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Abstract
Regulatory T cells (Tregs) suppress other immune cells and are critical mediators of periph-

eral tolerance. Therapeutic manipulation of Tregs is subject to numerous clinical investiga-

tions including trials for adoptive Treg transfer. Since the number of naturally occurring

Tregs (nTregs) is minute, it is highly desirable to develop a complementary approach of

inducing Tregs (iTregs) from naïve T cells. Mouse studies exemplify the importance of

peripherally induced Tregs as well as the applicability of iTreg transfer in different disease

models. Yet, procedures to generate iTregs are currently controversial, particularly for

human cells. Here we therefore comprehensively compare different established and define

novel protocols of human iTreg generation using TGF-β in combination with other com-

pounds. We found that human iTregs expressed several Treg signature molecules, such as

Foxp3, CTLA-4 and EOS, while exhibiting low expression of the cytokines Interferon-γ, IL-

10 and IL-17. Importantly, we identified a novel combination of TGF-β, retinoic acid and

rapamycin as a robust protocol to induce human iTregs with superior suppressive activity in
vitro compared to currently established induction protocols. However, iTregs generated by

these protocols did not stably retain Foxp3 expression and did not suppress in vivo in a

humanized graft-versus-host-disease mouse model, highlighting the need for further

research to attain stable, suppressive iTregs. These results advance our understanding of

the conditions enabling human iTreg generation and may have important implications for

the development of adoptive transfer strategies targeting autoimmune and inflammatory

diseases.

Introduction
CD4+CD25+Foxp3+ regulatory T cells (Tregs) play an indispensable role in the immune sys-
tem as they are involved in the prevention of autoimmune disease, allergies and infection-
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induced organ pathology by suppression of other immune cells [1]. However, Tregs can also
dampen immune responses against tumors in several settings [2]. Therefore, therapeutic
manipulation of Treg number and function is subject to intense clinical investigations.

Foxp3 was identified as a lineage-defining transcription factor (TF) for Tregs in mice and
humans, and loss of Foxp3 leads to severe lethal autoimmune disease in mice and men [1]. Yet,
Foxp3 cannot serve as a specific marker for Tregs but their suppressive function has to be
determined, because human conventional CD4+CD25- T cells (Tcons) transiently express
intermediate Foxp3 amounts upon activation [3,4]. Only recently, transient expression of low
Foxp3 levels without commitment to the Treg lineage was also shown for murine T cells [5].
Contradictory reports leave it unclear whether Foxp3 expression is sufficient to confer suppres-
sive abilities, whereas necessity of Foxp3 for Treg function is undisputed: Foxp3, in conjunction
with several other TFs, activates or represses the expression of Treg signature genes [6,7]. Sig-
nificant progress has been made in elucidating the regulation of Foxp3 expression. Activation
of the Foxp3 gene is achieved by binding of several TFs to its promoter and intronic Conserved
Non-coding DNA Sequences (CNSs) [8,9]. These TFs are activated via T cell receptor (TCR),
IL-2 and TGF-β signaling and, depending on which CNS they act on, are implicated in either
Foxp3 induction (CNS3), maintenance (CNS2) or TGF-β-enhanced expression (CNS1). It
seems that a fine balance of TCR signal intensity, timing and quality defines the optimal condi-
tions allowing for Foxp3 induction, and furthermore, TGF-β can decrease the sensitivity
towards too strong TCR stimulation [10–12]. Foxp3 expression is negatively regulated by inac-
tivation of the Foxp3-inducing TFs Foxo1 and Foxo3a through the Akt/mTOR pathway, which
is activated largely by CD28 costimulatory signals, but also IL-2R and TCR signaling cross-talk
with Akt via the kinase PI3K [10,13,14]. Along these lines, strong costimulation was suggested
to inhibit Treg induction [10,15–17]. Hence, the clinically approved mTOR inhibitor rapamy-
cin (Rapa) promotes Foxp3 expression as shown for murine Tregs [18–21]. Also for human
Tregs, Rapa has been successfully used in expansion of Tregs, while at the same time it prevents
growth of Tcons [22,23]. An additional layer of complexity is added by DNAmethylation and
histone modifications at the Foxp3 locus and, interestingly, an epigenetic “Treg signature” can
be established independently of Foxp3 [24,25]. In particular, the CNS2 comprises the so-called
Treg-specific demethylated region (TSDR), which includes several CpG motifs, demethylation
of which is crucial for stable maintenance of Foxp3 expression: The TSDR is demethylated
exclusively in stable Tregs while it is methylated in naïve and activated Tcons as well as in ex-
Tregs that have lost Foxp3 [26–28].

Peripheral tolerance is ensured not only by thymus-derived Tregs (tTregs, often called
nTregs) but also involves various populations of peripherally induced Tregs (pTregs) [29–31]
of which we will here confine to Foxp3+ Tregs only. tTregs are thought to be most important
in maintaining tolerance to self-antigens, while pTregs are supposed to ensure tolerance to for-
eign innocuous antigens, such as those derived from the commensal microbiota. pTregs are
shown to be generated in vivo and, indeed, mouse models could demonstrate non-redundant
functions for pTregs supplementing tTregs [32,33], even though tTregs and pTregs share a
common niche [34]. Currently there is no protein marker which can unambiguously distin-
guish tTregs from pTregs: the proposed tTreg marker Helios emerged to be not exclusively
expressed in tTregs, and Neuropilin-1 (Nrp1) distinguishes murine but not human tTregs
from pTregs under non-inflammatory conditions [31,35–37]. Interestingly, the TGF-β
response element CNS1 in the Foxp3 locus appears crucial for peripheral pTreg differentiation
while dispensable for tTregs [38], and its deletion in the C57BL/6 mouse strain exemplified the
importance of pTregs in vivo, leading to spontaneous development of Th2-type pathologies at
mucosal sites [39] as well as defects in maternal-fetal tolerance in the placenta [40].
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Recently many factors contributing to Treg induction have been elucidated. TCR activation
of naïve T cells in the presence of TGF-β and IL-2 favors differentiation of pTregs, which was
shown in mice to occur in vivo and can be mimicked in vitro to generate so-called induced
Tregs (iTregs). pTregs seem to play a role mainly in the intestine, where chronic low-dose anti-
gen stimulation under tolerogenic conditions favors their induction. Gut-associated dendritic
cells (DCs) do not only secrete TGF-β but also the vitamin A metabolite all-trans retinoic acid
(ATRA), which enhances TGF-β-induced Treg induction [41–43]; also affecting human Tregs
[44–46]. Further, it was recently shown that short-chain fatty acids (SCFA) derived from
microbiota in the gut can induce murine Tregs in vitro and in vivo [47,48]. Along these lines,
identifying factors inducing murine Tregs may aid in developing suitable protocols to generate
human iTregs in vitro as well, which is highly relevant therapeutically. As Treg dysfunction is
involved in many diseases, adoptive transfer of Tregs is suggested to be a promising strategy to
prevent or cure autoimmune and inflammatory diseases. Importantly, adoptive transfer of ex
vivo isolated Tregs to prevent or treat graft-versus-host disease (GvHD) showed promising out-
comes in first-in-man clinical trials [49–52], and several other clinical studies are ongoing.
Although controversial, several studies in mice indicate that the therapeutic transfer of iTregs
may be superior to transfer of ex vivo isolated Tregs, rendering iTregs an attractive target for
therapeutic approaches in humans as well [53]. This is particularly relevant as ex vivo derived
Tregs are very limited in number and their expansion is not trivial [54]. Further, iTregs could
be generated in an antigen-specific manner, thus enhancing efficacy and specificity. Numerous
mouse studies show the effectiveness of in vitro generated iTregs in several disease settings
[53], such as colitis, type 1 diabetes, autoimmune gastritis, arthritis and a model for multiple
sclerosis. Further, scurfymice, which exhibit severe systemic autoimmune disease due to Foxp3
mutation, can be rescued by transfer of wild type in vitro generated iTregs [55]. Of note, in
xenogeneic GvHD models, transfer of human iTregs generated in the presence of TGF-β plus
ATRA or plus Rapa successfully prolonged survival of mice [46,56,57]. However, therapeutic
use of iTregs in humans requires further research on iTreg generation from human naïve T
cells as it is currently highly disputed which protocols are suitable to generate human Tregs in
vitro. Particularly, stability of iTregs is a concern, as it was suggested that Foxp3 expression in
iTregs is unstable due to lack of TSDR demethylation [27]. For TGF-β-induced murine as well
as human iTregs, most studies indeed find at most an intermediate demethylation pattern of
the TSDR not comparable to tTregs and also correlating with intermediate suppressive activity
[5,26,27,38,58,59]. Interestingly, in vivo generated pTregs acquire TSDR demethylation in
most mouse models [24,27,59,60], but not in all [32]. Nevertheless, several studies find stable
and suppressive human and murine iTregs without TSDR demethylation [56,61–63]. Adding
to the controversies, even with similar protocols for iTreg generation, reports between labora-
tories differ with respect to phenotype and suppressive function of TGF-β-induced iTregs [64],
which may be due to subtle experimental differences such as, for example, serum factors as
well as type, strength and timing of stimulation [10,11,63]. Furthermore, the effect on human
Foxp3+ Treg induction has not been investigated for several of the compounds recently
described to favor murine iTreg generation.

To advance the knowledge of human Treg induction, here we comprehensively compared
different proposed procedures for human iTreg induction side-by-side within the same experi-
mental system, as well as developed new protocols for human iTreg induction. We character-
ized the derived human iTregs in detail with respect to their phenotype regarding Treg
signature molecules, TSDR demethylation, cytokine production as well as suppressive function
in vitro and in vivo in a humanized GvHD mouse model. Our results enhance the understand-
ing of human iTreg generation and we identify the combination of TGF-β, ATRA and Rapa as
a novel protocol to robustly induce human iTregs with superior suppressive activity in vitro
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compared to other protocols, yet stability and in vivo suppressive activity remain to be achieved
in the future.

Results

Different protocols comprising TGF-β to induce human iTregs result in
high Foxp3 expression
To analyze and compare the efficacy of different published and novel protocols to induce
human iTregs, we isolated naïve CD4+ T cells from human peripheral blood and cultured
them in vitro in the presence of TCR and costimulation plus IL-2 in serum-free medium for 6
days (Fig 1A and S1 Fig). Stimulated cells were used as a negative control (“mock”). To induce
iTregs, TGF-β1 was added to the cultures, either alone or together with ATRA, ATRA plus
Rapa, or butyrate. Ex vivo isolated CD25++ Tregs, here called nTregs, were used as positive
control and presumably comprise a majority of tTregs, but also pTregs [31]. By comprehen-
sively comparing these different protocols for human iTreg induction, we found that all of the
tested protocols induced a high fraction of Foxp3 expressing cells, which was significantly
higher than the weak activation-induced Foxp3 expression observed in human mock control T
cells (Fig 1; S2 Fig; S1 Table). Foxp3 expression levels per cell in Foxp3+ iTregs were similarly
high as in nTregs (Fig 1B). Foxp3 expression was enriched in the CD25++ population for all
the TGF-β-induced iTregs, which was less obvious for activation-induced low Foxp3 expres-
sion in stimulated mock control cells (Fig 1B and 1C). We found that ATRA addition together
with TGF-β enhanced Foxp3 induction compared to TGF-β alone. Conversely, when Rapa was
added in addition to TGF-β and ATRA (termed “Rapa triple combination”), Foxp3 expression
in total CD4+ T cells rather dropped compared to TGF-β or TGF-β + ATRA treatment alone.
This seemingly reduced Foxp3 expression in the cultures containing Rapa was less pronounced
when gating on CD25++ cells (Fig 1B and 1C). SCFAs were recently described to enhance Treg
induction in murine cells [47,48], but the effect on human T cells was not studied yet. Here, we
found that addition of butyrate together with TGF-β enhanced Foxp3 induction in human
naive T cells compared to TGF-β alone. We found that propionate, another SCFA which was
suggested to marginally enhance Treg induction in mouse cells [47,48], did not significantly
enhance Foxp3 expression compared to TGF-β alone (data not shown). A similar trend of
Foxp3 expression across the different iTreg conditions as shown in Fig 1 compiled for all
donors was also seen in individual donors (S3A Fig), as well as on the level of FOXP3mRNA
(S3B Fig). Kinetics as well as titration of TGF-β and anti-CD28 showed a similar trend of
Foxp3 expression across Treg-inducing conditions regardless of the tested TGF-β or anti-
CD28 concentrations, with our standard conditions (5 ng/ml TGF-β and 1 μg/ml anti-CD28)
yielding the highest Foxp3 expression (S3C Fig). Though elevated concentrations of TGF-β are
described to favor Treg over Th17 induction [65–67], increasing the TGF-β concentration to
10 ng/ml did not further enhance Foxp3 induction in our system, but 5 ng/ml were sufficient
(S3C Fig). Since strong costimulation was suggested to inhibit Treg induction [10,15–17], and
ATRA was proposed to increase Treg differentiation mostly in conditions of high costimula-
tion [16], we tested lowering our anti-CD28 concentration. By doing so, we did not observe
enhanced Foxp3 induction compared to our standard conditions, and the effect of ATRA
enhancing Foxp3 induction was seen at both CD28 concentrations tested (S3C Fig). Together,
these results show a distinct and reproducible pattern of Foxp3 induction in human T cells by
different published (TGF-β; TGF-β + ATRA) and new (TGF-β + ATRA + Rapa; TGF-β + buty-
rate) protocols to induce human iTregs through direct comparison of these protocols within
the same donors and experimental system.
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Fig 1. Foxp3 expression upon use of different protocols for human iTreg differentiation. (A) Experimental setup: Human naïve CD4 T cells were
cultured for 6 days in serum-free medium under the indicated conditions. T cells were stimulated with anti-CD3 and anti-CD28 antibodies plus 100 U/ml IL-2
(“Stim.”). Where indicated, TGF-β1, rapamycin (Rapa), all-trans retinoic acid (ATRA) or butyrate were added. nTreg (ex vivo isolated peripheral blood CD25
high cells) were left unstimulated and used as positive control. (B) The histogram shows representative Foxp3 stainings for one donor, gated on CD4+ cells in
the upper panel or on CD25++CD4+ cells in the lower panel. The striped line represents an isotype control staining (exemplarily shown for the condition
“stim. + IL-2 + TGF- β + ATRA + Rapa“). Unstim. = unstimulated naïve T cells. (C) The boxplot shows percentages of Foxp3 positive cells measured by FACS
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Human iTregs express other Treg signature molecules in addition to
Foxp3
Since Foxp3 expression alone is not sufficient to designate human Tregs, we sought to analyze
expression of other Treg-like signature molecules and compare them between the different
Treg-inducing protocols. The IL-2 receptor alpha chain CD25 and the coinhibitory molecule
CTLA-4 are constitutively expressed by Tregs, but also by activated T cells. We found that
iTregs generated by our protocols expressed high levels of CD25 and CTLA-4 in a large frac-
tion of the population (Fig 2A and 2B; S4A Fig). Yet the expression was only marginally higher
than in activated control T cells, except for the Rapa triple combination in which the fraction
of CD25 and CTLA-4 expressing cells was rather slightly decreased. The latter effect was con-
sistent with the decreased growth rate in the Rapa triple combination iTregs (unpublished
observation) as well as the reduced fraction of Foxp3+ cells within the CD4, but not within the
CD25 gate (Fig 1). CTLA-4 expression in iTregs did not reach the expression levels observed in
nTregs (Fig 2B and S4A Fig). Since it was recently described for murine T cells that expression
of Foxp3 together with either one of the so-called “quintet” transcription factors was sufficient
to establish the full Treg-specific gene expression signature [6], we sought to analyze the
expression of these quintet factors in our iTreg populations. The quintet factors IRF4, GATA-1
and EOS were described to be upregulated in Tregs, while SATB1 and LEF1 should be downre-
gulated in Tregs; yet overexpression of each one of these factors together with Foxp3 in mouse
T cells elicited the Treg signature [6]. We found that IKZF4 (encoding for EOS) was highly
expressed in all our iTregs at significantly higher levels than in naïve or activated control T
cells, reaching levels in the range of nTregs (Fig 2C). Notably, EOS is known to be a crucial TF
to ensure Treg phenotype, function and stability [68,69]. We found that SATB1, which is
described to be downregulated in Tregs [6] with functional relevance [70], was significantly
downregulated in iTregs induced by the Rapa triple combination, which showed expression
levels comparably low to nTregs (Fig 2D). For other iTreg protocols, SATB1 downregulation
was less pronounced. Regarding the other “quintet” factors, we did not find IRF4 specifically
expressed in iTregs nor nTregs, and also, LEF1 was not downregulated in iTregs (S4B and
S4C Fig). Expression of GATA-1 was generally very low and close to detection limit (Ct
values range 32 to 37 or undetermined, n = 4 donors; S1 Table) and was therefore not analyzed
further.

Human iTregs display low IFN-γ, IL-17 and IL-10 cytokine expression
One concern about iTregs as opposed to nTregs is that they might express high levels of patho-
genic inflammatory cytokines, such as IFN-γ or IL-17, which could be detrimental for thera-
peutic use in adoptive transfer. We found that iTregs generated by the different protocols
described above expressed only low levels of IFN-γ when measured on protein level intracellu-
larly after PMA/ionomycin restimulation (Fig 3A) or without restimulation on mRNA level
(Fig 3B). IFN-γ expression was strikingly lower in iTregs compared to stimulated mock control
cells, with lowest expression in iTregs generated with the Rapa triple combination. Addition of
butyrate seemed to slightly hamper IFN-γ repression (Fig 3A and 3B). iTregs and Th17 cells
are closely related and share common pathways during differentiation, yet have opposing func-
tions with IL-17 having mainly pro-inflammatory roles [71]. Thus we analyzed whether iTregs

as in (B) for n = 13 to 23 different donors in 8 to 13 independent experiments (n numbers are indicated below plot). The upper panel shows percentage of
Foxp3+ cells from CD4+ cells, the lower panel of Foxp3+ cells from CD4+CD25++ cells. NA = not applicable. Significance was calculated by paired t test. n.
s.: not significant, *: p<0.05; **: p<0.01; ***: p<0.001; ****: p<0.0001.

doi:10.1371/journal.pone.0148474.g001
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Fig 2. Expression of Treg signature molecules in human iTregs. (A) CD25 surface expression was measured by surface staining and flow cytometry on
day 6 of culture under the indicated conditions, gated on live CD4+ cells. Shown are mean +/- SEM values for n = 9 to 15 donors (n number indicated below
plot). Significance was calculated with paired t test. The right panel shows representative CD25 histogram overlays; color code as in the left panel. (B) CTLA-
4 expression (surface and intracellular) was quantified by staining of permeabilized cells and flow cytometry on day 6 of culture under the indicated
conditions, gated on live CD4+ cells. Shown are mean +/- SEM values for n = 7 to 10 donors. Significance was calculated with paired t test. The right panel
shows representative CTLA-4 histogram overlays; color code as in the left panel. Dashed line represents CTLA-4 isotype control (isotype example shown for
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induced by our protocols also led to enhanced IL-17 production, but we could not detect sub-
stantial amounts of IL-17A in the iTreg populations tested (qRT-PCR Ct values range 32–37
or undetermined; intracellular staining range 0.01 to 0.7% IL-17A+ cells, n = 4–7 donors; S1
Table). The immunosuppressive cytokine IL-10 is one potential mechanism by which iTregs or
other regulatory cell populations can suppress immunity [72], which is why we investigated IL-
10 expression in the different iTreg inducing conditions. IL-10 expression was lower in iTregs
compared to stimulated control T cells or nTregs (Fig 3C), arguing against an important role
for IL-10 in the iTreg populations under study.

Foxp3 expression is fairly stable upon short-term resting in IL-2
containing medium
Stability of Foxp3 in iTregs is controversial and has not been investigated under the exact con-
ditions used here, thus, we addressed the question whether Foxp3 expression in iTregs was sta-
ble upon resting the cells without Treg-inducing additives. Furthermore, Tregs should be
rested without stimulation and Treg-inducing compounds before analyzing their suppressive
function (see below), so we sought to establish and characterize resting conditions for iTregs.
After 6 days of Treg induction, iTregs were either further cultured for 2 days, or washed and
rested for 2 days in medium containing only low concentrations of IL-2 (S5A Fig). We found
that for most protocols, Foxp3 expression was slightly decreasing from day 6 to day 8 when
iTregs were further cultured under iTreg-inducing conditions (Fig 4A). When iTregs were
instead washed on day 6 and rested 2 days, 50 U/ml IL-2 led to marginally better maintenance
of Foxp3 expression compared to 25 U/ml IL-2 (Fig 4A). Even when initial Foxp3 expression
was enhanced by adding higher IL-2 concentrations during the 6 days induction phase, this
enhancement of Foxp3 expression was no more obvious after the resting phase (Fig 4A, upper
left panel). Also on mRNA level, FOXP3 expression was reduced after the resting period (S5B
Fig). Together, the results demonstrate that Foxp3 expression was slightly lost after short-term
resting of iTregs in low concentrations of IL-2, but the trend of Foxp3 expression across the
different Treg-inducing conditions was maintained after resting on day 8. TGF-β addition dur-
ing the resting phase did not rescue the minor loss of Foxp3 expression (S5C Fig), but rather
slightly decreased viability (data not shown). Therefore, we chose resting with 50 U/ml IL-2
and without TGF-β as standard condition for further experiments.

An important marker for stable Foxp3 expression is demethylation of the TSDR in the
Foxp3 locus, the existence and necessity of which is controversial for iTregs and has not been
tested for most of those iTreg-differentiating protocols used here. Therefore, we asked whether
iTregs in this study displayed TSDR demethylation. As a result, we could not detect TSDR
demethylation in any of the iTreg populations on day 6 (Fig 4B), which was also the case
for iTregs generated in the presence of TGF-β plus a STAT3 inhibitor recently proposed to
enhance TSDR demethylation [73]. Establishment of TSDR demethylation might potentially
take longer than 6 days in our system, yet those iTregs analyzed on day 8 after resting still
did not display TSDR demethylation (Fig 4B). Together, we found that despite high Foxp3

stim. + IL-2 + TGF-β + ATRA sample). (C) IKZF4 (EOS) mRNA expression in naive T cells cultured 6 days under the indicated iTreg or control conditions.
nTregs and unstimulated naive T cells were sampled on day 0. mRNA was quantified by Taqman assay, normalized to RPL13A expression. IKZF4mRNA
expression in unstimulated naive T cells from the corresponding donor was set to 1, and fold change of IKZF4mRNA was calculated. Shown are mean +/-
SEM values for n = 9to 10 donors. Significance was calculated with paired t test. (D) SATB1mRNA expression in naive T cells cultured 6 days under the
indicated iTreg or control conditions. nTregs and unstimulated naive T cells were sampled on day 0. mRNA was quantified by Taqman assay as described in
(C). Shown are mean +/- SEM values for n = 4 to 6 donors. Significance was calculated with paired t test. n.s.: not significant. *: p<0.05; **: p<0.01; ***:
p<0.001; ****: p<0.0001.

doi:10.1371/journal.pone.0148474.g002
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Fig 3. Cytokine production by human iTregs. (A) IFN-γ expression was measured by intracellular staining
after 4 hours of PMA/ionomycin pulse on day 6 of culture under the indicated conditions, gated on live
CD4+ cells. Shown are mean +/- SEM values for n = 7 to 15 donors (n numbers indicated below the bar
chart). Significance was calculated with paired t test. (B) IFNGmRNA expression in naive T cells cultured 6
days under the indicated iTreg or control conditions. nTregs and unstimulated naive T cells were sampled on
day 0. mRNA was quantified by Taqman assay, normalized to RPL13A expression. IFNGmRNA expression
in unstimulated naive T cells from the corresponding donor was set to 1, and fold change of IFNGmRNA was
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expression, none of the iTregs generated by different protocols displayed Foxp3 TSDR demeth-
ylation, yet Foxp3 expression was relatively stable at least during short-term resting.

Foxp3 is maintained without restimulation in the presence of IL-2, but not
upon restimulation
So far, we only tested Foxp3 stability upon short-term resting, which resulted in relatively sta-
ble Foxp3 expression. However, particularly in light of absent TSDR demethylation, we tested
whether iTregs could maintain Foxp3 expression when restimulated, or kept without restimu-
lation for a longer period in culture (S6A Fig). We found that upon restimulation for further 5
days, iTregs generated by either protocol lost Foxp3 expression to nearly undetectable levels
(Fig 4C, upper panel), even though cell viability remained high (S6B Fig). Also without restim-
ulation, iTregs largely lost Foxp3 (Fig 4C, middle panel). Moreover, under such conditions
without restimulation, a major fraction of iTregs died (S6B Fig). However, when iTregs were
instead further cultured for 5 days without restimulation and supplemented with IL-2, cell
death was prevented (S6B Fig) and cells largely retained their Foxp3 expression (Fig 4C, lower
panel). Yet, even at this later time point under these latter conditions with stable Foxp3 expres-
sion, we could still not detect TSDR demethylation (S6C Fig).

Foxp3 re-induction enhances Foxp3 stability, but does not induce TSDR
demethylation
Next, we asked whether Foxp3 expression could be maintained more stably if during a longer
resting phase for about another week the medium was supplemented again with Treg-inducing
molecules such as TGF-β (S7A Fig). Indeed, we found that compared to resting in IL-2 contain-
ing medium alone, re-inducing iTregs with the initially added TGF-β + ATRA or TGF-β
+ ATRA + Rapa led to a better maintenance of Foxp3 expression (S7B Fig). Yet, this re-induc-
tion for a longer period was still not accompanied by TSDR demethylation (S7C Fig).

iTregs induced with TGF-β plus ATRA plus Rapa display robust
suppressive function in vitro but not in vivo
Even though much progress has been made over the past decade to delineate Treg signature
molecules, there is still no definite marker which unequivocally defines Tregs. Thus, it is crucial
to determine their suppressive function. Regarding suppressive activity of iTregs, reports are
contradictory, leaving it unclear whether TGF-β induced Foxp3 expression is sufficient to elicit
suppressive activity. Further, even though some studies have compared different protocols to
induce human Tregs, there is no comparative study analyzing suppressive function of the
iTregs generated by all the different protocols as we apply here. Since it is difficult to compare
the activity of iTregs generated by diverse protocols across different laboratories and types of
suppression assays, we sought to compare all Treg-inducing protocols described here side-by-
side in the same experimental system regarding their ability to induce suppressive iTregs, com-
pared to stimulated mock suppressor cells from the same donor. In contrast to assays with
nTregs which are anergic in vitro, for suppression assays with iTregs it has to be considered

calculated. Shown are mean +/- SEM values for n = 7 to 11 donors (n numbers indicated below the bar chart).
Significance was calculated with paired t test. (C) IL10mRNA expression in naive T cells cultured 6 days
under the indicated iTreg or control conditions. nTregs and unstimulated naive T cells were sampled on day
0. mRNAwas quantified by Taqman assay as described in (B). Shown are mean +/- SEM values for n = 4 to 7
donors (n numbers indicated below the bar chart). Significance was calculated with paired t test. n.s.: not
significant. *: p<0.05; **: p<0.01; ***: p<0.001; ****: p<0.0001.

doi:10.1371/journal.pone.0148474.g003
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Fig 4. Analysis of Foxp3 stability and TSDR demethylation in human iTregs. (A) iTregs were induced for 6 days under the indicated conditions, with 100
U/ml IL-2 if not otherwise stated. Foxp3 protein expression on day 6 is shown as solid, thin line. After 6 days, iTregs were either further cultured 2 days (thick
line) or washed and rested in medium containing only IL-2, either 25 U/ml (dotted lines) or 50 U/ml (dashed lines). Left panels show the percentage of Foxp3
+ cells, right panels show FACS histogram overlays for corresponding Foxp3 stainings. The “standard”conditions (100 U/ml IL-2 for induction, 50 U/ml IL-2 for
resting) are marked by grey arrows. Gate: Live CD4+ cells. Shown is a representative donor (out of 4 to 6 for standard conditions; out of 2 for IL-2 titrations
during induction). (B) TSDR DNA demethylation was analyzed at day 6 of Treg induction under the indicated conditions (left panel), or on day 8 after resting
(two lanes on the right). Tnaive and nTreg DNA was isolated on day 0 as control. T cells were isolated from a male donor, and a representative donor out of 2
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that iTregs are pre-activated, proliferative in vitro and may secrete a range of cytokines. There-
fore, to analyze their suppressive function, we rested iTregs and then cocultured them in differ-
ent ratios with CFSE-labeled responder T cells (Tresp; S8 Fig). Mock suppressor cells treated in
the same way were used as control, as well as previously frozen nTregs from the same donor.
Subsequently, suppression of proliferation and intracellular IFN-γ production in Tresp was
analyzed by gating stringently on Tresp and, importantly, live cells (S9 Fig). In our experimen-
tal system, we found that only iTregs induced by the TGF-β + ATRA + Rapa triple combina-
tion specifically and consistently suppressed responder CD4 and CD8 T cell proliferation at a
range of different Tresp:iTreg ratios and better than all other iTreg conditions tested (Fig 5 and
S10A Fig). For the other iTreg populations, even though some suppression was observed at
high iTreg:Tresp ratios, this did not seem to be specific to Foxp3+ iTregs since activated mock
suppressor cells at higher ratios inhibited Tresp proliferation to a similar extent in some donors
(Fig 5 and S10A Fig). Also in suppression assays containing antigen-presenting cells, Rapa tri-
ple combination-induced iTregs were the best suppressive iTregs (S10B Fig). Along those lines,
TGF-β + ATRA + Rapa triple combination-induced iTregs were also superior in inhibiting
IFN-γ production of Tresp compared to other iTreg populations or mock suppressor cells,
though donor variability was relatively high here (S10C Fig).

Together, our in vitro results show that only TGF-β + ATRA + Rapa triple combination-
induced iTregs suppressed responder T cells significantly, thus identifying this combination as
a new robust protocol to induce iTregs with specific and superior suppressive activity in vitro
compared to all other iTreg differentiation protocols tested.

Since in vitro suppression assays do not necessarily reflect the situation in vivo, and we
found that iTregs lost Foxp3 upon restimulation (Fig 4C), we asked whether iTregs generated
by the TGF-β + ATRA + Rapa triple combination were also suppressive in vivo. To this end,
we used a xenogeneic GvHDmodel, in which human PBMCs induce GvHD upon injection
into immunodeficient NOGmice [74]. In addition to the demonstration of protective effects of
nTregs on GvHD development in this model, it has also been used to show in vivo suppressive
function of certain iTreg populations [46,56,57]. We found that GvHD was rapidly induced by
intravenous injection of PBMCs into irradiated NOGmice as monitored by weight loss and
survival. However, iTregs generated by any of the tested protocols were not able to prevent or
delay GvHD (Fig 6). Thus, while iTregs generated by combining TGF-β + ATRA + Rapa had
superior suppressive activity in vitro, this was not accompanied by in vivo suppressive function
in a xenogeneic GvHDmodel.

Discussion
The impact of Tregs on human health is well-documented, provoking considerable interest
from the pharmaceutical community to target Treg development, transfer and function for a
range of diseases, predominantly autoimmune and inflammatory diseases as well as cancer.
Not only may the function or differentiation of endogenous Tregs be manipulated, but also the
adoptive transfer of Tregs is increasingly becoming a realistic option for clinical routine. First
in-man trials achieved promising outcomes with adoptive Treg transfer in preventing or treat-
ing GvHD after allogeneic stem cell transplantation [49–52]. It is possible that depending on
the disease, transfer of nTregs or iTregs would be more suitable contingent on their stability in

to 4 is shown. The color scale indicates 0 to 100%methylation at the given CpG nucleotides in the Foxp3 locus. (C) iTregs or control cells were cultured for 6
days under the indicated conditions, then rested 2 days, and further cultured for 5 days with restimulation, or without restimulation and without or with IL-2
(upper, middle and lower panel, respectively). nTregs were cryopreserved after isolation, thawed on day 6 and rested 2 days, and then treated in parallel with
iTregs as a control. Intracellular Foxp3 expression was measured by flow cytometry, gated on live CD4+ cells. Shown is a representative donor out of 4.

doi:10.1371/journal.pone.0148474.g004
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Fig 5. Comparative analysis of in vitro suppressive function of human iTregs generated with different iTreg-inducing protocols. iTregs were
induced 6 days under the indicated conditions, washed, rested 2 days, washed again, and then used to analyze their suppressive capacity towards Tresp.
Suppression assays with iTregs or control cells were performed with CFSE-labeled CD3+CD25- Tresp. Tresp and iTregs (or control stimulated mock
suppressor cells, grey line) were cocultured at the indicated ratios, or Tresp cultured alone (black) in different densities. nTregs (yellow) were used as control.
Cultures were stimulated for 4 to 5 days and then analyzed by FACS. (A) shows a representative donor. It was gated on CFSE+ CD4+ Tresp (left panel) or
CFSE+CD8+ Tresp (right panel). The upper plots showmean +/- SD of wells plated in replicate. The lower panel shows overlays of CFSE histograms for the
1:0.5 ratio. Unstim. = unstimulated; others are stimulated for 5 days with pb anti-CD3 and soluble anti-CD28 antibodies. Dotted black lines = 2:0 Tresp, solid
black lines = 1:0 Tresp, filled histogram = unstimulated Tresp. Lines in same color represent cells plated in replicate wells. The gate for determining the
percentage of proliferated cells is indicated by the horizontal line. (B) Shows percent suppression calculated from CFSE proliferation as in (A), with 2:0 Tresp
set to 100% proliferation (0% suppression). Shown is the compiled data (mean +/- SEM) for n = 2 to 6 donors (n = 2 for 1:2 ratio; n = 4 for “butyrate”iTreg, all
other iTregs: n = 6 donors). Significance was calculated by paired t test, comparing suppression by iTreg populations to mock suppressor cells (stimulated
with anti-CD3/-CD28 and IL-2 only; grey line) within each donor at 1:1; 1:0.5 or 1:0.25 cell ratios. Asterisks indicate significant differences and are depicted in
the color of the respective iTreg condition. *: p<0.05; **: p<0.01.

doi:10.1371/journal.pone.0148474.g005

Comparative Analysis of Human iTreg Protocols

PLOS ONE | DOI:10.1371/journal.pone.0148474 February 17, 2016 13 / 31



vivo in the respective cytokine milieu, their location, and on which suppression mechanism
they utilize. Further, since the number of nTregs is minute and their expansion intricate, iTreg
transfer appears as an attractive concept for therapeutic approaches. In this regard, in vitro
iTreg generation needs to be improved in terms of efficacy, specificity, and safety. Much of the
basis for our current knowledge on Tregs has been derived from mouse models, while less is
known about primary human T cells. Yet differences between mice and humans manifest also
with respect to Foxp3 expression. As several mouse studies suggest superior therapeutic effects
of iTreg compared to nTreg transfer [53], it is important to further clarify the conditions for
human iTreg differentiation in light of immunotherapy approaches.

Here, we comprehensively compared several protocols described to induce human iTregs,
as well as tested several new protocols such as those described so far only for murine iTregs.
The tested protocols included not only TGF-β, but also ATRA, Rapa, and butyrate. We
could confirm results from previous studies, which showed that addition of ATRA enhanced
human Foxp3 induction compared to TGF-β alone [44–46]. It was also suggested that Rapa
could enhance TGF-β-mediated Treg induction, initially described in mouse cells [20] and

Fig 6. Analysis of suppressive function of human iTregs in vivo in xenogeneic GvHD. iTregs were
induced 6 days under the indicated conditions, then washed and rested for 2 days. Allogeneic PBMCs were
isolated and CD25-depleted the day before injection. NOGmice were irradiated and injected intravenously
on the same day with 20x106 PBMCs alone or together with 5x106 iTregs or mock control T cells or expanded
nTregs in PBS. As control, irradiated mice received PBS only. Mice were weighed every 1 to 3 days. (A)
Shows percentage of mouse weight as mean +/- SEM for n = 4 to 8 mice per iTreg group combined from 2
independent experiments; mouse numbers (n) are indicated in the figure (B). (B) Shows the corresponding
survival curves for the data from (A). There were no significant differences when comparing each iTreg group
to either PBMC only or mock T cell groups.

doi:10.1371/journal.pone.0148474.g006
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subsequently confirmed in human cells [56,57]. Due to these described effects of ATRA or
Rapa separately, and since ATRA and Rapa may act synergistically in maintaining the Treg
phenotype as shown for human Treg expansion [75,76], we asked whether their combination,
together with TGF-β, would also improve human iTreg induction. Indeed, we found that this
triple combination of TGF-β + ATRA + Rapa, which is novel to generate human iTregs, gen-
erated iTregs which displayed the most suppressive activity in vitro (see below) even though
not further enhancing Foxp3 induction and not suppressing GvHD in vivo. Based on mouse
studies, it was suggested that ATRA and Rapa each contribute specific migratory capacities to
iTregs in vivo [16,41,44,77–79], which may be advantageous for their suppressive capacity in
vivo even though the latter was not tested for the triple combination [79]. In contrast to our
results with human cells, however, this recent mouse study [79] did not observe a reduced
fraction of Foxp3+ cells when combining ATRA and Rapa in TGF-βmediated Treg induction
compared to cultures without Rapa; the reason for this discrepancy remains unclear and may
be related to differences in species or experimental setup. One important aspect regarding the
latter is the strength, kinetics and duration of TCR signaling: Several studies have shown that
suboptimal, weak T cell activation promotes Foxp3 induction [10,12,15,18,21]. Indeed, later
studies have confirmed that for initial Foxp3 induction, weak TCR stimulation (that is subop-
timal for proliferation) favored Foxp3 induction [11]. However, in contrast to Foxp3+ cells
induced by weak TCR agonists, only Tregs induced by a low density of a strong TCR ligand
were stable and persistent over time in mice [10,11]. It is possible that in our study, Rapa
blunted the effect of strong TCR stimulation (by plate-bound anti-CD3 antibodies) through
inhibition of Akt and, therefore, contributes to the enhanced in vitro suppressive activity of
TGF-β + ATRA + Rapa triple combination iTregs. Nevertheless, Gottschalk et al. demon-
strated that despite triggering similar levels of Akt phosphorylation, high doses of weak ago-
nist TCR ligands could not generate persistent Foxp3 induction as opposed to stable Foxp3
induction by low density of strong agonist ligands [11].

Recently high interest has been raised in the effect of intestinal commensal microbiota-
derived metabolites such as SCFAs. It was recently shown that colonic Tregs isolated from
mice treated with the SCFA propionate showed enhanced Foxp3 expression [80], yet it
remained possible that indirect effects on Treg induction via DCs or macrophages [81], as well
as additional effects on tTregs, contribute to this effect. Other studies [47,48] demonstrated
minor effects of propionate and strong effects of butyrate on Treg induction in vivo, as well as
direct effects on iTreg differentiation in vitro, enhancing TGF-β-induced Foxp3 expression in
murine iTreg populations. Effects of SCFAs on human iTregs have not been studied to our
knowledge and indeed, we could confirm that 0.1 mM butyrate enhanced TGF-β-mediated
Foxp3 expression in human iTreg populations (Fig 1), while propionate at the same concentra-
tion did not have an effect (data not shown). Of note, at higher concentrations (0.25 mM), we
observed that butyrate-treated iTregs displayed enhanced IFN-γ production compared to those
treated with TGF-β only (data not shown), in line with the general function of butyrate as his-
tone deacetylase inhibitor [82] as well as a recent report suggesting that SCFAs can promote T
cell differentiation into both effector and Treg lineages depending on the surrounding milieu
[83], which should be considered when using SCFAs in Treg induction.

Apart from Foxp3, our study also systematically compares the iTreg phenotype derived
from all different iTreg-inducing protocols regarding other Treg signature molecules as well as
cytokine expression of the generated iTregs. Thus, our study expands the previous knowledge
on the phenotype of human iTregs and shows that all iTreg populations express significantly
more IKZF4 (encoding for EOS) and less IFN-γ compared to stimulated mock control cells,
while CD25 and CTLA-4 expression showed only modest differences compared to the mock
control. Interestingly, we could not find iTreg-specific expression of the proposed Treg
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“quintet” factors IRF4, LEF1 and GATA-1 [6], and it remains subject to future investigations
whether this is based on human versusmouse differences. SATB1, another quintet factor, was
however downregulated only in Rapa triple combination iTregs to a similar extent as in nTregs,
potentially highlighting an important role for this factor in human iTregs.

However, despite all phenotypic characterization, it is indispensable to test Treg suppressive
function in order to ascertain that Treg-like cells are generated, because Foxp3 expression
alone seems insufficient to ensure Treg function. Also, species differences exist regarding
Foxp3 induction. Particularly human iTreg suppressive function is accompanied by many con-
troversies, to which the transient low expression of Foxp3 in human activated Tcons in part
contributes. To date, contradictory reports leave it unclear whether (temporary) Foxp3 expres-
sion is sufficient to confer suppressive abilities to human activated Tcons. Some studies dem-
onstrated Treg phenotype or suppressive capacities of Foxp3+ activated human T cells [3,84]
while others did not [4,85,86]; yet others did not observe activation-induced transient Foxp3
induction in human Tcons [87]. These discrepancies might be due to differences in culture
conditions, such as strength of TCR stimulation and presence of serum factors, IL-2 or TGF-β.
To have a defined experimental system excluding serum factors, we used serum-free medium
throughout this study. On a similar note, Shevach’s group found that TCR-induced Foxp3
expression in human naïve Tcons is indeed dependent on TGF-β, but does not result in a sup-
pressive phenotype [88]. Conflicting results may also be ascribed to differences in the experi-
mental readout used, as well as in kinetics and level of Foxp3 expression and, consequently,
Foxp3 target genes [89–91] such as CTLA-4 and CD25. In the present study, we observed a
minor activation-induced Foxp3 expression upon culture in serum-free medium without TGF-
β addition, yet the fraction of cells expressing Foxp3 at levels comparable to nTregs remained
very small (~10%). Still, when used at high ratios, we observed some suppressive activities of
activated mock suppressor T cells towards responder T cells in vitro, which might be depen-
dent or independent of Foxp3, and could be related to cell density effects, IL-2 consumption by
CD25 or inhibitory effects of CTLA-4. Therefore, we consider it important, particularly when
analyzing iTregs which are strongly pre-activated and proliferative, to include such a mock
suppressor cell control in suppression assays. Along similar lines, others have also reported
nonspecific suppression by stimulated Foxp3-negative T cells [10,92–94]. When comparing to
this control, we found that, even though a misleadingly cell ratio-dependent inhibitory activity
seemed to be present, only the Rapa triple combination-iTregs but not other iTreg populations
suppressed significantly more than the mock suppressor cells in vitro. This is in contrast to a
recent study on mouse cells [79], in which all iTregs, whether generated with TGF-β, TGF-β
+ ATRA or TGF-β + ATRA + Rapa, suppressed equally in vitro. It remains to be analyzed
whether this divergence is due to differences in species or experimental setup, such as stimula-
tion conditions or lack of a mock suppressor cell control. We think that lack of this mock sup-
pressor cell control, as well as differences in strength of TCR stimulation, might add to
controversies observed in the literature regarding suppressive function of human iTregs.
Therefore, we consider it important to compare different Treg-inducing protocols side by side
within the same experimental system and readout, such as in the present study in which we
extensively compare many different protocols. Along these lines, although several studies show
suppressive function of TGF-β-induced Foxp3+ human iTregs, some studies did not observe
suppressive function of these cells. For example, Tran et al. [88] found that TGF-β induces
Foxp3 but not suppressive function in human T cells, however, they neither tested additional
compounds such as ATRA nor did they test in vivo suppressive function. Later studies [44–
46,56–57] instead have shown that addition of ATRA or Rapa on top of TGF-β can dramati-
cally change iTreg properties, leading to acquisition of suppressive function when compared to
iTregs induced with TGF-β only—however, the TGF-β + ATRA + Rapa triple combination as
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well as TGF-β + butyrate have not been studied in human T cells before. Of note, not only the
suppressive function of TGF-β-induced human iTregs is controversial, but also the proposed
establishment of suppressive activity by accessory addition of ATRA [44–46] or Rapa [56,57]
has been debated [64]. Nevertheless, although in vitro induction of human iTregs led to contro-
versial results regarding suppressive function, recent studies show that by application of suit-
able protocols, these cells can effectively suppress in vitro and in vivo [53]. For example, Lu
et al. [46] found that human iTregs generated with ATRA plus TGF-β suppressed better in
vitro, and in contrast to iTregs generated with TGF-β only, they also suppressed in vivo in a
xenogeneic GvHD model, even showing higher stability than nTregs in a proinflammatory
cytokine milieu. Another study also suggests increased suppressive activity of human iTregs
generated with TGF-β plus ATRA, yet TGF-β only also led to a, though less, suppressive popu-
lation [44]. Two other studies [56,57] found that, compared to TGF-β only, adding Rapa dur-
ing Treg induction led to iTregs with superior suppressive activity, even in vivo in xenogeneic
GvHD models. However, in our study we did not observe suppressive activity of iTregs gener-
ated by either protocol when tested in vivo in xenogeneic GvHD. These controversial results
may be related to differences in type and strength of TCR stimulation used in the different
studies, which can influence stability of Foxp3 and, thus, suppressive potency in long-term
assays [10,11]. While others [46,56,57] used bead-bound anti-CD3/CD28 antibodies or artifi-
cial APCs to induce Tregs, we have used plate-bound anti-CD3 and soluble CD28 antibody.
Importantly, a very recent study [63] on murine iTregs found that only iTregs induced by
bead-bound anti-CD3/CD28 antibodies—and not by plate-bound CD3/CD28 antibodies—
were stable for>7 days in vitro and in vivo and, consequently, could suppress murine GvHD
in vivo. Interestingly, this increased stability of murine iTregs generated by bead-bound stimu-
latory antibodies was not accompanied by decreased TSDR methylation [63]. This comparison
of bead-bound versus plate-bound antibody-mediated stimulation for murine iTreg generation
was suggested to resolve controversies regarding in vivo suppressive activity of murine iTregs
used by Gu et al. [63] in contrast to others [95,96] who have employed similar murine GvHD
models (but have used different modes of iTreg stimulation) and did not observe suppressive
ability of different murine iTregs. It remains to be determined in future studies how quality
and strength of TCR stimulation affect human iTreg stability and function. Affinity, duration
and density of TCR stimulation were shown to influence stability of Foxp3 in murine iTregs
also in other settings, in that only Foxp3+ cells induced by low doses of strong TCR agonists
displayed stable Foxp3 expression whereas those induced by weak agonists were deleted [11]. It
is therefore likely that modulating the TCR signal strength can also be used to optimize stability
of human iTregs in the future.

It remains subject to future investigations to determine the reason for the discrepancy
regarding suppressive activity of Rapa triple combination-iTregs in in vitro compared to in
vivo assays. One cause might be loss of Foxp3 expression upon strong restimulation of iTregs
in vivo in GvHD, similar to the loss observed upon in vitro restimulation (Fig 4). While xenoge-
neic GvHDmodels are the current tool of choice to enable experimental studies of in vivo sup-
pressive activity of human (i)Tregs, it has to be considered that xenogeneic responses are
usually stronger than allogeneic responses, more difficult to control, and occurring under
shortage of human APCs—hence these models appear somewhat artificial [97–99]. Besides
xenogeneic GvHD, other humanized models (such as humanized mouse models of skin or
islet allograft rejection [100,101]) have been developed to study human Treg function in vivo
and might be useful in the future to determine iTreg suppressive abilities.

However, an inherent limitation of all these models is the lack of human IL-2 production in
immune deficient mice. Therefore, another reason underlying the discrepancy of results from
in vitro and in vivo suppression assays in our study that remains to be investigated may be
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death of iTregs in vivo, such as observed in vitro without restimulation when IL-2 levels were
limiting (Fig 4; S5 Fig). Others [46] have suggested that the lack of human IL-2 production in
NOGmice leads to the non-permanent nature of protective effects of iTregs in xenogeneic
GvHD models. Notably, even nTregs do not protect permanently in xenogeneic GvHD models
which may be caused by lack of IL-2, which is well-known to be required for Treg maintenance
and function [102–105]. Furthermore, it cannot be excluded that iTregs die in vivo under
GvHD conditions due to other reasons, such as for example killing by strongly activated
CD8+ T cells. In case of putative death of iTregs in vivo, the potential suppressive activity of
the cells cannot be properly addressed, which needs to be considered when interpreting in vivo
suppression assays.

Besides the stimulation methods applied, the addition of Treg-inducing compounds such as
ATRA, Rapa, etc. is important for optimal iTreg generation. Considering our results in light of
these aspects and along with studies of homing markers on mouse iTregs [79], we propose that
our newly described protocol using a combination of TGF-β, ATRA and Rapa which leads to
generation of human iTregs with superior suppressive activity in vitro and reduced expression
of “Treg down” genes should be considered as a basis to direct future research on iTreg genera-
tion for therapeutic purposes. To this end, stabilization of iTregs with respect to Foxp3 expres-
sion, viability and in vivo suppressive activity needs to be achieved in the future.

Though the suppression mechanism of the human iTregs generated by the Rapa triple com-
bination in the present study remains unclear to date, IL-2 consumption by CD25, suppression
via CTLA-4 and IL-10 seem unlikely to confer the superior suppressive activity in vitro since
these molecules were expressed at comparatively low levels. Least expression of IFN-γ and
SATB1 compared to other iTregs might add to the better in vitro suppressive capacity of Rapa
triple combination iTregs. Considering the importance of TCR signal strength on Treg induc-
tion as discussed above, the effect of Rapa on counteracting strong TCR stimulation through
inhibition of the Akt/mTOR pathway is likely to play an important role here as well. Consistent
with lower total cell numbers generated, one might also speculate that adding Rapa to the iTreg
cultures could prevent the outgrowth of contaminating non-Tregs, thus leaving a population of
most suppressive “real” Tregs.

An immanent concern of iTreg generation remains their stability, and in the future, efforts
should be made to combine Treg-inducing protocols such as developed in this study with pro-
tocols both to stabilize and to assess the stability of the generated iTregs. To date, the most reli-
able marker to determine Treg (Foxp3) stability is TSDR demethylation. Most studies find that
iTregs display only intermediate TSDR demethylation if at all, concomitant with intermediate
suppressive function not comparable to nTregs. Since we tested several new protocols here, as
well as used higher TGF-β concentrations to induce human iTregs compared to others [58],
we evaluated TSDR demethylation in iTregs, but could not detect it in any of the iTreg popula-
tions generated by all different protocols. Our results are in line with reports on murine TGF-
β and TGF-β + ATRA induced iTregs [5,24,26,60,61] as well as human TGF-β induced iTregs
[58,106], and also TGF-β + Rapa combinations were reported to fail in inducing TSDR
demethylation in human iTregs [56]. Yet, mouse iTregs generated with TGF-β plus either
ATRA or Rapa or both seemed to display somewhat enhanced stability compared to TGF-β
only [79], and stimulation by bead-bound CD3/CD28 was important to generate stable murine
iTregs when compared to plate-bound stimulation despite unchanged TSDR methylation [63].
TSDR demethylation has not been analyzed for neither murine nor human iTregs generated
with the TGF-β + ATRA + Rapa triple combination. Even though we could not observe TSDR
demethylation even in Rapa triple combination iTregs, it is noteworthy that others have
reported suppressive and stable murine iTregs by mTOR inhibition through progesterone
without TSDR demethylation [61]. In contrast to a recent study proposing some TSDR
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demethylation in human iTregs after STAT3 inhibitor treatment [73], we did not obtain such
results, which may be due to differences in stimulation conditions or experimental readout.
The analysis of TSDR demethylation in iTregs generated with SCFAs such as butyrate has
not been published before, and we now show that butyrate addition does not lead to TSDR
demethylation in human iTregs. It was proposed that Foxp3 expression in iTregs is unstable
because of absent TSDR demethylation [27]. Nevertheless, some recent studies find suppressive
and importantly stable human and murine iTregs without strong TSDR demethylation [56,61–
63], which may suggest that factors other than TSDR demethylation also contribute to Foxp3
stability. For example, it may be associated with induction of other epigenetic changes such as
histone modifications as described for ATRA [107]. One may also speculate that iTregs and
pTregs have distinct properties from tTregs and may not require TSDR demethylation; poten-
tially instability might be even an intrinsic property of pTregs compared to tTregs, whether for
a physiological reason remains unknown. Along these lines, it was found that Nrp1 negative
pTregs isolated from healthy wild type mice were less stable compared to tTregs upon transfer
into lymphopenic mice [34], which is in concordance with observed lesser TSDR demethyla-
tion in Nrp1 negative pTregs compared to Nrp1+ tTregs from wild type mice ex vivo [35].
Also, another report suggests that Tregs which are unstable in vivomay arise rather from
pTregs than from tTregs [108], suggesting a pTreg subset distinct from tTregs. Of note, TSDR
demethylation in tTregs is established already in the thymus [109]. Alternatively, it is possible
that, even though TSDR demethylation in iTregs is not observed, it may be established upon
transfer of the cells into an in vivomilieu. Along that note, it was described that retention of
Foxp3 in iTregs may require a pro-inflammatory cytokine environment [55]. Notably, Schmitt
et al. [110] have demonstrated that iTregs generated in vitro can obtain at least partial TSDR
demethylation upon their maintenance in vivo. Similarly, Sela et al. observed TSDR demethyla-
tion of iTregs resembling tTregs after transfer of the iTregs into mice [111]. In line with our
results on human cells, it was shown for murine iTregs that IL-2 could stabilize Foxp3 expres-
sion in vitro, while restimulation led to loss of Foxp3 expression [112]. It could be confirmed in
vivo that IL-2/anti-IL-2 complexes stabilized Foxp3 expression of iTregs [112]. Strikingly,
adoptively transferred in vitro generated murine iTregs acquired TSDR demethylation in vivo
upon treatment of the mice with IL-2 when administered in the presence of TCR stimulation
[112]. Along these lines, another study found that concurrent administration of Rapa with or
without IL-2/anti-IL-2 antibody complexes to mice receiving murine iTregs improved Foxp3
stability in those transferred cells [96]. An additional effect of IL-2 supplementation might be
enhancement of iTreg survival in vivo. Notably, IL-2 administration has been applied in
human diseases and was found to increase Treg expansion in vivo in patients [113–115].

These results allow to speculate that also human iTregs, generated by optimized protocols
considering aspects such as TCR stimulation strength, addition of Treg-inducing compounds
(such as TGF-β /ATRA/Rapa triple combination as described here) and in vivo stabilization
such as by IL-2 complexes, may be useful therapeutically—given that appropriate conditions to
induce human iTreg stability through TSDR demethylation or other means in vitro or in vivo
can be identified in the future.

Materials and Methods

Ethics statement
Human peripheral blood mononuclear cells (PBMCs) were freshly isolated from anonymized
healthy donor buffy coats which were purchased from the Karolinska University Hospital
(Karolinska Universitetssjukhuset, Huddinge), Sweden. Ethical permit for the experiments
with human blood was obtained from the Regional Ethical Review Board in Stockholm
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(Regionala etikprövningsnämnden i Stockholm), Sweden (approval number: 2013/1458-31/1).
Mouse experiments were performed in accordance with the national guidelines and approved
by the Regional Ethical Review Board (Stockholms Norra Djurförsöksetiska nämnd) in Stock-
holm, Sweden (Jordbruksverket approval number N274/14). All efforts were made to minimize
suffering of the mice.

Human T cell isolations
PBMCs were purified from fresh buffy coats by gradient centrifugation using Ficoll-Paque Plus
(GE Healthcare), followed by plastic adherence in RPMI medium containing 10% FCS (Invi-
trogen) to deplete monocytes. PBMCs were rested overnight, and different T cell subsets were
then isolated by magnetic activated cell sorting (MACS). CD25high “nTregs” were first pre-
pared by positive isolation as we described previously [116] using limited amounts (2 μl/107

cells) of CD25 beads (Miltenyi) and two subsequent MACS columns. After platelet depletion
by low-speed centrifugation (3x200 g, 5 min, 20°C), naïve T cells were isolated by negative iso-
lation from the nTreg-depleted fraction using the naive CD4+ T Cell Isolation Kit II, human
(Miltenyi) according to the manufacturer’s instructions. Pan T cells used as Tresp in suppres-
sion assays were isolated by negative selection with the human pan T cell isolation kit II (Milte-
nyi) and additionally depleted of CD25+ cells (with 8 μl CD25 beads/107 cells). For APC
purification, PBMCs before monocyte adherence were used and depleted of CD3+ cells with
magnetic CD3 beads (Miltenyi) and subsequently γ-irradiated with 30 Gray. Cell purity of all
MACS-isolated cells was assessed by FACS staining. Cells were counted in trypanblue solution
with the Countess Automated Cell Counter (Life Technologies) and viability was determined
by trypanblue stain and/or flow cytometry (see below). T cells were cultured at 5% CO2/37°C
in serum-free X-Vivo 15 medium (Lonza) supplemented with 1% Glutamax (Invitrogen).
iTreg and nTreg cultures were supplemented with 100 U/ml IL-2, unless stated otherwise.

iTreg differentiation
After MACS isolation, naive T cells were rested for 3 to 8 hours and then plated under iTreg
differentiation conditions at 1.1 to 1.3x105 cells/well in 96U well plates. Cells were stimulated
with 5 μg/ml plate-bound anti-CD3 antibody (clone OKT3; Biolegend, LEAF grade), 1 μg/ml
soluble anti-CD28 antibody (Biolegend, LEAF grade) and 100 IU/ml IL-2 (carrier-free; R&D
Systems). Cells stimulated with only these reagents served as “mock” control. For Treg-induc-
ing conditions, TGF-β1 (5 ng/ml carrier-free; R&D Systems), ATRA (10 nM; Sigma-Aldrich),
Rapa (100 ng/ml; Calbiochem EMDMillipore), sodium butyrate (100 μM; Sigma-Aldrich), or
STAT3 inhibitor S3I-201 (50 μM; Sigma-Aldrich) were added additionally. The DMSO control
(for ATRA, Rapa, STAT3i) had no effect on Foxp3 expression. Cells were incubated for 6 days
unless otherwise stated.

In vitro suppression assays
Before use in suppression assays, iTregs were washed on day 6 of induction and rested for 2
days without stimulation in X-Vivo 15 medium supplemented with 50 U/ml IL-2. Before setup
of suppression assays, iTregs were washed again, taken up in fresh X-Vivo 15 medium without
IL-2 and cocultured with Tresp as described below. Mock control suppressor cells from the
same donor were generated in parallel to iTregs by stimulation plus IL-2 only and then washed
and rested in the same way as iTregs. nTregs from the same donor were cryopreserved after
isolation in 90% FCS/10% DMSO (Hybri-Max grade, Sigma) and stored in liquid nitrogen.
Prior to use, nTregs were thawed, washed and rested 2 days in X-Vivo 15 medium containing
IL-2. Tresp (CD25 depleted pan T cells) were used either fresh or cryopreserved and rested one
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day after isolation or thawing. Tresp were then washed with PBS and labeled with 2.5 μM
CFSE (Molecular probes) and staining stopped with PBS/human serum before washing and
taking up the cells in X-Vivo 15 medium. Labeled Tresp were rested overnight, then taken up
in fresh medium and used for setup of suppression assays. For the standard setup assessing
suppression in an APC-free system, Tresp and allogeneic suppressor cells were set up in differ-
ent ratios, with constant 1x105 Tresp/well in 96U well plates in X-Vivo 15 medium. 2x Tresp
(2x105 cells), unstimulated Tresp, or stimulated suppressor cells alone (1–2x105 cells) were
used as controls. Cells were stimulated with plate-bound anti-CD3 (5 μg/ml) and soluble anti-
CD28 (1 μg/ml) antibodies for 3 to 5 days. Suppression was analyzed by flow cytometry
(CFSE-based proliferation and intracellular IFN-γ production of CD4+ or CD8+ Tresp, com-
bined with fixable viability dye and Foxp3 staining) after 4 hours restimulation with PMA/
ionomycin. For suppression assays with APCs, T cell-depleted, irradiated PBMCs were used as
APCs and plated with 1.5x105 cells/well in 96F well plates. 1x Tresp (allogeneic) were added
with 3x104 cells/well, and suppressor cells (third party) added in different ratios. 0.25 μg/ml
soluble anti-CD3 antibody was added in addition, except for unstimulated controls. Cells were
cultured for 3 to 4 days and suppression was analyzed by flow cytometry as above, with addi-
tional gating on CD3+ cells.

In vivo suppression assays (xenogeneic GvHD)
Female NOGmice (NOD.Cg-Prkdcscid Il2rgtm1Sug/JicTac) were purchased from Taconic Biosci-
ences Inc. and housed under sterile conditions in individually ventilated cages and given ad
libitum access to autoclaved food and water in the institutional animal facility (maintained on
12 hours light/dark cycle). Mice were acclimatized for 1 to 4 weeks and experiments started at
9–10 weeks of age. For induction of xenogeneic GvHD, mice were irradiated with 2 Gy and
injected intravenously with 20x106 PBMCs +/- 5 x106 Tregs in 200 μl PBS on the same day. As
control, PBS alone was injected into irradiated mice. Prior to injection into mice, iTregs were
induced for 6 days and rested for 2 days as described above. nTregs were isolated as described
above from the same donor as iTregs and expanded for 1 week with anti-CD3/CD28 beads
(Invitrogen; 1:1 bead:cell ratio) in the presence of 300 U/ml IL-2 and 100 ng/ml Rapa. Then,
stimulation beads were removed and nTregs were washed and rested in medium containing 50
U/ml IL-2 for 2 days. Allogeneic PBMCs were freshly isolated the day before injection as
described above but without monocyte adherence, and CD25+ cells were depleted by MACS
separation. All cells were washed thrice in PBS, and PBMCs were combined with T cells before
intravenous injection into mice. Mice were monitored for weight loss every 1 to 3 days and sac-
rificed when 20% weight loss was reached or when severe GvHD symptoms (hunched back,
impaired movement/activity, ruffled fur) became evident.

RNA preparation and quantitative RT-PCR (qRT-PCR)
Total RNA was isolated using the RNAqueous Micro Kit (Ambion), quantified with a Nano-
drop 2000 (Thermo Scientific) and cDNA was prepared using the SuperScript1 VILO cDNA
Synthesis Kit (Invitrogen) according to the manufacturer’s instructions. RNA from unstimu-
lated nTregs as well as unstimulated Tnaive was sampled on day 0 to ensure high cell viability.
mRNA was quantified using Taqman probes (Applied Biosystems best coverage probes, FAM
reporter) with the Taqman gene expression mastermix (Applied Biosystems) and measured on
a StepOne plus detector system (Applied Biosystems). The relative mRNA expression was
determined by normalization to RPL13A. Results are presented as fold induction compared to
mRNA amounts of unstimulated T naïve of the same donor, which were set to 1. Fold expres-
sion was calculated using the ΔΔCt method according to the following formula (Ct is the
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threshold cycle value):

Relative mRNA expression ¼ 2�ðCt of gene of interest�Ct of RPL13AÞ

Analysis of TSDRmethylation
Genomic DNA of iTregs or control cells generated from male donor cells was isolated with
the DNeasy Blood & Tissue Kit (Qiagen) according to the manufacturer’s instructions.
Unstimulated Tnaive and nTregs were sampled on day 0 as controls. TSDR methylation anal-
ysis by Bisulfite sequencing was done by Epiontis GmbH, Berlin, Germany as previously
described [58].

Flow cytometry and antibodies
Surface stainings. If not otherwise stated, cell surface antigens were stained in the dark in

antibody dilutions in FACS buffer (PBS/0.5% HSA) for 15 minutes at 20°C or 30 minutes at
4°C. Cells were washed once with PBS, taken up and measured in FACS buffer or used for sub-
sequent intracellular stainings.

Intracellular and viability stainings. After surface staining, cells were washed twice with
PBS and stained with the Fixable Viability Dye (ebioscience) for 30 minutes at 4°C (dark), then
washed twice and used for intracellular stainings. Intracellular stainings were performed with
the Foxp3 Staining Buffer Set (ebioscience) according to the manufacturer’s protocol at 4°C.
To measure intracellular cytokines, cells were pulsed 4 h before staining with 0.5 μM ionomy-
cin and 10 ng/ml PMA (Sigma-Aldrich) in the presence of Golgi plug (BD Biosciences). Isotype
control antibodies were used in the same final concentrations (w/v) as the corresponding intra-
cellular staining antibodies.

The following dyes and antibodies were used (all against the human proteins). Fox-
p3-APC (ebioscience, clone 236A/E7) and mIgG1 κ APC isotype control (ebioscience, clone
P3.6.2.8.1), CD25-PE (Miltenyi), CTLA-4-BV421 (BD Biosciences, clone BNI3) and mIgG2a
κ BV421 isotype control (BD Biosciences), IFN-γ-PE and mIgG1 κ PE isotype control
(ebioscience), IFN-γ-FITC and mIgG1 κ FITC isotype control (ebioscience), IL-17A eFluor450
and mIgG1 κ eFlour450 isotype control (ebioscience), CD45RA-PE-Vio770 (Miltenyi),
CD45RA-FITC (Miltenyi), CD45RO-PE (BD Biosciences), CD4-PerCP (BD Biosciences),
CD3-PE-Vio770 (Miltenyi), CD8-eFlour450 (ebioscience), fixable viability dye-eFlour780
(ebioscience), CFSE (Molecular Probes).

Acquisition and analysis. Acquisition was performed on a CyAn™ ADP 9 Color Analyzer
(Beckman Coulter), and parameter compensation was performed automatically with the CyAn
software (Summit) tool using single stained samples containing positive cells. FACS data were
analyzed using FlowJo (Tree Star).

Statistical analysis. Statistical analysis was performed with GraphPad and p values<0.05
were considered significant. Bar and line charts were generated in Microsoft Office Excel, box-
plots were created in R, survival curves were created and analyzed [Log-rank (Mantel Cox)
test] in GraphPad Prism 6. Phenotypic differences between iTreg conditions were calculated by
paired t test, comparing the different conditions for paired (within one donor) samples. In
vitro suppression assays were analyzed with paired t test compared to mock suppressor cells, as
well as with one-sample t test, as indicated.

Comparative Analysis of Human iTreg Protocols

PLOS ONE | DOI:10.1371/journal.pone.0148474 February 17, 2016 22 / 31



Supporting Information
S1 Fig. Cell purity and experimental setup for iTreg differentiation. (A) Naive human CD4
T cells were isolated by the Naive CD4+ T Cell Isolation Kit II, human (Miltenyi). Naive CD4
T cell purity, based on CD4, CD45RA and CD45RO, was 94–98% and purity of a representative
donor of more than 20 is shown. PBMCs from the same donor, before MACS isolation, are
shown as a control. (B) Ex vivo Tregs (”nTregs”) were isolated by using limited amounts of
CD25 microbeads (Miltenyi) and used as a positive control for iTreg experiments. Naive CD4
T cells were isolated as described in (A). Representative nTreg and Tnaive purity based on CD4
and CD25 is shown here for one donor out of more than 20. For Foxp3 expression, see Fig 1.
The lower panels show CD45RA and CD25 expression in nTreg preparations for the same
donor; naive T cells are shown as a comparison. (C) Experimental setup for iTreg induction
and analysis. Human naive CD4 T cells were isolated from buffy coats and stimulated for 6
days in different Treg-inducing conditions (”iTreg“) or control stimulated (mock suppressor
cells). Phenotypic analysis was done by flow cytometry, qRT-PCR and TSDR methylation anal-
ysis. Before use in suppression assays, iTregs were washed and rested 2 days in low IL-2, and
then washed again before setup of suppression assays.
(TIF)

S2 Fig. Gating strategy for iTreg phenotype analysis. Arrows indicate the gating hierarchy.
As examples, different samples from day 6 are shown in A–D: (A) stimulated + IL-2, (B) stimu-
lated + IL-2 + TGF-β, (C) unstimulated, (D) isotype control antibody stainings for intracellular
stainings (for Foxp3, CTLA-4 and IFN-γ antibodies; example shown: stimulated + IL-2 + TGF-
β + ATRA).
(TIF)

S3 Fig. Foxp3 expression in human iTregs using different Treg-inducing conditions, kinet-
ics and stimulation strengths. (A) Foxp3 protein expression at day 6, shown as individual
lines for individual donors (each line represents one donor; except red line = mean of all
donors), gated on live CD4+ cells. iTreg or control conditions are indicated on the x axis. (B)
FOXP3mRNA expression in naive T cells cultured for 6 days under the indicated iTreg or con-
trol conditions. nTregs and unstimulated naive T cells were sampled on day 0. mRNA was
quantified by Taqman assay and normalized to RPL13A expression. FOXP3mRNA expression
in unstimulated naive T cells from the corresponding donor was set to 1, and fold change of
FOXP3mRNA calculated (numbers in plot represent mean fold changes). Shown are mean +/-
SEM values for n = 8 to 12 donors in 6 to 8 independent experiments. Significance was calcu-
lated with paired t test. �: p<0.05; ��: p<0.01; ���: p<0.001; ����: p<0.0001. (C) Foxp3 protein
expression kinetics during Treg induction on day 3 and day 6. The Treg induction (day 0 to
day 6) was performed with different concentrations of anti-CD28 antibody and TGF-β as indi-
cated, with constant 5 μg/ml plate-bound anti-CD3 and 100 U/ml IL-2. Our”standard”condi-
tion was 5 ng/ml TGF-β and 1 μg/ml anti-CD28. Unstimulated nTregs as well as unstimulated
Tnaive, cultured without stimulation and with IL-2 only, are shown as controls in the upper
left panel. Gate: Live CD4+ cells. One donor is shown, and the experiment was repeated with
an independent donor showing similar results.
(TIF)

S4 Fig. Expression of Treg signature genes in human iTregs. (A) CTLA4mRNA expression
in naive T cells cultured 6 days under the indicated iTreg or control conditions. nTregs and
unstimulated naive T cells were sampled on day 0. mRNA was quantified by Taqman assay,
normalized to RPL13A expression. CTLA4mRNA expression in unstimulated naive T cells
from the corresponding donor was set to 1, and fold change of CTLA4mRNA was calculated.
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Shown are mean +/- SEM values for n = 4 to 6 donors (n number indicated in the plot). Signifi-
cance was calculated with paired t test. (B, C) IRF4 and LEF1mRNA expression in naive T cells
was determined as described in (A). n.s.: not significant. �: p<0.05.
(TIF)

S5 Fig. Foxp3 expression during resting of iTregs. (A) Experimental setup for iTreg induc-
tion and subsequent analysis of Foxp3 stability during resting of iTregs. (B) FOXP3mRNA
expression on day 6 (colored bars) of Treg induction under the indicated conditions, as well as
on day 8 (white bars) after 2 days of resting. Resting was done after washing the cells on day 6
and resting them with 50 U/ml IL-2, without stimulation and without further compounds.
Unstimulated nTregs as well as unstimulated Tnaive were sampled on day 0 and are shown as
controls. FOXP3mRNA expression was quantified by qRT-PCR using Taqman assay, normal-
ized to RPL13A expression. FOXP3mRNA expression in unstimulated naive T cells from the
corresponding donor was set to 1, and fold change of FOXP3mRNA was calculated. Shown are
mean +/- SEM values for n = 4 donors (except butyrate, n = 2); numbers in plot represent
mean fold change. (C) Foxp3 protein expression kinetics during Treg induction on day 3 and
day 6, as well as during resting from day 6 to day 8. The Treg induction (day 0 to day 6) was
performed with different concentrations of anti-CD28 antibody and TGF-β as indicated in the
plots, with constant 5 μg/ml plate-bound anti-CD3 and 100 U/ml IL-2. Resting was done after
washing the cells by resting them with 50 U/ml IL-2, without stimulation and without further
compounds. Resting was done without or with (half-filled symbols) TGF-β. Unstimulated
nTregs as well as unstimulated Tnaive, cultured without stimulation and with IL-2 only, are
shown as controls in the upper left panel. Foxp3 positive cells were quantified by intracellular
staining, gated on live CD4+ cells. One donor is shown, and the experiment was repeated with
an independent donor showing similar results.
(TIF)

S6 Fig. Analysis of Foxp3 stability and TSDR demethylation in human iTregs. (A) Experi-
mental setup for iTreg induction and resting (as in S5 Fig). Tregs were subsequently washed and
further cultured for 5 days with restimulation, or without restimulation and with or without IL-
2. (B) Cell viability on day 13, measured by FACS, under the indicated culture conditions as
described in (A). The examples shown were induced during the initial 6 days of Treg induction
with IL-2 + TGF-β + ATRA + Rapa and the outcome of viability results are representative of
other initial Treg-inducing culture conditions. A representative donor of 4 is shown. (C) As
described in (A), iTregs were induced for 6 days under the indicated conditions, and then rested
for 2 days. Afterwards, Tregs were washed and further cultured for 5 days without restimulation
and with IL-2, before DNA was extracted and TSDRmethylation analyzed on day 13.
(TIF)

S7 Fig. Analysis of Foxp3 re-induction and TSDR demethylation in human iTregs. (A)
Experimental setup to analyze Foxp3 re-induction. iTregs were induced for 6 days under the
indicated conditions, and then washed. To re-induce Foxp3, cells were cultured with the same
Treg-inducing conditions as in the initial culture for further 5 to 7 days, or in medium with
IL-2 only as a control. Unstimulated nTregs are shown for comparison. (B) Foxp3 re-induction
was analyzed on day 13 as described in (A). Foxp3 intracellular stainings, gated on live
CD4+ cells, for a representative donor of 2 is shown. (C) Corresponding TSDR methylation
analysis of cells on day 11 of culture as described above. See (B) for the color key.
(TIF)

S8 Fig. Experimental setup for iTreg in vitro suppression assays. iTregs generated as in S1
Fig, or control mock suppressor cells, were rested and washed and then used as suppressor cells
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towards CFSE-labeled responder T cells (Tresp, CD25-depleted CD4+CD8+ pan T cells).
nTregs from the same donor (previously frozen, to avoid low viability of nTregs upon pro-
longed culture in vitro) were used as control. Suppression assays were set up in different Treg:
Tresp ratios, and suppression read out after 3–5 days of stimulation by flow cytometry (CFSE-
based proliferation and intracellular IFN-γ production).
(TIF)

S9 Fig. In vitro suppression assay gating strategy and exemplary samples. (A) The gating
strategy is indicated by arrows. The shown example is from a coculture (set up at 1:1 ratio 5
days before) of CFSE-labeled Tresp with non-CFSE-labeled mock suppressor cells (stimulated
with anti-CD3/-CD28 and IL-2 before resting and setup of suppression assay). (B) Shows unsti-
mulated, CFSE-labeled Tresp alone. (C) Shows stimulated, CFSE-labeled Tresp alone. (D)
Shows a coculture (set up at 1:1 ratio 5 days before) of CFSE-labeled Tresp with non-CFSE-labe-
led”TGF-β + ATRA + Rapa”iTregs. (E) Shows a coculture (set up at 1:1 ratio 5 days before) of
CFSE-labeled Tresp with non-CFSE-labeled nTregs (which were frozen and thawed before
setup of suppression assay). (F) Shows stimulated iTregs alone (here: ”TGF-β + ATRA + Rapa”i-
Tregs). (G) Shows the relevant plots for isotype control stainings for intracellular antigens (the
shown example is from a coculture of CFSE-labeled Tresp with non-CFSE-labeled iTregs.) All
samples were pulsed with PMA/ionomycin for 4 hours before staining (except unstimulated
Tresp). In suppression assays with APCs (not shown here), it was pre-gated on live CD3+ cells
in addition.
(TIF)

S10 Fig. Comparative analysis of in vitro suppressive function of human iTregs generated
with different iTreg-inducing protocols. (A) For the suppression assays from Fig 5, it was
tested whether there is significant suppression (1 = 100% suppression) of responder T cell pro-
liferation against the null hypothesis = 0 = no suppression by one-sample t test, for each iTreg
or control condition. The left panel shows data for CD4+ Tresp and the right panel for CD8
+ Tresp. Data are presented as mean +/- SEM of n = 4 to 6 donors, for the coculture ratios
Tresp:Treg of 1:1 and 1:0.5. Significant suppression is indicated by an asterisk. �: p<0.05; ��:
p<0.01. (B) CFSE histogram overlays of a suppression assay stimulated with anti-CD3 and
APCs for the Tresp:Treg ratio of 1:1, gated on CD4 Tresp (left) or CD8 Tresp (right), for a rep-
resentative donor of two. Dotted black lines = 2:0 Tresp; solid black lines = 1:0 Tresp; filled
histogram = unstimulated Tresp. Color code as in (C). Lines in same color represent cells
plated in replicate wells. (C) IFN-γ suppression by iTreg or control cells was measured in
CD8+ Tresp. The percentage of IFN-γ positive cells is shown for one donor in the left panel,
and values represent mean +/- SD of wells plated in replicate. The right panel shows percent
IFN-γ suppression calculated from IFN-γ production, with 2:0 Tresp set to 100% IFN-γ pro-
duction (0% suppression). Shown is the compiled data (mean +/- SEM) for n = 4 donors
(except n = 2 for 1:2 ratio and butyrate iTreg condition). Significance was calculated by paired t
test, comparing suppression by iTreg populations to suppression by mock suppressor cells
(stimulated with anti-CD3/-CD28 and IL-2 only; grey line) at 1:1; 1:0.5 and 1:0.25 ratio, respec-
tively. Asterisks indicate significant differences and are depicted in the color of the respective
Treg condition. �: p<0.05.
(TIF)

S1 Table. Individual-level data behind means of results and figures mentioned in the text.
The table shows individual data points for each donor, related to flow cytometry and Q-PCR
results that are summarized in the manuscript text and figures for n donors as indicated.
(XLSX)
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