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We have introduced a suite of algorithms based on math-
ematical notions acknowledged to fully characterize the 
concept of randomness1 . These algorithms enable us to 

study the algorithmic information dynamics of evolving systems, 
and to devise methods of reducing the dimensions of data2 grounded 
on the first mathematical principles of randomness. Deconvolution 
of data by generative sources can be viewed as the ultimate goal of 
some supervised and unsupervised machine learning algorithms. 
This is a hard problem. Unsurprisingly, these approaches often lose 
sight of their goal of causal decomposition and instead seek to iden-
tify shared features of data, construed as evidence of their possible 
common origin. For example, in signal processing, popular meth-
ods such as k-means3 or k-medoids4 define heuristics based on the 
minimization of distance among data points according to a specific 
metric. Other popular methods, such as support vector clustering5 
and some traditional machine learning techniques, draw on proba-
bility distributions, regression and correlation techniques to achieve 
linear separation and produce different groups. For instance, most 
deep neural networks use gradient-based learning techniques to sta-
tistically map elements to a differentiable landscape. Another type 
of separation method relies on graph-theoretic properties. Methods 
that separate graphs by indices such as edge betweenness or the fre-
quency of over-representation of certain subgraphs (for example, 
see ref. 6), or by more sophisticated criteria such as shared graph 
spectral features, fall into this category7–10. All these methods make 
the assumption that, because the objects they study share statistical, 
topological or algebraic features11, such objects may be generated by 
the same means or from the same sources.

Causality in machine learning
Despite their wide use and popularity, current approaches to causa-
tion are still both fundamentally and pragmatically dependent on 

linear regression and correlation tests, ranging from Granger’s cau-
sality12 to transfer entropy13 and Pearl’s interventionist do-calculus14. 
Nevertheless, considerable progress has been made in these areas, 
in particular through the introduction of Pearl’s interventionist do-
calculus14, even when they are limited by their high dependency on 
probability distributions.

Our approach contributes to the discussion of disruptive tech-
niques for introducing symbolic computation and causation into 
machine learning so as to better deal with hierarchically structured 
data and inductive inference. To this end, we combine techniques 
from perturbation analysis as introduced by Pearl14 and algorithmic 
probability15.

For illustration purposes, let us consider the area of convolu-
tional neural networks, one of the most promising approaches to 
image classification in machine learning, in which a set of primi-
tive features is extracted from a distribution of images. In con-
trast, or in addition to convolutional neural networks, algorithmic 
causal deconvolution requires separating features by their most 
likely common generative mechanisms rather than by their most 
discriminative statistical features, with those combinations that 
have the greatest variance serving to distinguish an image from 
all others. Synthesizing generative computer programs rather 
than using traditional pattern recognition amounts to producing a 
truly algorithmic explanatory generative model based on a deeper 
understanding of a causal mechanism than is possible through 
(non)linear regression. By way of analogy, storing angles in a deep 
convolutional neural network layer from a distribution of images 
does not (necessarily) mean that these angles put together in some 
order are responsible for generating the object itself, just as the dig-
its of the Fibonacci sequence do not build the Fibonacci sequence 
by simply arranging themselves in the right order (something that 
may be difficult to scale and generalize), but are constructed from 
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an algorithmic process implementing a formula able to produce 
the digits of the Fibonacci sequence in the natural order according 
to a generative process.

We complement our work with techniques borrowed from clas-
sical information theory when we cannot do better, but at the core 
of our approach is the seminal concept of Solomonoff induction15.

Information theory and complexity in machine learning
The notion of deconvolution is similar and related to the notion of 
decomposition in methods of pattern recognition16, classical infor-
mation theory17 (a survey can be found in ref. 18) and clustering by 
lossless compression19 such as those methods based on information 
distances20 and compression—for instance, the so-called ‘normal-

ized information distance’21, and its related measure, the ‘normal-
ized compression distance’22, and other variations.

Classical information theory23 has provided techniques for 
capturing and encoding statistical properties from data that affect 
almost all areas of science. For example, mutual information cap-
tures various averages based on associated distributions of statistical 
properties that are contained in one variable about another; that is, 
it captures how information can be combined and decomposed in 
purely statistical terms. Recent developments based on information 
decomposition have been introduced17,24 with the purpose of sepa-
rating multivariate signals into their alleged generative sources. A 
proposal that has gained some traction is the so-called ‘partial infor-
mation decomposition’17, which falls short24, among other reasons, 
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Fig. 1 | Proof of concept applied to a binary string composed of two segments with different underlying generating mechanisms (computer programs). 
a, Plot of complexity estimation of a regular segment (blue) consisting of the repetition of ‘01’ 25 times followed by a random-looking segment (red).  
b, Log–linear plot reversing the order of a, yet preserving the qualitative behaviour of the different segments. We note that if the observation scale is at the 
level of single bits and they have a causal order according to individual observations, an order can be imposed over the generating programs to produce 
the string in the right order. c, The code of the smallest generating program (a non-terminating Turing machine) depicted visually (states are arrows in 
different directions), producing the string of 01n for any n (0 is white and 1 is orange) starting from a blank tape, as shown in the space–time diagram (e).  
d, The same computer program as a state diagram. f, An illustration of a very simple case of interacting programs with one dominating the other, each with 
a different generating mechanism (ECA rules 255 v 110), each running for 60 steps using interacting rule 531 441 as described and explained in detail in 
the section ‘Cellular automata’ in the Supplementary Information. g, Algorithmic information footprint: every pixel is perturbed by flipping its value and 
evaluating its contribution to the original object coloured accordingly: grey represents no contribution, blue represents a low contribution and red a high 
contribution (its presence contributes to its algorithmic randomness).
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because it can tell only what a variable can statistically reveal about 
some other variable.

Our approach can be viewed as replacing the methods used in 
computational mechanics25,26 (traditionally based on, for example, 
Markov processes and Bayesian inference) with a measure based on 
algorithmic probability and an empirical estimation of the so-called 
universal distribution27,28 (the distribution associated with algo-
rithmic probability), while preserving the spirit of computational 
mechanics. In another related line of investigation into inductive 
inference, albeit mostly of a theoretical nature, there are approaches 

(such as AIXI) that combine algorithmic probability with deci-
sion theory, replacing the prior with the universal distribution29, 
something that we have also proposed in the context of algorithmic  
cognition research30.

In actual deployments, however, many approaches circumvent 
uncomputability and intractability by relying heavily on popu-
lar lossless compression algorithms such as Lempel–Ziv–Welch 
(LZW), minimum description length31, Monte Carlo search and 
Markov processes, thereby effectively adopting weaker models 
of computation. Another related theoretical approach is Levin’s 
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Fig. 2 | Training-free separation of intertwined programs despite their statistical similarity from an observer’s perspective. a, The output of two different 
ECA (rules 60 and 110) with qualitatively complex output behaviour (11 to 60 steps depicted here, from a random initial condition) interacting with each 
other (one of which has been proved to be Turing-universal and the other of which has also been conjectured to be universal1), each producing structures 
of a similar type that, from an observer’s perspective, are difficult to distinguish (see c). b, For comparison purposes, the two systems are distinguished in 
b (knowing the ground truth of which pixel is generated by which rule). c, What an observer of the last runtime would see in the form of a stream of bits 
with no clear statistical distinction. d, The algorithm pinpoints the regions of neutral, positive and negative, with the contiguous largest blue component 
segmenting the image into two. e, Only negative versus positive causal contributions occur where both Shannon entropy and popular lossless compression 
algorithms fail (see Supplementary Information). f, Sanity check/validation. Statistically significant quantitative differences between the parts divided 
by a contiguous line (shown in blue) between right and left occuring after application of the algorithm as illustrated in e, despite the weak statistical and 
qualitative differences between the two systems as depicted in a. The statistical difference shows that the method can help separate one system from the 
other. More cases are provided in the Supplementary Information.
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search32 and variations33, based on a dovetailing algorithm interleav-
ing computer programs one step at a time, from shortest to longest, 
with each program assigned a fraction of time proportional to its 
probability during each iteration. Resource-bounded algorithmic 
(Kolmogorov–Chaitin) complexity34 is also related to our approach. 
It imposes an upper bound on program length, which effectively 
adopts a linear finite automaton computational model35, which we 
circumvent by allowing improvements while increasing the running 
time (though in practice each calculation is restricted to a resource-
bounded calculation). In another category are methods of inductive 
inference such as computational measures of information gain and 
reinforcement36,37.

Methods and algorithms
Algorithmic machine learning. One strength in our approach that 
Solomonoff himself defended38 is that if machines are going to have 

a problem-solving capability similar to those of humans, machines 
should not start from scratch every time for each new problem. 
Therefore, we precompute and store estimations of the universal 
distribution from explorations of large sets of small computer pro-
grams that are able to explain small pieces of data. Each computer 
program represents a discrete generative model of its correspond-
ing piece of data, which, when assembled in sequence, represents a 
full model. The precomputation allows practical applications to be 
implemented in linear time by querying a look-up table27,28 acting 
as a working (Turing machine) tape and exchanging memory for 
computational time. This technique, combined with classical infor-
mation theory in the way that the sequence model is assembled, 
provides key hints on the algorithmic content of a piece of data39. 
The estimations of our approach, denoted ‘BDM’, can always be 
improved on by running the original uncomputable process, with 
the advantage that partial results exponentially decrease the mul-
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tiplicative constant involved in approaches such as Levin’s search. 
Our BDM approach (see Supplementary Information) has been 
shown to go beyond statistical capabilities39, capturing features that 
cannot be grasped by methods such as Shannon entropy, traditional 
pattern recognition, or lossless compression.

Our approach to deconvolution, based on algorithmic infor-
mation dynamics1, is a bottom-up approach deeply rooted in 
Solomonoff ’s inductive inference15,40,41; it is motivated by previous 
approaches, but conceived and designed for scalability without 
compromising the power of the computational model too early on. 
Behind the number or sequence of numbers matching observa-
tions or data to a complexity value using our methods, we also offer 
access to the generating rules explaining the data as candidate mod-
els that can be used for validation against present and future data, 
thus enabling predictions.

At the core of algorithmic information dynamics1 is the process 
of finding algorithmic candidate models in the form of computer 
programs able to explain pieces of observed data and group them 
by same/similar source or generating mechanism, using as a guide 
the length of the set of computer programs that produce each piece 
of data when a larger piece of data is decomposed in all possible 
ways by perturbation analysis. The main point is that if a computer 

program generates the data, different regions of the same data can 
be explained by the same algorithms.

Deconvolution algorithms. The algorithm in the context of net-
works is as follows. Let G be a graph and let E =​ E(G) denote the set 
of edges. Let G\e denote the graph obtained after deleting an edge e 
from G. Let C(G) be the estimation of the algorithmic complexity of 
G (see Supplementary Information). The ‘information contribution’ 
of e to G is given by I(G, e) :=​ C(G) −​ C(G\e). A positive informa-
tion contribution corresponds to information loss and a negative 
contribution to information gain. Here we wish to find the subset 
F ⊆​ E such that the removal of the edges in F disconnects G into N 
components and minimizes the loss of information among all sub-
sets of edges, that is the subset such that I(G, F) ≤​ I(G, S) for all S ⊆​ E. 
Algorithm (1) in Supplementary Information allows us to obtain 
the subgraph (V, E\F) subject to the above conditions. The desired 
subset of edges is then given by F =​ E(G) \E(DECONVOLVE(G, N)).

The only parameter that the algorithm (see algorithm (1) in 
Supplementary Information) requires is N, the maximum number 
of components into which an object will be decomposed. However, 
there is a natural way to find the optimal terminating step, and there-
fore the number of maximum possible components that minimize 
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the sum of the lengths of the candidate generating mechanisms, 
making the algorithm truly parameter-free, as it is not required 
to have a preset number of desired components. We provide the 
pseudo-code (in algorithm (2) of the Supplementary Information) 
that determines the optimal number of components; it requires no 
N parameter.

Clearly, if components s1 and s2 have the same algorithmic com-
plexity, this does not immediately imply that s1 and s2 are generated 
by exactly the same generating mechanism. However, because of the 
exponential decay of the algorithmic probability of an increasingly 
random object, we know that the less random an object is, the expo-
nentially more likely it is that the underlying mechanism will be the 
same. This is because there are exponentially fewer short (far from 
randomness) programs than long ones (see Supplementary Fig. 9c). 
For example, in the extreme case of fully connected graphs, we see 
that the complete graph denoted by Kn, with n the node count, has 
the smallest possible algorithmic complexity growth as a function of 
n, that is, ~c +​ log[n], where c is the length of the shortest computer 
program that implements the program that produces the matrix 
of size n ×​ n with all 1 entries representing the complete graph. If 
|C(s1) −​ C(s2)| ≈​ log[n], and s1 and s2 are connected graphs, then s1 
and s2 are with high probability produced by the same algorithm. 
Conversely, if |C(s1) −​ C(s2)| departs from log(n), then the likelihood 
of being generated by the same algorithm exponentially vanishes. 
So the information regarding both the algorithmic complexity of 
the components and their relative size sheds light on the candidate 
generating mechanisms.

Algorithm unsupervised termination criterion. The algorithm 
suggests a natural terminating criterion. Let S be the object that has 
been produced by N mostly independent generative mechanisms. 
We decompose S into n parts s1, …​, sn in such a way that each  
si, i ∈​ {1 …​ n} has an underlying generating mechanism found by 
running the algorithm iteratively for increasing n. But after each 
iteration we calculate the minimum of the differences in algorithmic 
complexity among all components. The algorithm should then stop 
when the number of components is exactly N and the sum of the 
lengths—the estimated algorithmic complexity—of each of the 
programs diverges from the expected log[N]), because the length of 
the individual causal mechanisms producing each new component 
will be breaking down a component that could previously be 
explained by the causal mechanism at an earlier iteration of the 
algorithm. An implementation of this idea for a graph is shown in 
algorithm (2) in Supplementary Information).

As a trivial example, let us take the string 1n, where Sn means that 
the pattern S is repeated n times. After application of the algorithm, 
the terminating criterion will suggest that 1n cannot be broken 
down into smaller segments, each with a different causal generating 
mechanism, the sum of whose total lengths will be shorter than 
the length of the generating mechanism producing 1n itself. This 
is because the sum of the length of the shortest programs ∑ ∣ ∣pi i

 
running on a universal Turing machine generating segments of 1n 
of length mi <​ n each, such that the concatenation ∪​i=1 pi =​ 1n will be 
strictly greater than C(1n), given that each pi halting criterion will 
require i log mi bits more than C(1n).

Application to intertwined computer programs. A cellular 
automaton is a computer program that applies in parallel a global 
rule composed of local rules on a tape of cells with symbols (for 
example, binary). Thoroughly studied in ref. 1, elementary cellular 
automata (or ECA) are one-dimensional cellular automata that take 
into consideration in their local rules the cell next to the centre and 
the centre cell. For technical details see ‘Cellular automata’ section 
in the Supplementary Information.

Cellular automata offer an optimal testbed for our purposes 
because they are discrete dynamical systems able to illustrate their 

operation in a visual fashion. A cellular automaton can be interpreted 
as a one-dimensional object that produces a highly integrated two-
dimensional image whose rows are causally connected and are thus 
ideal testing cases. Clearly, the deconvolution algorithms can be 
adapted to any object. In this case, instead of edge removal we apply 
row removal to the evolution of interacting cellular automata (see 
‘Cellular automata’ section in the Supplementary Information for 
technical details). In what follows we perform experiments using 
interacting programs such as cellular automata as examples to 
illustrate the deconvolution algorithms. Interacting programs need 
to define how the interaction happens (see section ‘Interacting CA’ 
in Supplementary Information).

Numerical experiments
Behind our deconvolution methods is the idea that we can find 
a set of small computer rules or programs able to reconstruct a 
piece of data. Figure 1c,d illustrates this. In the deconvolution of a 
string generated by two different mechanisms (Fig. 1a,b) and thus 
in two different regimes (random versus non-random), computer 
programs such as those in Fig. 1c,d help to deconvolute the string. 
We then do the same in all other cases, but extending the number 
of degrees of freedom of a Turing machine tape. We note that our 
methods, as illustrated in Fig. 1a,b, are invariant to production or 
representation direction, given that the algorithmic probability and 
its reversal (and the entire set of computable transformations) are 
the same up to a small constant (the length of the computable trans-
formation)42.

Decomposition of sequences and space–time diagrams. We used 
different programs to produce different parts of a string, that is, a 
program p to generate segment s1 and a program p′​ to generate seg-
ment s2 put next to each other. Clearly, the string has been gener-
ated by two generating mechanisms (p and p′​). Next we used the 
algorithm to deconvolve the string and find the number of generat-
ing mechanisms and most likely model mechanisms (the programs 
themselves), inducing a form of ‘algorithmic partition’ based on the 
likelihood of each segment being produced by different generating 
mechanisms.

Figure 1a–e illustrates how strings that have short generating 
mechanisms are significantly and consistently more sensitive to 
perturbations. The resulting string is 0101010101010101010101
0101010101010101010101010101011101001010101000000010
01100111100110000011100110, with the bolding corresponding 
to the parts suggested by the different regimes, according to their 
algorithmic contribution and the segment’s resilience in the face of 
perturbations (by deletion and replacement) of the original string. 
Behind every real number providing an estimation of the algorith-
mic complexity of a string or object, our methods also provide a set 
of generating computer programs able to produce such object when 
using our algorithmic-probability-based measure BDM.

Not only did we find the correct number of mechanisms (Fig. 1a,b),  
but also we found the candidate programs (which for this trivial exam-
ple are exactly the original) that generate each segment (Fig. 1c–e)  
by seeking the shortest computer programs in a bottom-up 
approach27,28. Finding the shortest programs is, however, secondary, 
because we only care about the explanatory powers that different 
programs have to explain the data in full or in part, pinpointing the 
different causal nature of the segments and helping in the deconvo-
lution of the original observation.

Figure 1c–e depicts the computer program (a non-terminating 
Turing machine) that is found when calculating the BDM of the 
01n string. The BDM approximation to the algorithmic complexity 
of any 01n string is thus the number of small computer programs 
that are found capable of generating the same string or, conversely 
(via the algorithmic coding theorem, see refs. 39,43), the length of 
the shortest program producing the string. For example, the string 
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01n was trivially found to be generated by a large number of small 
computer programs (Fig. 1c,d depicts a non-terminating Turing 
machine with E its output) using our algorithmic methods (as 
opposed to, for example, using lossless compression, which would 
only obfuscate the possible generating model) with only two rules 
out of 2 ×​ 2 rules for the size of Turing machine with only two states 
and two symbols and no more, and thus of very low algorithmic 
complexity compared to, for example, generating a random-looking 
string that would require a more complex (longer) computer pro-
gram. The computer program of a truly random string will grow 
in proportion to the length of the random string, but for a low-
complexity string such as 01n, repeated any number of times n, the 
length of the computer program is of (almost) fixed size, growing 
only by log(n) if the computer program is required to stop after n 
iterations. In this case, 01n is a trivial example with a strong statisti-
cal regularity whose low complexity could be captured by applying 
Shannon entropy alone on blocks of size 2.

Cellular automaton two-dimensional deconvolution. Figure 1f–g 
illustrates how the algorithm can separate regions produced by gen-
erating mechanisms of different algorithmic information content 
by observing their space–time dynamics, thereby contributing to 
the deconvolution of regions that are produced by different gener-
ating mechanisms. In this example, both programs are sufficiently 
robust to not break down (see section ‘Robustness and limitations’ 
in Supplementary Information) when they interact with each other, 
with rule 110 prevailing over 255. Yet, in the general case, it is not 
always easy to tell these mechanisms apart. In more sophisticated 
examples, such as in Fig. 2d,e, we see how the algorithm can break 
down contiguous regions separating an object into two major com-
ponents, corresponding to the different generating computer pro-
grams that are intertwined and actively interacting with each other. 
The experiment was repeated 20 times using programs with differ-
ing qualitative (for example, Wolfram class) behaviour.

Figure 2f demonstrates that perturbations of regions in red 
have a more random effect after their application and are thus 
by themselves less algorithmically random. When regions are of 
the same algorithmic complexity they are likely to be generated 
by similar algorithms, that is, from algorithms that are of similar 
minimal length. The removal of pixels in the blue regions moves 
the interacting system away from randomness and the pixels are 
themselves more algorithmically random. Blue structures on the 
left-hand side correspond to large triangles occurring in ECA rule 
110 that are usually used to compute and transfer information in 
the form of particles.

However, triangular patterns transfer information in a limited 
way because their light cone of influence reduces at the greatest 
possible speed of the automaton, and they are assigned an absolute 
neutral information value. Absolute neutral values are those closest 
to 0. Once separated, the two regions have clearly different algo-
rithmic characteristics given by their causal perturbation sensitivity, 
with the right-hand side being more sensitive to both random and 
non-random perturbations. Moreover, Fig. 2f shows results compat-
ible with the theoretical expectation and findings in ref. 1, where 
a measure of reprogrammability associated with the number and 
magnitude of elements that can move a dynamical system towards 
or away from randomness was introduced and shown to be related 
to fundamental properties of the attractor space of the system.

Figure 2c–f shows that by iterating the deconvolution algorithm 
not only do the two main components of the image correspond to 
the two generating ECA rules, but a second application of the algo-
rithm would produce a third or more components corresponding to 
further resilient features generated by the rules, which can be con-
sidered rules themselves within a smaller rule (state/symbol) space. 
However, in the deconvolved observations, the interacting rule 
determining how two or more rules may interact effectively consti-

tutes a third global rule to which the algorithm has no direct access, 
or an apparent region in the observed window.

In the case of Fig. 2, the terminating criterion retrieves N =​ 3 
components from the two interacting ECA (rule 60 and 110). This 
does not contradict the fact that we started from two generating 
mechanisms, because there are three clear regimes that are in fact 
likely to be reproducible by three different generating mechanisms, 
as suggested by the deconvolution algorithm itself, and as found in 
ref. 44, where it has been shown that rule 110 can be emulated by 
the composition of two simpler ECA rules (rules 51 and 118). As 
seen in Fig. 2, among the possible causal partitions, N =​ 2 success-
fully deconvolves ECA rule 60 from rule 110 on the first run, with a 
greater difference than the difference found between N =​ 3 compo-
nents when breaking down rule 110 into its two different regimes.

Unsupervised network deconvolution. Clustering can usually be 
viewed as solving a problem which has an underlying tree structure 
according to some measure of interest. One way to think of optimal 
classification is to discover a tree structure at some level of depth, 
with tree leaves closer to each other when such objects have a com-
mon or similar causal mechanism and for which no feature of inter-
est has been selected. Figure 3 illustrates how the algorithm may 
partition data, in this case starting from a trivial example that breaks 
down complete K-ary trees. Traditionally, both partitioning and 
clustering are induced by an arbitrary distance measure of interest 
that determines the connections in a tree, with elements closer to a 
cluster centre connected by edges. The algorithm breaks down the 
trees (see Fig. 3) into as many components as desired by iterating 
over remaining elements if required until the number of desired 
components is obtained or the terminating criterion is applied (see 
subsection ‘Algorithm unsupervised termination criterion’). Figure 
3a,b provides examples illustrating how to maximize topological 
symmetry. The algorithm can be applied, without loss of generaliza-
tion, to any non-trivial graph, as in Fig. 3c,d, or to any dataset for 
that matter.

Figure 4 illustrates the algorithm and terminating criterion start-
ing from an artificial graph composed of several graphs (two simple 
and one that is Erdős-Rényi random: a small Erdős-Rényi-random 
graph connected to a star graph and to a complete graph). The 
graph can be successfully decomposed by algorithmic probability 
(see Fig. 4d) by identifying the likelihood of an edge being produced 
by the same mechanism by virtue of being close to each other in the 
information contribution (which theoretically should be removed 
by only log(2) if it follows the normal evolution of the same pro-
cess), hence what we call causal separation/partition and cluster-
ing. Figure 4d, with the broken components that were found above 
log(2) +​ ε, also shows the distribution of edges coloured by graph 
membership, perfectly corresponding to the different subgraphs 
that were used to compose the original graph in Fig. 4a.

The same task using classical information theory (Shannon 
entropy) is shown not to be sensitive enough, and a popular loss-
less compression algorithm (compression based on LZW) provided 
a noisy approximation of the results obtained by using the block 
decomposition method, as defined in ref. 39 (see section ‘Other 
methods and measures’ in Supplementary Information for details).

Figure 3c–e illustrates how randomly connected graphs with 
different topologies can be broken down into their respective gen-
erative mechanisms. Figure 3c is a complete graph of size 20 ran-
domly connected by three edges to a scale-free graph of size 100. 
The graphs are generated by different mechanisms. One is a small 
program that, given a number N of nodes, produces a graph with all 
nodes connected to all other N −​ 1 nodes and has a program of short 
length that grows only by log N11. The scale-free network is gener-
ated by the canonical preferential attachment algorithm with two 
edges per node and requires a slightly longer algorithm that grows 
by log N +​ c (ref. 11), where c is a small constant accounting for the 
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pseudo-random choice of attachment nodes. The algorithm breaks 
the graphs into two components, each of which corresponds to the 
graphs with different degree distributions (depicted below each case) 
associated with its generating mechanism. This is because  ∣ ∣P G( )1
+​ ∣ ∣P G( )2  +​ …​ +​ ∣ ∣P G( )n  +​ ∣ ∣P e( )Gi

 >​ ∣ … ∣P G G G( )n1 2  for any Gi, 
where eGi

is the set of edges randomly connecting Gi to Gj for any i 
and j for all G of low algorithmic complexity.

Figure 3d illustrates a case similar to that in Fig. 3c, but 
instead of a complete graph, an Erdős-Rényi graph with edge 
density 0.5 is produced and connected by three random edges 
to a scale-free network produced in the same fashion as in Fig. 
3c. Again, the algorithm was able to break it down into the two 
corresponding subgraphs.

Conclusion
Current approaches to machine and deep learning are45 ill-equipped 
to deal with inductive inference, explanation and causation. Our 
methods are different from those used in other approaches (even 
those based on lossless compression algorithms) to estimate algo-
rithmic complexity, and in particular, those from classical informa-
tion theory and other statistical traditions. The methods introduced 
here promote the use of techniques from causal and perturbation 
analysis14 complemented by universal principles drawn from the 
theory of computability and algorithmic complexity.

Comparisons to other methods indicate that our approach is 
accurate and sensitive even in simplified form based on single-pixel 
perturbation (as opposed to, for example, full subset perturbations). 
This means there is also a lot of room for improvement and further 
exploration of other applications and other areas based on the same 
principles.

Our approach contributes to the discussion on ways to teach 
machine learning cause and effect, as recently called for by Pearl45 
so as to depart from traditional statistical approaches in machine 
learning. We strongly believe (just as did Minsky46) that moving in 
the algorithmic direction and introducing symbolic computation 
complemented by previous achievements in the area of causation 
such as counterfactuals and the perturbation analysis introduced 
by Pearl et al.14, combined with the combinatorial power of current 
approaches to deep learning, is the way forward in addressing the 
challenge of causation in machine learning. Approaches like ours 
open up the possibility of designing more elaborate machine learn-
ing techniques with complementary and better equipped abilities 
grounded on completely different first principles.

Code availability. A basic online implementation is available at http://www.com-
plexitycalculator.com/deconvolution. Implementations in R and the Wolfram 
Language are available at https://github.com/allgebrist/Causal-Deconvolution-
of-Networks/ and https://www.algorithmicdynamics.net/software.html. Some 
functions are also included in the Supplementary Information (Supplementary 
Methods).

Data availability
The data that support the plots within this paper are available from the 
corresponding author upon request.
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