
Chapter 18
Computational Modeling Under Uncertainty:
Challenges and Opportunities

David Gomez-Cabrero, Jesper Tegnér and Liesbet Geris

Abstract Computational Biology has increasingly become an important tool for
biomedical and translational research. In particular, when generating novel hypothe-
sis despite fundamental uncertainties in data and mechanistic understanding of bio-
logical processes underpinning diseases.While in the present book,we have reviewed
the necessary background and existing novel methodologies that set the basis for
dealing with uncertainty, there are still many “grey”, or less well-defined, areas of
investigations offering both challenges and opportunities. This final chapter in the
book provides some reflections on those areas, namely: (1) the need for novel robust
mathematical and statisticalmethodologies to generate hypothesis under uncertainty;
(2) the challenge of aligning those methodologies in a context that requires larger
computational resources; (3) the accessibility of modeling tools for less mathemat-
ical literate researchers; and (4) the integration of models with—omics data and its
application in clinical environments.
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18.1 Introduction

There are two underlying rationales that motivate the chapters in this book. The
first, is the usefulness and necessity of mechanistic mathematical and computational
modeling in biomedical research. The usefulness has been widely shown in several
chapters (see for instance [31] by Lejon and Samaey, [26] by Hug et al.) and (for
instance) from classical groundbreaking works in neuron modeling (such as [23]).
The necessity of mechanistic modeling originates essentially from the limitations
w.r.t mechanistic understanding when solely using classical statistical analysis in the
analysis of complex systems [51].

The second rationale is that mechanistic modeling in biology needs to address
uncertainty in order to generate testable hypothesis. For instance in biology when a
transcript is profiled—either by PCR, array or RNA-seq—there are several sources
of variability to consider: technical, from the experimental procedure use, and bio-
logical, that is for instance when the same type of cell may react in different ways to
the same perturbation. At the cell level, one explanation for observed transcriptomics
biological variation is that the regulation is driven at several and different layers (e.g.
genetic and epigenetic regulation), but large parts of these regulatory mechanisms
are still only in part possible to decipher [3, 22, 27, 32]. Furthermore, the profiles
of those “other regulatory layers” are in most cases not available during modeling.
A second explanation for uncertainty is the stochastic nature of some biological
processes as shown in intra-cellular chemical reactions, gene expression [33] and
pharmacokinetics [12] among others. In both explanations, we need to clearly face
uncertainty during the modeling, in the parameters of the model and in the biological
processes when investigating model behaviors.

While the [16] by Geris and Gomez-Cabrero provides an overview, we find it
useful to close the book with a chapter that summarizes major existing challenges
and opportunities. We have identified four challenges that will be briefly discussed
in the different sections of this Chapter. First, (1) there is a need for methodological
development, (2) linking modeling and high-performance computing, (3) strengthen
the accessibility ofmodeling tools targeting non-specialists and, (4) integrating omics
and modeling tools for the benefit of personalized medicine. Additional challenges
for the future of computational biomedicine, especially with respect to the clinical
dimension, can be found in the Digital Patient Roadmap.1

18.2 The Need for Methodological Development

In the last decade, we have observed a shift in biological modeling analysis. In initial
attempts, mechanistic ordinary differential equation (ODE) models were generated
by defining a set of equations, and investigators manually fine-tuned the parameters.
The manual fine-tuning was conducted by exploring the parameter space “in the

1http://www.digital-patient.net/files/DP-Roadmap_FINAL_N.pdf.
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quest” of finding those parameters that agreed with experimental observed behav-
ior (we will denote them by “good quality parameter sets”). Eventually, the manual
search was made automatic by designing the fine-tuning problem as an optimiza-
tion problem as shown in [5] by Salmuelson et al. Furthermore, with the growth of
computational resources the parameter space of larger models became intractable
using theoretical analysis, it became clear that investigations of either exploring the
surrounding areas of good quality parameter sets (see [34] by Mannakee et al. and
[47] by Van Schepdael et al.) or by exploring the set of “good quality parameter sets”
([17] byGomez-Cabrero et al. and [7] by Cedersund) became important.We consider
that those types of methodologies are necessary and they are an active research field
in computational biology, however it still requires a coordinated effort to generate a
solid foundation for further development. We consider two major requirements:

(1) Rigorous definitions In order to develop useful methodologies and tools we
need to provide a robust answer to the following question: what is a useful output
from the analysis under uncertainty of a biological theoretical model? (QUES). In
[17] by Gomez-Cabrero et al. the answer proposed is (briefly) first the grouping and
secondly group characterization of good quality parameter sets. The idea is that by
exploring the “good quality parameter set” space it is possible to find competing
hypothesis (from the groups of “good quality parameter sets”) that could be tested at
the laboratory. However, given the exploratory nature of the proposed methodology
(that does not investigate all possible “good quality parameter sets” but a sample of
them by an optimization methodology) the robustness of the competing hypothesis
is not rigorously ensured. Reference [7] by Cedersund answers that the fundamental
outputs are the set of predictions that can be then tested back in the laboratory.
Furthermore [7] by Cedersund provides an initial classification of predictions: core
predictions (well-determined predictions that allow to test the quality of the model)
and suggestions (poorly determined predictions that may provide specific insights
that can be tested in order to improve the overall quality model). Both results and
proposals shown in [17, 34] by Gomez-Cabrero et al. and [7] by Cedersund represent
part of the initial efforts generated to provide a formal answer to QUES; however
we consider it necessary to develop further these efforts and work on generating a
consensus and robust formulation for answering QUES. Relevant material on the
topic can be found in [6, 9, 10, 18, 30, 46].

(2)Development of software tools that implement such methodologies so they
may become a standard The shift from manual search to automatic search started
during last decades of 20th century and actively continued during first decade of 21st
century. Several teams worked on those ideas and several tools were developed at
the same time; some of those tools aimed for specific areas such as Neuroscience
(Neurofitter, [45]) while some other tools were more generic such as COPASI [24].
Many of those tools are still available (and there are active research groups contin-
uously updating them) see [5] by Cedersund et al. for further detail. On one hand,
the generation of that many tools raised the awareness and use of those new method-
ologies; on the other hand it was clear that the wheel was reinvented many times.
When considering the generation of hypothesis under uncertainty we may argue
to be at the beginning of user-friendly method development. Yet no tool is able to
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perform automatically the analysis presented in [17] by Gomez-Cabrero et al. or
[7] by Cedersund; in those cases customized coding solutions were generated. We
consider it necessary to generate user-friendly solutions able to perform automat-
ically (or under human supervision) those analyses. However we also believe it is
necessary to generate coordinated working groups to avoid the generation of similar
tools simultaneously.

A final complementary development to those methodologies is the generation of
novel methodologies and (user-friendly) tools allowing automatic simplification and
reduction of models as shown in [14] by Eriksson et al., [44] by Tucker or through
Global Sensitivity Analysis [29, 39, 43].

18.3 Integration of Computational Modeling
with High-Performance Computing Techniques

Computational resources have been both the key and bottleneck for computational
modeling analysis. The automatic search for “good quality parameter sets” depended
on the availability of machines able to run hundreds or thousands of simulations in
brief periods of time. This was possible through medium sized (20+ cores) to large
sized (named supercomputers such as Mare Nostrum in the Barcelona Supercom-
puting Center (www.bsc.es, Spain) or SNIC solutions (www.snic.vr.se, Sweden)
machines; the former was mainly affordable by computational-oriented groups able
to invest funding in the resource while the latter were available through national pro-
grams that provided (and still provide) a number of hours-per-month upon request.
The first computational biology analysis competed for such computational resources
with theoretical physics or computational chemistry (among many others) simula-
tions, but at that time the required resources were minor compared to the rest of
research areas. Over the years, and with both the development of automatic fine-
tuning tools and larger models, the computational requirements grew and computa-
tional biology is starting to compete at a similar scale of requirements than the other
research domains. The present and coming future shows that the demand of compu-
tational requirements are still to grow for several reasons, among them: (i) possible
increased size of the models, (ii) increased amount of data to be considered (see later
the omics’ section for further details) and (iii) an increased amount of users (see for
instance the development of novel conferences such as HiCOMB, High Performance
Computational Biology from 2002 until nowadays). For this reason the long-term
resources are to be planned carefully in order to correctly asses the future needs of
Biological and Medical Sciences.2 We consider the following three aspects to be of
major relevance:

(1) High-Performance Computing (HPC) infrastructures There is a general
trend to avoid buying small-medium computational resources by every group and
invest better into large-scale resources or cloud-based solutions; see for instance the

2http://cordis.europa.eu/fp7/ict/e-infrastructure/docs/bms-agenda.pdf.

www.bsc.es
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action plan for theDigital Agenda for Europe.3 Small-medium sized solutions tend to
be expensive and, in many cases, sub-optimally used. While cloud-based solutions,
if prizes are competitive, may provide a cheaper solution that will optimally reflect
the needs and uses of different research groups in real-time. Furthermore, as pointed
out by Peter V Coveney,4 it is necessary to optimize the interoperability across large
infrastructures and it is necessary to harmonize mechanisms such as access, advance
reservation and urgent computing among others.

(2) Parallelization Both simulation and fine-tuning benefit from parallelization,
that is the possibility to run a process as separate parallel batches therefore reducing
the amount of time by using several CPUs simultaneously. Both optimization algo-
rithms and methodologies to integrate Partial Differential Equations benefit from
better and robust parallelizable algorithms. Interestingly, in the area of eScience (“the
application of computer technology to the undertaking of modern scientific investi-
gation, including the preparation, experimentation, data collection, results dissem-
ination, and long-term storage and accessibility of all materials generated through
the scientific process”, Shannon Bohle5) there is an effort to import to computational
biology those methods already developed for other areas where large-scale modeling
is actively used (such as Weather Forecast modeling). Among those efforts there is
the Swedish e-Science Research Center (http://www.e-science.se).

(3) Scalability Both for computational resources and parallelization need to con-
sider optimal scalability of the solutions developed, given that the number of users
and computational requirements is expected to grow over time [15, 21].

18.4 To Widen the Use and Applicability of Modeling
as a Tool for Non-specialists

Most of the chapters of this book have been written by statisticians, mathematicians,
and engineers with a strong mathematical background. This may represent the back-
ground requirements for method development in computational biology, however it
does not represent the requirements for using computational biology. Fortunately,
in the last twenty numerous biologists have been exposed to the necessary back-
ground to develop and analyze their own models. We consider that to make the use
of modeling in biomedicine it is important to make the necessary knowledge and
tools as accessible as possible; on this direction we consider that following points
are important.

(1) The necessary theoretical background When biologists decide to design
a model of their system under study, it is necessary for them to learn the basics

3https://ec.europa.eu/digital-agenda/en/pillar-v-research-and-innovation/action-53-financially-
support-joint-ict-research-infrastructures.
4http://cordis.europa.eu/fp7/ict/e-infrastructure/docs/bms-presa-6.pdf.
5http://www.scilogs.com/scientific_and_medical_libraries/what-is-e-science-and-how-should-it-
be-managed/.

http://www.e-science.se
https://ec.europa.eu/digital-agenda/en/pillar-v-research-and-innovation/action-53-financially-support-joint-ict-research-infrastructures
https://ec.europa.eu/digital-agenda/en/pillar-v-research-and-innovation/action-53-financially-support-joint-ict-research-infrastructures
http://cordis.europa.eu/fp7/ict/e-infrastructure/docs/bms-presa-6.pdf
http://www.scilogs.com/scientific_and_medical_libraries/what-is-e-science-and-how-should-it-be-managed/
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of mathematical modeling. General and specific knowledge of modeling will be
required depending on the system to investigate. The amounts of material (specially
books) addressing this knowledge have been growing in both quantity and user-
friendliness. Additionally, courses (such as Computational Biology in Cold Spring
Harbor, directed by Professor Gregory Smith6) are becoming more common. We
consider that it is necessary to continue this trend, but also that (i) courses where
biological-strong and mathematical-strong participants are both enlisted are to be
prioritized, because it allows exchanging of views and goals and creates a richer
learning environment [4]; and (ii) the development of on-line courses addressing this
topic needs to receive attention, so students may have introductory sessions without
the need to wait for face-2-face courses.

(2) Software environments We consider it necessary to enhance the user-
friendliness of existing (and novel tools) in order to enlist researchers in the use
of modeling. Existing tools have certainly shown an increase in accessibility and
friendliness, but any researcher with no experience will still need to invest large
amounts of time to get confident with them. In Ph.D. programs were modeling may
be a side project to investigate experimental results this situation may end in not
considering modeling as a research tool. We consider that our aim must be to make
“computational modeling” another accessible tool in the biologist tool-box, there-
fore improving user-friendliness is necessary. An example of generating a simulation
environment for medical researchers is [25], which is part of the results from the
European Project Synergy-COPD [19].

(3) Syllabus implementation When a clinician or a biologist may interact with
modelers or discover a model of interest, existing syllabus usually do not provide the
necessary background to understand them. We consider that initiatives such as Eras-
mus BioHealth Computing Program [4] andMedical ResearchMasters are initiatives
of value where future biological and medical researchers are set to interact with
modelers and computational biologists. This approaches enhances the visibility of
modeling in biology and biomedicine.

18.5 Forming Stronger Ties Between Omics Data
and Computational Biology

Following the Human Genome Project, array-based and Next-Generation Sequ-
encing-based technologies have pushed transcriptomics analysis to novel boundaries
[1, 35]. SNP profiling of thousands of individuals have allowed the identification of
genetic risk factors for many diseases such as Multiple Sclerosis [41] or Rheuma-
toid Arthritis [40], however the use of such information in Computational Models is
limited to say the least. A very important open question is then: how do we integrate
and omics-based knowledge into modeling?

6http://meetings.cshl.edu/courses/2014/c-comp14.shtml.

http://meetings.cshl.edu/courses/2014/c-comp14.shtml
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While omics-data is used in the generation of predictive models (such as patient
classification or risk prediction) and integrative approaches are being continuously
developed to improve such models [2, 11, 28, 38, 50] what we here refer to is the
use of omics data in the analysis of biological systems through mechanistic models.
Eventually those integrated mechanistic models may provide in the future relevant
information to be included in better prediction models making use of simulation
outputs. However, at the present time we focus on the challenge of creating models
that address the individual (personalized modeling). Lets consider for instance the
development of a immune system model of Multiple Sclerosis Progression such as
the one presented in [48]. If we gather information of DNA Methylation profiling
and/or SNP genotype for a given individual, the challenge is now howwe implement
such information so themodel is not anymore a genericmodel but individual specific.
There exist several attempts on this direction as those shown in Synergy-COPD [19]
and CombiMS, in the context of Systems Medicine and the Virtual Physiological
Human. In order for omics data to be routinely used in computational biomedicine
and, later on, in a clinical setting, a number of requirements need to be fulfilled, as
recently identified by [49]. These include (1) the ability to work with sensitive data,
(2) to work with complex and heterogeneous data (including non-textual informa-
tion), (3) toworkwith a distributed datamanagement under security and performance
constraints, (4) to define methods allowing for the integration of bioinformatics and
systems biology information with clinical observations on various length scales, and
finally (5) to define tools able to define the ‘physiological envelope’ of a patient (ref
white paper).

18.6 Conclusions

Wefind that Computational Biology is a crucial tool for biology and biomedicine, but
to enhance its practical applicability there is an urgent need to address the uncertainty
commonly observed in biological systems to ensure the uptake in the biological
and clinical communities. The present chapter reviews the needs and challenges in
computational biology, that are important to consider in the nearby development of
the field. We summarize those needs in four major aspects:

1. Robust definitions for the generation of useful predictions,
2. Development of novel and optimization of existing HPC resources that address

the state-of-the-art computational needs.
3. Development of user-friendly analysis tools and easily accessible computing

resources,
4. Development of models and tools that incorporate information on the different

omics widely profiled nowadays.

We hope that the reading of this book may motivate young and senior researchers to
follow and work on those challenges.
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