 is white and 1 is orange) starting from a blank tape, as shown in the space–time diagram (e).
d, The same computer program as a state diagram. f, An illustration of a very simple case of interacting programs with one dominating the other, each with
a different generating mechanism (ECA rules 255 v 110), each running for 60 steps using interacting rule 531 441 as described and explained in detail in
the section ‘Cellular automata’ in the Supplementary Information. g, Algorithmic information footprint: every pixel is perturbed by flipping its value and
evaluating its contribution to the original object coloured accordingly: grey represents no contribution, blue represents a low contribution and red a high
contribution (its presence contributes to its algorithmic randomness).

NATure MACHiNe iNTelligeNCe | VOL 1 | JANUARY 2019 | 58–66 | www.nature.com/natmachintell 59

http://www.nature.com/natmachintell

Articles NAture MACHiNe iNtelligeNCe

because it can tell only what a variable can statistically reveal about
some other variable.

Our approach can be viewed as replacing the methods used in
computational mechanics25,26 (traditionally based on, for example,
Markov processes and Bayesian inference) with a measure based on
algorithmic probability and an empirical estimation of the so-called
universal distribution27,28 (the distribution associated with algo-
rithmic probability), while preserving the spirit of computational
mechanics. In another related line of investigation into inductive
inference, albeit mostly of a theoretical nature, there are approaches

(such as AIXI) that combine algorithmic probability with deci-
sion theory, replacing the prior with the universal distribution29,
something that we have also proposed in the context of algorithmic
cognition research30.

In actual deployments, however, many approaches circumvent
uncomputability and intractability by relying heavily on popu-
lar lossless compression algorithms such as Lempel–Ziv–Welch
(LZW), minimum description length31, Monte Carlo search and
Markov processes, thereby effectively adopting weaker models
of computation. Another related theoretical approach is Levin’s

a b

c

d e

f

Original cellular automaton Ground truth

Sanity check

LHS RHS

Red count60

50

40

30

20

10

0

Blue count

N
um

be
r

of
 p

ix
el

s

Causal deconvolution

Typical last step observation

Fig. 2 | Training-free separation of intertwined programs despite their statistical similarity from an observer’s perspective. a, The output of two different
ECA (rules 60 and 110) with qualitatively complex output behaviour (11 to 60 steps depicted here, from a random initial condition) interacting with each
other (one of which has been proved to be Turing-universal and the other of which has also been conjectured to be universal1), each producing structures
of a similar type that, from an observer’s perspective, are difficult to distinguish (see c). b, For comparison purposes, the two systems are distinguished in
b (knowing the ground truth of which pixel is generated by which rule). c, What an observer of the last runtime would see in the form of a stream of bits
with no clear statistical distinction. d, The algorithm pinpoints the regions of neutral, positive and negative, with the contiguous largest blue component
segmenting the image into two. e, Only negative versus positive causal contributions occur where both Shannon entropy and popular lossless compression
algorithms fail (see Supplementary Information). f, Sanity check/validation. Statistically significant quantitative differences between the parts divided
by a contiguous line (shown in blue) between right and left occuring after application of the algorithm as illustrated in e, despite the weak statistical and
qualitative differences between the two systems as depicted in a. The statistical difference shows that the method can help separate one system from the
other. More cases are provided in the Supplementary Information.

NATure MACHiNe iNTelligeNCe | VOL 1 | JANUARY 2019 | 58–66 | www.nature.com/natmachintell60

http://www.nature.com/natmachintell

ArticlesNAture MACHiNe iNtelligeNCe

search32 and variations33, based on a dovetailing algorithm interleav-
ing computer programs one step at a time, from shortest to longest,
with each program assigned a fraction of time proportional to its
probability during each iteration. Resource-bounded algorithmic
(Kolmogorov–Chaitin) complexity34 is also related to our approach.
It imposes an upper bound on program length, which effectively
adopts a linear finite automaton computational model35, which we
circumvent by allowing improvements while increasing the running
time (though in practice each calculation is restricted to a resource-
bounded calculation). In another category are methods of inductive
inference such as computational measures of information gain and
reinforcement36,37.

Methods and algorithms
Algorithmic machine learning. One strength in our approach that
Solomonoff himself defended38 is that if machines are going to have

a problem-solving capability similar to those of humans, machines
should not start from scratch every time for each new problem.
Therefore, we precompute and store estimations of the universal
distribution from explorations of large sets of small computer pro-
grams that are able to explain small pieces of data. Each computer
program represents a discrete generative model of its correspond-
ing piece of data, which, when assembled in sequence, represents a
full model. The precomputation allows practical applications to be
implemented in linear time by querying a look-up table27,28 acting
as a working (Turing machine) tape and exchanging memory for
computational time. This technique, combined with classical infor-
mation theory in the way that the sequence model is assembled,
provides key hints on the algorithmic content of a piece of data39.
The estimations of our approach, denoted ‘BDM’, can always be
improved on by running the original uncomputable process, with
the advantage that partial results exponentially decrease the mul-

a b

c d

e

Component 1
(complete graph)

Component 2
(scale–free graph)

Degree Degree Degree Degree

Component 1
(scale–free)

Component 2
(Erd s–Rényi)

Decomposition/deconvolution

Separation/clustering

Hierarchical clustering

20 100
80
60
40
20
0

20 25 30

C
ou

nt

C
ou

nt

80
60
40
20

0

C
ou

nt
15

10

5

0

C
ou

nt15

15

10

10

5

5
0

0 20 25

ER2

151050 20 25151050 6 754321

ER1

ER3

K2

K4

K3

K1

Fig. 3 | Algorithmic similarity and graph hierarchical decomposition leading to causal clustering. a,b, Forced deconvolution of a tree by minimization of
graph algorithmic information loss, thereby maximizing the causal resemblance of the resultant components (hence causal clustering). Depicted are the
components of K-ary trees of size 6 (a rooted tree in which each node has no more than K children) (a) and 10 (b) and their resulting graphs after one
iteration of the deconvolution algorithm. c, Training-free deconvolution of 20 cases of scale-free networks generated by preferential attachment randomly
connected to a complete graph. Negative edges break down the original graph into components corresponding to the different underlying generating
mechanisms. Histograms correspond to each network according to the inferred decomposition showing the expected degree distribution (and how many
times each degree occurs) of the two resulting major components after application of the method. d, Unsupervised deconvolution of 20 cases of random
graphs (Erdős-Rényi) connected to scale-free networks (a typical case is depicted here). e, The algorithm first separates the subcomponents with the
largest algorithmic difference, followed by other subcomponents, thus providing a natural hierarchy of source likelihood.

NATure MACHiNe iNTelligeNCe | VOL 1 | JANUARY 2019 | 58–66 | www.nature.com/natmachintell 61

http://www.nature.com/natmachintell

Articles NAture MACHiNe iNtelligeNCe

tiplicative constant involved in approaches such as Levin’s search.
Our BDM approach (see Supplementary Information) has been
shown to go beyond statistical capabilities39, capturing features that
cannot be grasped by methods such as Shannon entropy, traditional
pattern recognition, or lossless compression.

Our approach to deconvolution, based on algorithmic infor-
mation dynamics1, is a bottom-up approach deeply rooted in
Solomonoff ’s inductive inference15,40,41; it is motivated by previous
approaches, but conceived and designed for scalability without
compromising the power of the computational model too early on.
Behind the number or sequence of numbers matching observa-
tions or data to a complexity value using our methods, we also offer
access to the generating rules explaining the data as candidate mod-
els that can be used for validation against present and future data,
thus enabling predictions.

At the core of algorithmic information dynamics1 is the process
of finding algorithmic candidate models in the form of computer
programs able to explain pieces of observed data and group them
by same/similar source or generating mechanism, using as a guide
the length of the set of computer programs that produce each piece
of data when a larger piece of data is decomposed in all possible
ways by perturbation analysis. The main point is that if a computer

program generates the data, different regions of the same data can
be explained by the same algorithms.

Deconvolution algorithms. The algorithm in the context of net-
works is as follows. Let G be a graph and let E = E(G) denote the set
of edges. Let G\e denote the graph obtained after deleting an edge e
from G. Let C(G) be the estimation of the algorithmic complexity of
G (see Supplementary Information). The ‘information contribution’
of e to G is given by I(G, e) := C(G) − C(G\e). A positive informa-
tion contribution corresponds to information loss and a negative
contribution to information gain. Here we wish to find the subset
F ⊆ E such that the removal of the edges in F disconnects G into N
components and minimizes the loss of information among all sub-
sets of edges, that is the subset such that I(G, F) ≤ I(G, S) for all S ⊆ E.
Algorithm (1) in Supplementary Information allows us to obtain
the subgraph (V, E\F) subject to the above conditions. The desired
subset of edges is then given by F = E(G) \E(DECONVOLVE(G, N)).

The only parameter that the algorithm (see algorithm (1) in
Supplementary Information) requires is N, the maximum number
of components into which an object will be decomposed. However,
there is a natural way to find the optimal terminating step, and there-
fore the number of maximum possible components that minimize

a b

c

120
Signature

Connection edges
Erd s-Rényi graph
Star graph
Complete graph

Cutting places
(–1 diffs)

log(2) + ε = 15100

80

60

P
os

iti
ve

 in
fo

rm
at

io
n

va
lu

e

In
fo

rm
at

io
n

va
lu

e

40

20

0
0 20 40

Sorted edges

60

40

20

0

–20

–40

–60

80 0 20 40

Edges sorted by maximum information value

60 80

d

Causal deconvolution

Program 2
Program 4

Program 3

Program 1

Original graph

Fig. 4 | unsupervised graph deconvolution identifies each different topological generating mechanism. a, Convoluted network composed of three
subgraphs produced by different generating mechanisms. b, Causal deconvolution of a by algorithm (2), keeping edges connected if their removal does
not produce a change in the algorithmic complexity of the original graph larger than log(2) +  ε. c, The ‘information signature’ (red line with circle markers)
illustrates the distribution of information values for each edge (x axis) in the original graph (a). Also shown is a line of the differences of consecutive values
of the signature multiplied by − 1 (blue line with square markers), indicating the breaking points (the peaks that mark the edges to be deleted) with, in this
case, four peaks (values) clearly standing out beyond the log(2) +  ε line (orange rhombus) breaking the signature corresponding to the formation of each
subgraph with high accuracy, thereby deconvolving the original graph (a) into the subgraphs (largest components) that are most likely to be generated by
the same causal/algorithmic source. d, Signature decomposition according to the breaking points found in c imparting the colours to the subgraphs in b
with results matching theoretical expectations.

NATure MACHiNe iNTelligeNCe | VOL 1 | JANUARY 2019 | 58–66 | www.nature.com/natmachintell62

http://www.nature.com/natmachintell

ArticlesNAture MACHiNe iNtelligeNCe

the sum of the lengths of the candidate generating mechanisms,
making the algorithm truly parameter-free, as it is not required
to have a preset number of desired components. We provide the
pseudo-code (in algorithm (2) of the Supplementary Information)
that determines the optimal number of components; it requires no
N parameter.

Clearly, if components s1 and s2 have the same algorithmic com-
plexity, this does not immediately imply that s1 and s2 are generated
by exactly the same generating mechanism. However, because of the
exponential decay of the algorithmic probability of an increasingly
random object, we know that the less random an object is, the expo-
nentially more likely it is that the underlying mechanism will be the
same. This is because there are exponentially fewer short (far from
randomness) programs than long ones (see Supplementary Fig. 9c).
For example, in the extreme case of fully connected graphs, we see
that the complete graph denoted by Kn, with n the node count, has
the smallest possible algorithmic complexity growth as a function of
n, that is, ~c + log[n], where c is the length of the shortest computer
program that implements the program that produces the matrix
of size n × n with all 1 entries representing the complete graph. If
|C(s1) − C(s2)| ≈ log[n], and s1 and s2 are connected graphs, then s1
and s2 are with high probability produced by the same algorithm.
Conversely, if |C(s1) − C(s2)| departs from log(n), then the likelihood
of being generated by the same algorithm exponentially vanishes.
So the information regarding both the algorithmic complexity of
the components and their relative size sheds light on the candidate
generating mechanisms.

Algorithm unsupervised termination criterion. The algorithm
suggests a natural terminating criterion. Let S be the object that has
been produced by N mostly independent generative mechanisms.
We decompose S into n parts s1, … , sn in such a way that each
si, i ∈ {1 … n} has an underlying generating mechanism found by
running the algorithm iteratively for increasing n. But after each
iteration we calculate the minimum of the differences in algorithmic
complexity among all components. The algorithm should then stop
when the number of components is exactly N and the sum of the
lengths—the estimated algorithmic complexity—of each of the
programs diverges from the expected log[N]), because the length of
the individual causal mechanisms producing each new component
will be breaking down a component that could previously be
explained by the causal mechanism at an earlier iteration of the
algorithm. An implementation of this idea for a graph is shown in
algorithm (2) in Supplementary Information).

As a trivial example, let us take the string 1n, where Sn means that
the pattern S is repeated n times. After application of the algorithm,
the terminating criterion will suggest that 1n cannot be broken
down into smaller segments, each with a different causal generating
mechanism, the sum of whose total lengths will be shorter than
the length of the generating mechanism producing 1n itself. This
is because the sum of the length of the shortest programs ∑ ∣ ∣pi i

running on a universal Turing machine generating segments of 1n
of length mi < n each, such that the concatenation ∪ i=1 pi = 1n will be
strictly greater than C(1n), given that each pi halting criterion will
require i log mi bits more than C(1n).

Application to intertwined computer programs. A cellular
automaton is a computer program that applies in parallel a global
rule composed of local rules on a tape of cells with symbols (for
example, binary). Thoroughly studied in ref. 1, elementary cellular
automata (or ECA) are one-dimensional cellular automata that take
into consideration in their local rules the cell next to the centre and
the centre cell. For technical details see ‘Cellular automata’ section
in the Supplementary Information.

Cellular automata offer an optimal testbed for our purposes
because they are discrete dynamical systems able to illustrate their

operation in a visual fashion. A cellular automaton can be interpreted
as a one-dimensional object that produces a highly integrated two-
dimensional image whose rows are causally connected and are thus
ideal testing cases. Clearly, the deconvolution algorithms can be
adapted to any object. In this case, instead of edge removal we apply
row removal to the evolution of interacting cellular automata (see
‘Cellular automata’ section in the Supplementary Information for
technical details). In what follows we perform experiments using
interacting programs such as cellular automata as examples to
illustrate the deconvolution algorithms. Interacting programs need
to define how the interaction happens (see section ‘Interacting CA’
in Supplementary Information).

Numerical experiments
Behind our deconvolution methods is the idea that we can find
a set of small computer rules or programs able to reconstruct a
piece of data. Figure 1c,d illustrates this. In the deconvolution of a
string generated by two different mechanisms (Fig. 1a,b) and thus
in two different regimes (random versus non-random), computer
programs such as those in Fig. 1c,d help to deconvolute the string.
We then do the same in all other cases, but extending the number
of degrees of freedom of a Turing machine tape. We note that our
methods, as illustrated in Fig. 1a,b, are invariant to production or
representation direction, given that the algorithmic probability and
its reversal (and the entire set of computable transformations) are
the same up to a small constant (the length of the computable trans-
formation)42.

Decomposition of sequences and space–time diagrams. We used
different programs to produce different parts of a string, that is, a
program p to generate segment s1 and a program p′ to generate seg-
ment s2 put next to each other. Clearly, the string has been gener-
ated by two generating mechanisms (p and p′). Next we used the
algorithm to deconvolve the string and find the number of generat-
ing mechanisms and most likely model mechanisms (the programs
themselves), inducing a form of ‘algorithmic partition’ based on the
likelihood of each segment being produced by different generating
mechanisms.

Figure 1a–e illustrates how strings that have short generating
mechanisms are significantly and consistently more sensitive to
perturbations. The resulting string is 0101010101010101010101
0101010101010101010101010101011101001010101000000010
01100111100110000011100110, with the bolding corresponding
to the parts suggested by the different regimes, according to their
algorithmic contribution and the segment’s resilience in the face of
perturbations (by deletion and replacement) of the original string.
Behind every real number providing an estimation of the algorith-
mic complexity of a string or object, our methods also provide a set
of generating computer programs able to produce such object when
using our algorithmic-probability-based measure BDM.

Not only did we find the correct number of mechanisms (Fig. 1a,b),
but also we found the candidate programs (which for this trivial exam-
ple are exactly the original) that generate each segment (Fig. 1c–e)
by seeking the shortest computer programs in a bottom-up
approach27,28. Finding the shortest programs is, however, secondary,
because we only care about the explanatory powers that different
programs have to explain the data in full or in part, pinpointing the
different causal nature of the segments and helping in the deconvo-
lution of the original observation.

Figure 1c–e depicts the computer program (a non-terminating
Turing machine) that is found when calculating the BDM of the
01n string. The BDM approximation to the algorithmic complexity
of any 01n string is thus the number of small computer programs
that are found capable of generating the same string or, conversely
(via the algorithmic coding theorem, see refs. 39,43), the length of
the shortest program producing the string. For example, the string

NATure MACHiNe iNTelligeNCe | VOL 1 | JANUARY 2019 | 58–66 | www.nature.com/natmachintell 63

http://www.nature.com/natmachintell

Articles NAture MACHiNe iNtelligeNCe

01n was trivially found to be generated by a large number of small
computer programs (Fig. 1c,d depicts a non-terminating Turing
machine with E its output) using our algorithmic methods (as
opposed to, for example, using lossless compression, which would
only obfuscate the possible generating model) with only two rules
out of 2 × 2 rules for the size of Turing machine with only two states
and two symbols and no more, and thus of very low algorithmic
complexity compared to, for example, generating a random-looking
string that would require a more complex (longer) computer pro-
gram. The computer program of a truly random string will grow
in proportion to the length of the random string, but for a low-
complexity string such as 01n, repeated any number of times n, the
length of the computer program is of (almost) fixed size, growing
only by log(n) if the computer program is required to stop after n
iterations. In this case, 01n is a trivial example with a strong statisti-
cal regularity whose low complexity could be captured by applying
Shannon entropy alone on blocks of size 2.

Cellular automaton two-dimensional deconvolution. Figure 1f–g
illustrates how the algorithm can separate regions produced by gen-
erating mechanisms of different algorithmic information content
by observing their space–time dynamics, thereby contributing to
the deconvolution of regions that are produced by different gener-
ating mechanisms. In this example, both programs are sufficiently
robust to not break down (see section ‘Robustness and limitations’
in Supplementary Information) when they interact with each other,
with rule 110 prevailing over 255. Yet, in the general case, it is not
always easy to tell these mechanisms apart. In more sophisticated
examples, such as in Fig. 2d,e, we see how the algorithm can break
down contiguous regions separating an object into two major com-
ponents, corresponding to the different generating computer pro-
grams that are intertwined and actively interacting with each other.
The experiment was repeated 20 times using programs with differ-
ing qualitative (for example, Wolfram class) behaviour.

Figure 2f demonstrates that perturbations of regions in red
have a more random effect after their application and are thus
by themselves less algorithmically random. When regions are of
the same algorithmic complexity they are likely to be generated
by similar algorithms, that is, from algorithms that are of similar
minimal length. The removal of pixels in the blue regions moves
the interacting system away from randomness and the pixels are
themselves more algorithmically random. Blue structures on the
left-hand side correspond to large triangles occurring in ECA rule
110 that are usually used to compute and transfer information in
the form of particles.

However, triangular patterns transfer information in a limited
way because their light cone of influence reduces at the greatest
possible speed of the automaton, and they are assigned an absolute
neutral information value. Absolute neutral values are those closest
to 0. Once separated, the two regions have clearly different algo-
rithmic characteristics given by their causal perturbation sensitivity,
with the right-hand side being more sensitive to both random and
non-random perturbations. Moreover, Fig. 2f shows results compat-
ible with the theoretical expectation and findings in ref. 1, where
a measure of reprogrammability associated with the number and
magnitude of elements that can move a dynamical system towards
or away from randomness was introduced and shown to be related
to fundamental properties of the attractor space of the system.

Figure 2c–f shows that by iterating the deconvolution algorithm
not only do the two main components of the image correspond to
the two generating ECA rules, but a second application of the algo-
rithm would produce a third or more components corresponding to
further resilient features generated by the rules, which can be con-
sidered rules themselves within a smaller rule (state/symbol) space.
However, in the deconvolved observations, the interacting rule
determining how two or more rules may interact effectively consti-

tutes a third global rule to which the algorithm has no direct access,
or an apparent region in the observed window.

In the case of Fig. 2, the terminating criterion retrieves N = 3
components from the two interacting ECA (rule 60 and 110). This
does not contradict the fact that we started from two generating
mechanisms, because there are three clear regimes that are in fact
likely to be reproducible by three different generating mechanisms,
as suggested by the deconvolution algorithm itself, and as found in
ref. 44, where it has been shown that rule 110 can be emulated by
the composition of two simpler ECA rules (rules 51 and 118). As
seen in Fig. 2, among the possible causal partitions, N = 2 success-
fully deconvolves ECA rule 60 from rule 110 on the first run, with a
greater difference than the difference found between N = 3 compo-
nents when breaking down rule 110 into its two different regimes.

Unsupervised network deconvolution. Clustering can usually be
viewed as solving a problem which has an underlying tree structure
according to some measure of interest. One way to think of optimal
classification is to discover a tree structure at some level of depth,
with tree leaves closer to each other when such objects have a com-
mon or similar causal mechanism and for which no feature of inter-
est has been selected. Figure 3 illustrates how the algorithm may
partition data, in this case starting from a trivial example that breaks
down complete K-ary trees. Traditionally, both partitioning and
clustering are induced by an arbitrary distance measure of interest
that determines the connections in a tree, with elements closer to a
cluster centre connected by edges. The algorithm breaks down the
trees (see Fig. 3) into as many components as desired by iterating
over remaining elements if required until the number of desired
components is obtained or the terminating criterion is applied (see
subsection ‘Algorithm unsupervised termination criterion’). Figure
3a,b provides examples illustrating how to maximize topological
symmetry. The algorithm can be applied, without loss of generaliza-
tion, to any non-trivial graph, as in Fig. 3c,d, or to any dataset for
that matter.

Figure 4 illustrates the algorithm and terminating criterion start-
ing from an artificial graph composed of several graphs (two simple
and one that is Erdős-Rényi random: a small Erdős-Rényi-random
graph connected to a star graph and to a complete graph). The
graph can be successfully decomposed by algorithmic probability
(see Fig. 4d) by identifying the likelihood of an edge being produced
by the same mechanism by virtue of being close to each other in the
information contribution (which theoretically should be removed
by only log(2) if it follows the normal evolution of the same pro-
cess), hence what we call causal separation/partition and cluster-
ing. Figure 4d, with the broken components that were found above
log(2) + ε, also shows the distribution of edges coloured by graph
membership, perfectly corresponding to the different subgraphs
that were used to compose the original graph in Fig. 4a.

The same task using classical information theory (Shannon
entropy) is shown not to be sensitive enough, and a popular loss-
less compression algorithm (compression based on LZW) provided
a noisy approximation of the results obtained by using the block
decomposition method, as defined in ref. 39 (see section ‘Other
methods and measures’ in Supplementary Information for details).

Figure 3c–e illustrates how randomly connected graphs with
different topologies can be broken down into their respective gen-
erative mechanisms. Figure 3c is a complete graph of size 20 ran-
domly connected by three edges to a scale-free graph of size 100.
The graphs are generated by different mechanisms. One is a small
program that, given a number N of nodes, produces a graph with all
nodes connected to all other N − 1 nodes and has a program of short
length that grows only by log N11. The scale-free network is gener-
ated by the canonical preferential attachment algorithm with two
edges per node and requires a slightly longer algorithm that grows
by log N + c (ref. 11), where c is a small constant accounting for the

NATure MACHiNe iNTelligeNCe | VOL 1 | JANUARY 2019 | 58–66 | www.nature.com/natmachintell64

http://www.nature.com/natmachintell

ArticlesNAture MACHiNe iNtelligeNCe

pseudo-random choice of attachment nodes. The algorithm breaks
the graphs into two components, each of which corresponds to the
graphs with different degree distributions (depicted below each case)
associated with its generating mechanism. This is because ∣ ∣P G()1
+ ∣ ∣P G()2 + … + ∣ ∣P G()n + ∣ ∣P e()Gi

 > ∣ … ∣P G G G()n1 2 for any Gi,
where eGi

is the set of edges randomly connecting Gi to Gj for any i
and j for all G of low algorithmic complexity.

Figure 3d illustrates a case similar to that in Fig. 3c, but
instead of a complete graph, an Erdős-Rényi graph with edge
density 0.5 is produced and connected by three random edges
to a scale-free network produced in the same fashion as in Fig.
3c. Again, the algorithm was able to break it down into the two
corresponding subgraphs.

Conclusion
Current approaches to machine and deep learning are45 ill-equipped
to deal with inductive inference, explanation and causation. Our
methods are different from those used in other approaches (even
those based on lossless compression algorithms) to estimate algo-
rithmic complexity, and in particular, those from classical informa-
tion theory and other statistical traditions. The methods introduced
here promote the use of techniques from causal and perturbation
analysis14 complemented by universal principles drawn from the
theory of computability and algorithmic complexity.

Comparisons to other methods indicate that our approach is
accurate and sensitive even in simplified form based on single-pixel
perturbation (as opposed to, for example, full subset perturbations).
This means there is also a lot of room for improvement and further
exploration of other applications and other areas based on the same
principles.

Our approach contributes to the discussion on ways to teach
machine learning cause and effect, as recently called for by Pearl45
so as to depart from traditional statistical approaches in machine
learning. We strongly believe (just as did Minsky46) that moving in
the algorithmic direction and introducing symbolic computation
complemented by previous achievements in the area of causation
such as counterfactuals and the perturbation analysis introduced
by Pearl et al.14, combined with the combinatorial power of current
approaches to deep learning, is the way forward in addressing the
challenge of causation in machine learning. Approaches like ours
open up the possibility of designing more elaborate machine learn-
ing techniques with complementary and better equipped abilities
grounded on completely different first principles.

Code availability. A basic online implementation is available at http://www.com-
plexitycalculator.com/deconvolution. Implementations in R and the Wolfram
Language are available at https://github.com/allgebrist/Causal-Deconvolution-
of-Networks/ and https://www.algorithmicdynamics.net/software.html. Some
functions are also included in the Supplementary Information (Supplementary
Methods).

Data availability
The data that support the plots within this paper are available from the
corresponding author upon request.

Received: 29 May 2018; Accepted: 5 November 2018;
Published online: 7 January 2019

references
 1. Zenil, H. et al. An algorithmic information calculus for causal discovery and

reprogramming systems. Preprint at https://doi.org/10.2139/ssrn.3193409
(2018).

 2. Zenil, H., Kiani, N. A., Zea, A. A., Rueda-Toicen, A. & Tegnér, J. Data
dimension reduction and network sparsification based on minimal
algorithmic information loss. Preprint at https://arxiv.org/abs/1802.05843
(2018).

 3. Lloyd, S. P. Least squares quantization in PCM. IEEE Trans. Inform. Theory
28, 129–137 (1982).

 4. Kaufman, L. & Rousseeuw, P. J. in Statistical Data Analysis Based on the
L1-Norm and Related Methods (North-Holland, Amsterdam, 1987).

 5. Ben-Hur, A., Horn, D., Siegelmann, H. & Vapnik, V. N. Support vector
clustering. J. Mach. Learn. Res. 2, 125–137 (2001).

 6. Milo, R. et al. Network motifs: simple building blocks of complex networks.
Science 298, 824–827 (2002).

 7. Newman, M. E. J. Finding community structure in networks using the
eigenvectors of matrices. Phys. Rev. E 74, 036104 (2006).

 8. Benczur, A. & Karger, D. R. Approximating s-t minimum cuts in O(n2)-time.
In Proc. Twenty-Eighth Annual ACM Symposium on the Theory of Computing
47–55 (ACM, 1996).

 9. Spielman, D. A. & Srivastava, N. Graph sparsification by effective resistances.
In Proc. Fortieth Annual ACM Symposium on Theory of Computing 563–568
(ACM, 2008).

 10. Spielman, D. A. & Teng, S.-H. Spectral sparsification of graphs. SIAM J.
Comput. 40, 981–1025 (2011).

 11. Liu, M., Liu, B. & Wei, F. Graphs determined by their (signless) Laplacian
spectra. Electron. J. Linear Algebra 22, 112–124 (2011).

 12. Granger, C. W. J. Investigating causal relations by econometric models and
cross-spectral methods. Econometrica 37, 424–438 (1969).

 13. Schreiber, T. Measuring information transfer. Phys. Rev. Lett. 85,
461–464 (2000).

 14. Pearl, J. Causality: Models, Reasoning and Inference (Cambridge University
Press, Cambridge, 2000).

 15. Solomonoff, R. J. A formal theory of inductive inference: parts 1 and 2.
Inform. Control 7, 1–22–224–254 (1964).

 16. Watanabe, S. in Frontiers of Pattern Recognition (ed. Watanabe, S.) 561–568
(Academic Press, New York, 1972).

 17. Williams, P. L. & Beer, R. D. Nonnegative decomposition of multivariate
information. Preprint at https://arxiv.org/abs/1004.2515 (2010).

 18. Lizier, J. T., Bertschinger, N., Jost, J. & Wibral, M. Information decomposition
of target effects from multi-source interactions: perspectives on previous,
current and future work. Entropy 20, 307 (2018).

 19. Li, M. & Vitányi, P. M. B. An Introduction to Kolmogorov Complexity and Its
Applications 3rd edn (Springer, New York, 2009).

 20. Li, M., Chen, X., Li, X., Ma, B. & Vitányi, P. M. B. The similarity metric. IEEE
Trans. Inf. Theory 50, 3250–3264 (2004).

 21. Bennett, C. H., Gács, P., Li, M., Vitányi, P. M. B. & Zurek, W. H. Information
distance. IEEE Trans. Inf. Theory 44, 1407–1423 (1998).

 22. Cilibrasi, R. & Vitanyi, P. M. B. Clustering by compression. IEEE Trans. Inf.
Theory 51, 1523–1545 (2005).

 23. Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J.
27, 379–423 (1948).

 24. Ince, R. A. A. Measuring multivariate redundant information with pointwise
common change in surprisal. Entropy 19, 318 (2017).

 25. Strelioff, C. C. & Crutchfield, J. P. Bayesian structural inference for hidden
processes. Phys. Rev. E 89, 042119 (2014).

 26. Shalizi, C. R. & Crutchfield, J. P. Computational mechanics: pattern and
prediction, structure and simplicity. J. Stat. Phys. 104, 819–881 (2001).

 27. Delahaye, J.-P. & Zenil, H. Numerical evaluation of the complexity of short
strings: a glance into the innermost structure of algorithmic randomness.
Appl. Math. Comput. 219, 63–77 (2012).

 28. Soler-Toscano, F., Zenil, H., Delahaye, J.-P. & Gauvrit, N. Calculating
Kolmogorov complexity from the frequency output distributions of small
Turing machines. PLoS ONE 9, e96223 (2014).

 29. Hutter, M. Universal Artificial Intelligence (EATCS Series, Springer,
Berlin, 2005).

 30. Gauvrit, N., Zenil, H. & Tegnér, J. in Representation and Reality: Humans,
Animals and Machines (eds Dodig-Crnkovic, G. & Giovagnoli, R.) 117–139
(Springer, Berlin,Berlin, 2017).

 31. Rissanen, J. Modeling by shortest data description. Automatica 14,
465–658 (1978).

 32. Levin, L. A. Universal search problems. Probl. Inform. Transm. 9,
265–266 (1973).

 33. Schmidhuber, J. The speed prior: a new simplicity measure yielding,
near-optimal computable predictions. In Proc. 15th annual conference on
Computational Learning Theory (COLT 2002) (eds Kivinen, J. & Sloan, R. H.)
216–228 (Springer, Sydney, 2002).

 34. Daley, R. P. Minimal-program complexity of pseudo-recursive and
pseudo-random sequences. Math. Syst. Theory 9, 83–94 (1975).

 35. Zenil, H., Badillo, L., Hernández-Orozco, S. & Hernández-Quiroz, F.
Coding-theorem like behaviour and emergence of the universal
distribution from resource-bounded algorithmic probability. Int. J. Parallel
Emergent Distrib. Syst. https://doi.org/10.1080/17445760.2018.1448932
(2018).

 36. Hernández-Orallo, J. Computational measures of information gain and
reinforcement in inference processes. AI Commun. 13, 49–50 (2000).

 37. Hernández-Orallo, J. Universal and cognitive notions of part. In Proc. 4th
Systems Science European Congress 711–722 (EC, 1999).

NATure MACHiNe iNTelligeNCe | VOL 1 | JANUARY 2019 | 58–66 | www.nature.com/natmachintell 65

http://www.complexitycalculator.com/deconvolution
http://www.complexitycalculator.com/deconvolution
https://github.com/allgebrist/Causal-Deconvolution-of-Networks/
https://github.com/allgebrist/Causal-Deconvolution-of-Networks/
https://www.algorithmicdynamics.net/software.html
https://doi.org/10.2139/ssrn.3193409
https://arxiv.org/abs/1802.05843
https://arxiv.org/abs/1004.2515
https://doi.org/10.1080/17445760.2018.1448932
http://www.nature.com/natmachintell

Articles NAture MACHiNe iNtelligeNCe

 38. Solomonoff, R. J. The time scale of artificial intelligence: reflections on social
effects. Human. Syst. Manag. 5, 149–153 (1985).

 39. Zenil, H. et al. A decomposition method for global evaluation of Shannon
entropy and local estimations of algorithmic complexity. Entropy 20,
605 (2018).

 40. Chaitin, G. J. On the length of programs for computing finite binary
sequences. J. ACM 13, 547–569 (1966).

 41. Levin, L. A. Laws of information conservation (non-growth) and
aspects of the foundation of probability theory. Probl. Inf. Transm. 10,
206–210 (1974).

 42. Zenil, H., Kiani, N. A. & Tegnér, J. Symmetry and correspondence of
algorithmic complexity over geometric, spatial and topological
representations. Entropy 20, 534 (2018).

 43. Zenil, H., Soler-Toscano, F., Delahaye, J.-P. & Gauvrit, N. Two-dimensional
Kolmogorov complexity and validation of the coding theorem method by
compressibility. PeerJ Comput. Sci. 1, e23 (2013).

 44. Riedel, J. & Zenil, H. Rule primality and compositional emergence of
Turing-universality from elementary cellular automata. J. Cell. Autom. 13,
479–497 (2018).

 45. Pearl, J. To build truly intelligent machines, teach them cause and effect.
Quanta Magazine (15 May 2018).

 46. Minsky, M. The limits of understanding. World Science Festival https://www.
worldsciencefestival.com/videos/the-limits-of-understanding/ (2014).

Acknowledgements
H.Z. was supported by Swedish Research Council (Vetenskapsrådet) grant number 2015-
05299. J.T. was supported by the King Abdullah University of Science and Technology.

Author contributions
H.Z., N.A.K. and J.T. conceived and designed the algorithms. H.Z. designed the
experiments and carried out the calculations and numerical experiments. A.A.Z. and
H.Z. conceived the online tool to illustrate the method applied to simple examples based
on this paper. All authors contributed to the writing of the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/
s42256-018-0005-0.

Reprints and permissions information is available at www.nature.com/reprints.

Correspondence and requests for materials should be addressed to H.Z. or N.A.K. or J.T.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.
© The Author(s), under exclusive licence to Springer Nature Limited 2019

NATure MACHiNe iNTelligeNCe | VOL 1 | JANUARY 2019 | 58–66 | www.nature.com/natmachintell66

https://www.worldsciencefestival.com/videos/the-limits-of-understanding/
https://www.worldsciencefestival.com/videos/the-limits-of-understanding/
https://doi.org/10.1038/s42256-018-0005-0
https://doi.org/10.1038/s42256-018-0005-0
http://www.nature.com/reprints
http://www.nature.com/natmachintell

	Causal deconvolution by algorithmic generative models
	Causality in machine learning
	Information theory and complexity in machine learning
	Methods and algorithms
	Algorithmic machine learning
	Deconvolution algorithms
	Algorithm unsupervised termination criterion

	Application to intertwined computer programs

	Numerical experiments
	Decomposition of sequences and space–time diagrams.
	Cellular automaton two-dimensional deconvolution.
	Unsupervised network deconvolution.

	Conclusion
	Code availability.

	Acknowledgements
	Fig. 1 Proof of concept applied to a binary string composed of two segments with different underlying generating mechanisms (computer programs).
	Fig. 2 Training-free separation of intertwined programs despite their statistical similarity from an observer’s perspective.
	Fig. 3 Algorithmic similarity and graph hierarchical decomposition leading to causal clustering.
	Fig. 4 Unsupervised graph deconvolution identifies each different topological generating mechanism.

