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Abstract

We analyze two different feature selection problems: finding a minimal feature set optimal for
classification (MINIMAL-OPTIMAL) vs. finding all features relevant to the target variable (ALL-
RELEVANT). The latter problem is motivated by recent applications within bioinformatics, partic-
ularly gene expression analysis. For both problems, we identify classes of data distributions for
which there exist consistent, polynomial-time algorithms. We also prove that ALL-RELEVANT is
much harder than MINIMAL-OPTIMAL and propose two consistent, polynomial-time algorithms.
We argue that the distribution classes considered are reasonable in many practical cases, so that our
results simplify feature selection in a wide range of machine learning tasks.

Keywords: learning theory, relevance, classification, Markov blanket, bioinformatics

1. Introduction

Feature selection (FS) is the process of reducing input data dimension. By reducing dimensionality,
FS attempts to solve two important problems: facilitate learning (inducing) accurate classifiers, and
discover the most ”interesting” features, which may provide for better understanding of the problem
itself (Guyon and Elisseeff, 2003).

The first problem has been extensively studied in pattern recognition research. More specifi-
cally, the objective here is to learn an optimal classifier using a minimal number of features; we
refer to this as the MINIMAL-OPTIMAL problem. Unfortunately, MINIMAL-OPTIMAL is in general
intractable even asymptotically (in the large-sample limit), since there exist data distributions for
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which every feature subset must be tested to guarantee optimality (Cover and van Campenhout,
1977). Therefore it is common to resort to suboptimal methods. In this paper, we take a different
approach to solving MINIMAL-OPTIMAL: we restrict the problem to the class of strictly positive
data distributions, and prove that within this class, the problem is in fact polynomial in the number
of features. In particular, we prove that a simple backward-elimination algorithm is asymptotically
optimal. We then demonstrate that due to measurement noise, most data distributions encountered
in practical applications are strictly positive, so that our result is widely applicable.

The second problem is less well known, but has recently received much interest in the bioin-
formatics field, for example in gene expression analysis (Golub et al., 1999). As we will explain
in Section 4, researchers in this field are primarily interested in identifying all features (genes) that
are somehow related to the target variable, which may be a biological state such as ”healthy” vs.
”diseased” (Slonim, 2002; Golub et al., 1999). This defines the ALL-RELEVANT problem. We prove
that this problem is much harder than MINIMAL-OPTIMAL; it is asymptotically intractable even for
strictly positive distributions. We therefore consider a more restricted but still reasonable data dis-
tribution class, and propose two polynomial algorithms for ALL-RELEVANT which we prove to be
asymptotically optimal within that class.

2. Preliminaries

In this section we review some concepts needed for our later developments. Throughout, we will
assume a binary classification model where training examples (x(i),y(i)), i = 1, . . . , l are independent
samples from the random variables (X ,Y ) with density f (x,y), where X = (X1, . . . ,Xn) ∈ Rn is
a sample vector and Y ∈ {−1,+1} is a sample label. Capital Xi denote random variables, while
lowercase symbols xi denote observations. We will often treat the data vector X as a set of variables,
and use the notation Ri = X \ {Xi} for the set of all features except Xi. Domains of variables are
denoted by calligraphic symbols X . We will present the theory for continuous X , but all results are
straightforward to adapt to the discrete case. Probability density functions (continuous variables) or
probability mass functions (discrete variables) are denoted f (x) and p(x), respectively. Probability
of events are denotes by capital P, for example, P(Y = 1/2).

2.1 Distribution Classes

In the typical approach to FS, one attempts to find heuristic, suboptimal solutions while considering
all possible data distributions f (x,y). In contrast, we will restrict the feature selection problem to
certain classes of data distributions in order to obtain optimal solutions. Throughout, we will limit
ourselves to the following class.

Definition 1 The class of strictly positive data distributions consists of the f (x,y) that satisfies (i)
f (x) > 0 almost everywhere (in the Lebesgue measure) and (ii) P(p(y|X) = 1/2) = 0.

Note we do not require f (x,y) > 0, which would be more restrictive. The criterion (i) states that a set
in X has nonzero probability iff it has nonzero Lebesgue measure, while (ii) states that the optimal
decision boundary has zero measure. These conditions are mainly needed to ensure uniqueness of
the Bayes classifier (see below). It is reasonable to assume that this class covers the great majority
of practical pattern recognition problems, since most data originates in physical measurements of
some kind and is inevitably corrupted by noise. For example, consider the additive Gaussian noise
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Figure 1: The distribution classes used. P, strictly positive; PC, strictly positive satisfying the com-
position property; PCWT, strictly positive satisfying composition and weak transitivity;
PD, strictly positive and DAG-faithful. Arrows show classes where the various algorithms
(right) are proved to be consistent.

model

X = x0 + ε, ε ∼ N(0,σ).

Since the noise component ε is strictly positive over the domain of X , we immediately obtain f (x) >
0. A similar argument holds for binary data with Bernoulli noise, and indeed for any additive noise
model with f (ε) > 0. In general, the strictly positive restriction is considered reasonable whenever
there is uncertainty about the data (Pearl, 1988). Note that the f (x) > 0 criterion by definition
only concerns the actual domain X . If the data distribution is known to be constrained for physical
reasons to some compact set such as 0 < X < 1, then naturally f (x) > 0 need not hold outside
that set. Typical problems violating f (x) > 0 involve noise-free data, such as inference of logic
propositions (Valiant, 1984).

In Section 4, we will consider the more narrow classes of strictly positive distributions (P) that
also satisfy the composition property (PC), and those in PC that additionally satisfies the weak
transitivity property (PCWT). See Appendix B for details on these properties. Although these re-
strictions are more severe than f (x) > 0, these classes still allow for many realistic models. For ex-
ample, the jointly Gaussian distributions are known to be PCWT (Studený, 2004). Also, the strictly
positive and DAG-faithful distributions (PD) are contained in PCWT (Theorem 24, Appendix B).
However, we hold that the PCWT class is more realistic than PD, since PCWT distributions will
remain PCWT when a subset of the features are marginalized out (that is, are not observed), while
PD distributions may not (Chickering and Meek, 2002).1 This is an important argument in favor of
PCWT, as in many practical cases we cannot possibly measure all variables. An important example
of this is gene expression data, which is commonly modelled by PD distributions (Friedman, 2004).
However, it is frequently the case that not all genes can be measured, so that PCWT is a more realis-
tic model class. Of course, these arguments also apply to the larger PC class. Figure 1 summarizes
the relations between the distribution classes discussed in this section.

1. The paper by Chickering and Meek (2002) proves that the composition property is preserved under marginalization.
A similar proof for the weak transitivity property can be found in Peña et al. (2006).

591
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2.2 Classifiers, Risk and Optimality

A classifier is defined as a function g(x) : X 7→Y , predicting a category y for each observed example
x. The ”goodness” of a classifier is measured as follows.

Definition 2 (risk) The risk R(g) of a classifier g is

R(g) = P(g(X) 6= Y ) = ∑
y∈Y

p(y)
Z

X
1{g(x)6=y} f (x|y)dx, (1)

where 1{·} is the set indicator function.

For a given distribution f (x,y), an (optimal) Bayes classifier is one that minimizes R(g). It is easy
to show that the classifier g∗ that maximizes the posterior probability,

g∗(x) =

{

+1, P(Y = 1|x) ≥ 1/2
−1, otherwise

, (2)

is optimal (Devroye et al., 1996). For strictly positive distributions, g∗(x) is also unique, except
on zero-measure subsets of X (above, the arbitrary choice of g∗(x) = +1 at the decision boundary
p(y|x) = 1/2 is such a zero-measure set). This uniqueness is important for our results, so for
completeness we provide a proof in Appendix A (Lemma 19). From now on, we speak of the
optimal classifier g∗ for a given f .

2.3 Feature Relevance Measures

Much of the theory of feature selection is centered around various definitions of feature relevance.
Unfortunately, many authors use the term ”relevant” casually and without a clear definition, which
has caused much confusion on this topic. Defining relevance is not trivial, and there are many
proposed definitions capturing different aspects of the concept; see for example Bell and Wang
(2000) for a recent survey. The definitions considered in this paper are rooted in the well-known
concept of (probabilistic) conditional independence (Pearl, 1988, sec. 2.1).

Definition 3 (conditional independence) A variable Xi is conditionally independent of a variable
Y given (conditioned on) the set of variables S ⊂ X iff it holds that

P
(

p(Y |Xi,S) = p(Y |S)
)

= 1.

This is denoted Y ⊥ Xi|S.

In the above, the P(. . .) = 1 is a technical requirement allowing us to ignore pathological cases
where the posterior differs on zero-measure sets. Conditional independence is a measure of ir-
relevance, but it is difficult to use as an operational definition since this measure depends on the
conditioning set S. For example, a given feature Xi can be conditionally independent of Y given
S = /0 (referred to as marginal independence), but still be dependent for some S 6= /0. The well-
known XOR problem is an example of this. Two well-known relevance definitions coping with this
problem were proposed by John et al. (1994).

Definition 4 (strong and weak relevance) A feature Xi is strongly relevant to Y iff Y 6⊥Xi|Ri. A
feature Xi is weakly relevant to Y iff it is not strongly relevant, but satisfies Y 6⊥Xi|S for some set
S ⊂ Ri.
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Informally, a strongly relevant feature carries information about Y that cannot be obtained from any
other feature. A weakly relevant feature also carries information about Y , but this information is
”redundant”—it can also be obtained from other features. Using these definitions, relevance and
irrelevance of a feature to a target variable Y are defined as

Definition 5 (relevance) A feature Xi is relevant to Y iff it is strongly relevant or weakly relevant to
Y. A feature Xi is irrelevant to Y iff it is not relevant to Y.

Finally, we will need the following definition of relevance with respect to a classifier.

Definition 6 A feature Xi is relevant to a classifier g iff

P(g(Xi,Ri) 6= g(X ′
i ,Ri)) > 0,

where Xi,X ′
i are independent and identically distributed.

This definition states that in order to be considered ”relevant” to g, a feature X must influence the
value of g(x) with non-zero probability. It is a probabilistic version of that given by Blum and
Langley (1997). Note that here, Xi and X ′

i are independent samplings of the feature Xi; hence their
distributions are identical and determined by the data distribution f (x,y). In the next section, we
examine the relation between this concept and the relevance measures in Definition 4.

3. The Minimal-Optimal Problem

In practise, the data distribution is of course unknown, and a classifier must be induced from the
training data Dl = {(x(i),y(i))}l

i=1 by an inducer, defined as a function I : (X ×Y )l 7→ G , where
G is some space of functions. We say that an inducer is consistent if the induced classifier I(Dl)
converges in probability to g∗ as the sample size l tends to infinity,

I(Dl)
P
−→ g∗.

Consistency is a reasonable necessary criterion for a sound inducer, and has been verified for a wide
variety of algorithms (Devroye et al., 1996). Provided that the inducer used is consistent, we can
address the feature selection problem asymptotically by studying the Bayes classifier. We therefore
define the optimal feature set as follows.

Definition 7 The MINIMAL-OPTIMAL feature set S∗ is defined as the set of features relevant to the
Bayes classifier g∗ (in the sense of Definition 6).

Clearly, S∗ depends only on the data distribution, and is the minimal feature set that allows for
optimal classification; hence its name. Since g∗ is unique for strictly positive distributions (Lemma
19), it follows directly from Definition 6 that S∗ is then also unique. Our first theorem provides an
important link between the MINIMAL-OPTIMAL set and the concept of strong relevance.

Theorem 8 For any strictly positive distribution f (x,y), the MINIMAL-OPTIMAL set S∗ contains
only strongly relevant features.
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Figure 2: A: The example density f (x2i−1,x2i) given by (4). Here, X1 is strongly relevant and X2

weakly relevant. Arrow and dashed line indicates the optimal separating hyperplane. B:
The risk functional R(g) for a linear SVM trained on all relevant features (filled boxes)
vs. on strongly relevant features only (open boxes), for the 10-dimensional distribution
(4). Average and standard deviation over 20 runs are plotted against increasing sample
size. The Bayes risk (dashed line) is R(g∗) = 0.035.

Proof Since f is strictly positive, g∗ is unique by Lemma 19 (Appendix A). Consider any feature
Xi relevant to g∗, so that P(g∗(Xi,Ri) 6= g∗(X ′

i ,Ri)) > 0 by Definition 6. From the form (2) of the
Bayes classifier, we find that

g∗(xi,ri) 6= g∗(x′i,ri) ⇒ p(y|xi,ri) 6= p(y|x′i,ri) (3)

everywhere except possibly on the decision surface {x : p(y|x) = 1/2}. But this set has zero proba-
bility due to assumption (ii) of Definition 1. Therefore,

P(p(Y |Xi,Ri) 6= p(Y |X ′
i ,Ri)) ≥ P(g∗(Xi,Ri) 6= g∗(X ′

i ,Ri)) > 0.

By Lemma 20 this is equivalent to P(p(Y |Xi,Ri) = p(Y |Ri)) < 1, which is the same as Y 6⊥ Xi|Ri.
Hence, Xi is strongly relevant.

Note that uniqueness of g∗ is required here: if there would exist a different Bayes classifier g′, the
implication (3) would not hold. Theorem 8 is important because it asserts that we may safely ignore
weakly relevant features, conditioned on the assumption f (x) > 0. This leads to more efficient
(polynomial-time) algorithms for finding S∗ for such problems. We will explore this consequence
in Section 3.3.

An example illustrating Theorem 8 is given in Figure 2. Here, f is a 10-dimensional Gaussian
mixture

f (x1, . . . ,x10,y) ∝
5

∏
i=1

e−
9
8 ((x2i−1−y)2+(x2i−1−x2i)

2). (4)

Figure 2A shows the joint distribution of (X2i−1,X2i) (all such pairs are identically distributed). Note
that, although the shape of the distribution in Figure 2 suggests that both features are relevant to Y ,
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it is easy to verify directly from (4) that X2,X4, . . . ,X10 are weakly relevant: considering for example
the pair (X1,X2), we have

p(y|x1,x2) =
f (x1,x2,y)
f (x1,x2)

=

[

1+ exp

{

−
9
8
((x1 + y)2 − (x1 − y)2)

}]−1

=

[

1+ exp

{

−
9x1y

2

}]−1

which depends only on x1, so X2 is weakly relevant. The Bayes classifier is easy to derive from the
condition p(y|x) > 1/2 (Equation 2) and turns out to be g∗(x) = sgn(x1 + x3 + x5 + x7 + x9), so that
S∗ = {1,3,5,7,9} as expected.

For any consistent inducer I, Theorem 8 can be treated as an approximation for finite (but suffi-
ciently large) samples. If this approximation is fair, we expect that adding weakly relevant features
will degrade the performance of I, since the Bayes risk must be constant while the design cost must
increase (Jain and Waller, 1978). To illustrate this, we chose I to be a linear, soft-margin support
vector machine (SVM) (Cortes and Vapnik, 1995) and induced SVM classifiers from training data
sampled from the density (4), with sample sizes l = 10,20, . . . ,100. Figure 2B shows the risk of
g = I(Dl) and gS∗ = IS∗(Dl

S∗) (here and in what follows we take gS∗ , IS∗ , and Dl
S∗ to mean classi-

fiers/inducers/data using only the features in S∗). The SVM regularization parameter C was chosen
by optimization over a range 10−2, . . . ,102; in each case, the optimal value was found to be 102. We
found that IS∗ does outperform I, as expected. The risk functional R(g) was calculated by numerical
integration of Equation (1) for each SVM hyperplane g and averaged over 20 training data sets.
Clearly, adding the weakly relevant features increases risk in this example.

As the following example illustrates, the converse of Theorem 8 is false: there exist strictly
positive distributions where even strongly relevant features are not relevant to the Bayes classifier.

Example 1 Let X = [0,1],Y = {−1,+1}, f (x) > 0 and p(y=1|x) = x/2. Here X is clearly strongly
relevant. Yet, X is not relevant to the Bayes classifier, since we have p(y = 1|x) < 1/2 almost
everywhere (except at x = 1). We find that g∗(x) = −1 and R(g∗) = P(Y =1).

Clearly, this situation occurs whenever a strongly relevant feature Xi affects the value of the posterior
p(y|x) but not the Bayes classifier g∗ (because the change in p(y|x) is not large enough to alter the
decision of g∗(x)). In this sense, relevance to the Bayes classifier is stronger than strong relevance.

3.1 Related Work

The relevance concepts treated above have been studied by several authors. In particular, the relation
between the optimal feature set and strong vs. weak relevance was treated in the pioneering study
by Kohavi and John (1997), who concluded from motivating examples that ”(i) all strongly relevant
features and (ii) some of the weakly relevant ones are needed by the Bayes classifier”. As we have
seen in Example 1, part (i) of this statement is not correct in general. Part (ii) is true in general, but
Theorem 8 shows that this is not the case for the class of strictly positive f , and therefore it is rarely
true in practise.

A recent study by Yu and Liu (2004) examines the role of weakly relevant features in more
detail and subdivides these further into redundant and non-redundant weakly relevant features, of
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which the latter is deemed to be important for the Bayes classifier. However, Yu & Liu consider
arbitrary distributions; for strictly positive distributions however, it is easy to see that all weakly
relevant features are also ”redundant” in their terminology, so that their distinction is not useful in
this case.

3.2 Connections with Soft Classification

A result similar to Theorem 8 have recently been obtained for the case of soft (probabilistic) clas-
sification (Hardin et al., 2004; Tsamardinos and Aliferis, 2003). In soft classification, the objective
is to learn the posterior p(y|x) instead of g∗(x). By Definition 6, the features relevant to the optimal
soft classifier p(y|x) satisfies

P(p(Y |Xi,Ri) 6= p(Y |X ′
i ,Ri)) > 0

which is equivalent to P(p(Y |Xi,Ri) 6= p(Y |Ri)) > 0 by Lemma 20. Thus, the features relevant to
p(y|x) are exactly the strongly relevant ones, so the situation in Example 1 does not occur here.

When learning soft classifiers from data, a feature set commonly encountered is the Markov
boundary of the class variable, defined as the minimal feature set required to predict the posterior.
Intuitively, this is the soft classification analogue of MINIMAL-OPTIMAL. The following theorem
given by Pearl (1988, pp. 97) shows that this set is well-defined for strictly positive distributions.2

Theorem 9 (Markov boundary) For any strictly positive distribution f (x,y), there exists a unique
minimal set M ⊆ X satisfying Y ⊥ X \M|M. This minimal set is called the Markov boundary of the
variable Y (with respect to X) and denoted M(Y |X).

Tsamardinos & Aliferis recently proved that for the PD distribution class (see Figure 1), the Markov
boundary coincides with the set of strongly relevant features (Tsamardinos and Aliferis, 2003).
However, as explained in Section 2.1, the PD class is too narrow for many practical applications.
Below, we generalize their result to any positive distribution to make it more generally applicable.

Theorem 10 For any strictly positive distribution f (x,y), a feature Xi is strongly relevant if and
only if it is in the Markov boundary M = M(Y |X) of Y .

Proof First, assume that Xi is strongly relevant. Then Y 6⊥Xi|Ri, which implies M 6⊆ Ri, so Xi ∈ M.
Conversely, fix any Xi ∈ M and let M′ = M \{Xi}. If Xi is not strongly relevant, then Y ⊥Xi|Ri, and
by the definition of the Markov boundary, Y ⊥X \M|M. We may rewrite this as

{

Y ⊥Xi|M′∪X \M
Y ⊥X \M|M′∪{Xi}.

The intersection property (Theorem 25, Appendix B) now implies Y ⊥X \M ′|M′. Hence, M′ is a
Markov blanket smaller than M, a contradiction. We conclude that Xi is strongly relevant.

The feature set relations established at this point for strictly positive distributions are summarized
in Figure 3.

2. Pearl (1988) gives a proof assuming f (x,y) > 0. However, it is straightforward to relax this assumption to f (x) > 0
in our case, since we only consider Markov boundaries of Y . See Theorem 25 and corollary 26 in Appendix B.
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Irrelevant features

weakly
relevant
features

strongly relevant
features

=
markov blanket

=
features relevant

to the posterior p(y|x)

minimal-optimal set all-relevant set =
 strongly + weakly
 relevant features

Figure 3: The identified relations between feature sets for strictly positive distributions. The circle
represents all features. The dotted line (MINIMAL-OPTIMAL) denotes a subset, while the
solid lines denote a partition into disjoint sets.

3.3 Consistent Polynomial Algorithms

By limiting the class of distributions, we have simplified the problem to the extent that weakly
relevant features can be safely ignored. In this section, we show that this simplification leads to
polynomial-time feature selection (FS) algorithms. A FS algorithm can be viewed as a function
Φ(Dl) : (X ×Y )l 7→ 2X , where 2X denotes the power-set of X . For finite samples, the optimal Φ
depends on the unknown data distribution f and the inducer I (Tsamardinos and Aliferis, 2003).
Asymptotically however, we may use consistency as a reasonable necessary criterion for a ”cor-
rect” algorithm. In analogue with consistency of inducers, we define a FS algorithm Φ(Dl) to be
consistent if it converges in probability to the MINIMAL-OPTIMAL set,

Φ(Dl)
P
−→ S∗.

Conveniently, consistency of Φ depends only on the data distribution f . Next, we propose a
polynomial-time FS algorithm and show that it is consistent for any strictly positive f . As before,
feature sets used as subscripts denote quantities using only those features.

Theorem 11 Take any strictly positive distribution f (x,y) and let ĉ(Dl
S) be a real-valued criterion

function such that, for every feature subset S,

ĉ(Dl
S)

P
−→ c(S), (5)

where c(S) depends only on the distribution f (x,y) and satisfies

c(S) < c(S′) ⇐⇒ R(g∗S) < R(g∗S′). (6)

Then the feature selection method

Φ(Dl) = {i : ĉ(Dl
Ri

) > ĉ(Dl)+ ε}

where ε ∈ (0,η) with η = mini∈S∗(c(Ri)− c(X)), is consistent.
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NILSSON, PEÑA, BJÖRKEGREN AND TEGNÉR

Proof Since f is strictly positive, S∗ is unique by Lemma 19. By Definition 7 and the assumption
(6) it holds that Xi ∈ S∗ iff c(X) < c(Ri). First consider the case Xi ∈ S∗. Fix an ε ∈ (0,η) and let
ε′ = min{(η− ε)/2,ε/2}. Choose any δ > 0. By (5) there exist an l0 such that for all l > l0,

P

(

max
S

|ĉ(Dl
S)− c(S)| > ε′

)

≤ δ/2n

Note that since the power-set 2X is finite, taking the maxima above is always possible even though
(5) requires only point-wise convergence for each S. Therefore the events (i) ĉ(Dl

X) < c(X)+ε′ and
(ii) ĉ(Dl

Ri
) > c(Ri)− ε′ both have probability at least 1− δ/2n. Subtracting the inequality (i) from

(ii) yields

ĉ(Dl
Ri

)− ĉ(Dl
X) > c(Ri)− c(X)−2ε′

≥ c(Ri)− c(X)− (η− ε) ≥ ε.

Thus, for every l > l0,

P(Xi ∈ Φ(Dl)) = P(ĉ(Dl
Ri

)− ĉ(Dl
X) > ε)

≥ P
(

ĉ(Dl
X) < c(X)+ ε′ ∧ ĉ(Dl

Ri
) > c(Ri)− ε′

)

≥ P
(

ĉ(Dl
X) < c(X)+ ε′

)

+P
(

ĉ(Dl
Ri

) > c(Ri)− ε′
)

−1

≥ 1−δ/n.

For the converse case Xi 6∈ S∗, note that since c(X) = c(Ri),

P(Xi ∈ Φ(Dl)) = P
(

ĉ(Dl
Ri

)− ĉ(Dl
X) > ε

)

≤ P(|ĉ(Dl
Ri

)− c(Ri)|+ |c(X)− ĉ(Dl
X)| > ε)

≤ P
(

|ĉ(Dl
Ri

)− c(Ri)| >
ε
2
∨ |c(X)− ĉ(Dl

X)| >
ε
2

)

≤ P
(

|ĉ(Dl
Ri

)− c(Ri)| > ε′
)

+P
(

|c(X)− ĉ(Dl
X)| > ε′

)

≤ δ/n

where in the last line we have used ε′ ≤ ε/2. Putting the pieces together, we obtain

P(Φ(Dl) = S∗) = P(Φ(Dl) ⊇ S∗ ∧ Φ(Dl) ⊆ S∗)

= P(∀i ∈ S∗ : Xi ∈ Φ(Dl) ∧ ∀i 6∈ S∗ : Xi 6∈ Φ(Dl))

≥ |S∗|(1−δ/n)+(n−|S∗|)(1−δ/n)− (n−1) = 1−δ.

Since δ was arbitrary, the required convergence follows.

The requirement to choose an ε < η may seem problematic, since in practise η depends on the
true distribution f (x,y) and hence is unobservable. For convergence purposes, this can be remedied
by choosing a sequence ε = ε(l) → 0, so that ε < η will become satisfied eventually. In practise,
the parameter ε controls the trade-off between precision and recall; a small ε gives high recall but
low precision, and vice versa. If it is possible to estimate the distribution of ĉ, one might attempt
to choose ε so as to control precision as recall as desired. However, this is a difficult issue where
further research is necessary.
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The algorithm Φ evaluates the criterion ĉ precisely n times, so it is clearly polynomial in n
provided that ĉ is. The theorem applies to both filter and wrapper methods, which differ only in the
choice of ĉ(Dl

S) (Kohavi and John, 1997). To apply the theorem in a particular case, we need only
verify that the requirements (5) and (6) hold. For example, let I be the k-NN rule with training data
Dl/2 = {(X1,Y1), . . . ,(Xl/2,Yl/2)} and let R̂ be the usual empirical risk estimate on the remaining
samples {(Xl/2+1,Yl/2+1), . . . ,(Xl,Yl)}. Provided k is properly chosen, this inducer is known to be
universally consistent,

P(R(IS(D
l/2
S ))−R(g∗S) > ε) ≤ 2e−lε2/(144γ2

S)

where γS depends on |S| but not on l (Devroye et al., 1996, pp. 170). Next, with a test set of size
l/2, the empirical risk estimate satisfies

∀g : P(|R̂(g)−R(g)| > ε) ≤ 2e−lε2

(Devroye et al., 1996, pp. 123). We choose ĉ(Dl
S) = R̂(IS(D

l/2
S )) and c(S) = R(g∗S), so that (6) is

immediate. Further, this ĉ(Dl
S) satisfies

P
(

|ĉ(Dl
S)− c(S)| > ε

)

= P
(

|R̂(IS(D
l/2
S ))−R(g∗S)| > ε

)

≤ P
(

|R̂(IS(D
l/2
S ))−R(IS(D

l/2
S ))|+ |R(IS(D

l/2
S ))−R(g∗S)| > ε

)

≤ P
(

|R̂(IS(D
l/2
S ))−R(IS(D

l/2
S ))| >

ε
2

)

+P
(

|R(IS(D
l/2
S ))−R(g∗S)| >

ε
2

)

≤ 2e−lε2/4 +2e−lε2/(576γ2
S) → 0

for every S as required by (5), and is polynomial in n. Therefore this choice defines a polynomial-
time, consistent wrapper algorithm Φ. Note that we need only verify the point-wise convergence
(5) for any given ĉ(S), which makes the application of the theorem somewhat easier. Similarly,
other consistent inducers and consistent risk estimators could be used, for example support vector
machines (Steinwart, 2002) and the cross-validation error estimate (Devroye et al., 1996, chap. 24).

The FS method Φ described in Theorem 11 is essentially a backward-elimination algorithm.
With slight modifications, the above shows that many popular FS methods that implement variants
of backward-search, for example Recursive Feature Elimination (Guyon et al., 2002), are in fact
consistent. This provides important evidence of the soundness of these algorithms.

In contrast, forward-search algorithms are not consistent even for strictly positive f . Starting a
with feature set S, forward-search would find the feature set S′ = S∪{Xi} (that is, add feature Xi) iff
ĉ(Dl

S′) < ĉ(Dl
S). But it may happen that R(g∗S′) ≮ R(g∗S) even though S′ is contained in S∗. Therefore,

forward-search may miss features in S∗. The ”noisy XOR problem” (Guyon and Elisseeff, 2003,
pp. 1116) is an example of a strictly positive distribution with this property.

A simple example illustrating Theorem 11 is shown in Figure 4. We implemented the feature se-
lection method Φ defined in the theorem, and again used the data density f from Equation (4). Also
here, we employed a linear SVM as inducer. We used the leave-one-out error estimate (Devroye
et al., 1996) as R̂. As sample size increases, we find that the fraction of strongly relevant features

selected approaches 1, confirming that Φ(Dl)
P
−→ S∗. Again, this emphasizes that asymptotic results

can serve as good approximations for reasonably large sample sizes.
The algorithm Φ is primarily intended as a constructive proof of the fact that polynomial and

consistent algorithms exist; we do not contend that it is optimal in practical situations. Nevertheless,
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Figure 4: A feature selection example on a 10-dimensional density with 5 strongly and 5 weakly
relevant features (Equation 4). Averaged results of 50 runs are plotted for samples sizes
20, . . . ,200. Error bars denote standard deviations.

Data set l ×n No FS Φε=0 RELIEF FCBF
Breast cancer 569×30 8 9(7) 69(8) 62(2)
Ionosphere 351×34 11 9(14) 16(26) 14(5)
Liver disorder 345×6 36 39(5) −(0) 43(2)
E.Coli 336×7 36 20(5) 43(1) 57(1)
P.I. Diabetes 768×8 33 36(7) 35(1) 35(1)
Spambase 4601×57 12 17(39) 25(26) 40(4)

Table 1: Feature selection on UCI data sets. Test error rates are given in %, number of features
selected in parentheses. Significant differences from the classifier without feature selection
(”No FS”) are underscored (McNemar’s test, p = 0.05). l denotes number of samples, n
number of features.
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we conducted some experiments using Φ on a set of well-known data sets from the UCI machine
learning repository (Newman et al., 1998) to demonstrate empirically that weakly relevant features
do not contribute to classifier accuracy. We used a 5-NN classifier together with a 10-fold cross-
validation error estimate for the criterion function ĉ. For each case we estimated the final accuracy
by holding out a test set of 100 examples. Statistical significance was evaluated using McNemar’s
test (Dietterich, 1998). We set ε = 0 in this test, as we were not particularly concerned about false
positives. For comparison we also tried the RELIEF algorithm (Kira. and Rendell, 1992) and the
FBCF algorithm by Yu and Liu (2004), both of which are based on the conjecture that weakly
relevant features may be needed. We found that Φ never increased test error significantly compared
to the full data set, and significantly improved the accuracy in one case (Table 1). The FCBF and
Relief algorithms significantly increased the test error in five cases. Overall, these methods selected
very few features (in one case, RELIEF selected no features at all) using the default thresholds
recommended by the original papers (for FCBF, γ = n/ logn and for RELIEF, θ = 0, in the notation
of each respective paper; these correspond to the ε parameter of the Φ algorithm).

In the case of the P.I. Diabetes set, Φ seems to select redundant features, which at first might
seem to contradict our theory. This may happen for two reasons. First, at ε = 0, the Φ algorithm
is inclined to to include false positives (redundant features) rather than risk any false negatives.
Second, it is possible that some of these features are truly in S∗, even though the reduction in
classification error is too small to be visible on a small test set.

Theorem 10 also has implications for algorithmic complexity in the case of soft classification.
To find the Markov boundary, one need now only test each Xi for strong relevance, that is, for the
conditional independence Y ⊥ Xi|XRi . This procedure is clearly consistent and can be implemented
in polynomial time. It is not very practical though, since these tests have very limited statistical
power for large n due to the large conditioning sets Ri. However, realistic solutions have recently
been devised for more narrow distribution classes such as PC, yielding polynomial and consistent
algorithms (Peña et al., 2005; Tsamardinos and Aliferis, 2003).

4. The All-Relevant Problem

Recently, feature selection has received much attention in the field of bioinformatics, in particular
in gene expression data analysis. Although classification accuracy is an important objective also in
this field, many researchers are more interested in the ”biological significance” of features (genes)
that depend on the target variable Y (Slonim, 2002). As a rule, biological significance means that
a gene is causally involved in the biological process of interest. It is imperative to understand that
this biological significance is very different from that in Definition 5. Clearly, genes may be useful
for predicting Y without being causally related, and may therefore be irrelevant to the biologist.

Typically, feature selection is performed to optimize classification performance (that is, one
attempts to solve MINIMAL-OPTIMAL), and the features chosen are then examined for biological
significance (Golub et al., 1999; Guyon et al., 2002). Unfortunately, this strategy ignores the dis-
tinction between biological significance and prediction. The features in S∗ are typically those with
good signal-to-noise ratio (that is, those very predictive of the class), but these need not be more
biologically significant than other features dependent on Y . For example, a biologically very im-
portant class of genes called transcription factors are often present in very small amounts and are
therefore difficult to detect with microarrays, leading to poor signal-to-noise ratios (Holland, 2002).
Yet, these genes are often implicated in for example cancer development (Darnell, 2002).
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Therefore, it is desirable to identify all genes relevant to the target variable, rather than the set
S∗, which may be more determined by technical factors than by biological significance. Hence, we
suggest that the following feature set should be found and examined.

Definition 12 For a given data distribution, the ALL-RELEVANT feature set SA is the set of features
relevant to Y in the sense of Definition 5.

To the best of our knowledge, this problem has not been studied. We will demonstrate that because
SA includes weakly relevant features (Figure 3), the ALL-RELEVANT problem is much harder than
MINIMAL-OPTIMAL. In fact, the problem of determining whether a single feature Xi is weakly
relevant requires exhaustive search over all 2n subsets of X , even if we restrict ourselves to strictly
positive distributions.

Theorem 13 For a given feature Xi and for every S ⊆ Ri, there exists a strictly positive f (x,y)
satisfying

Y 6⊥Xi|S ∧ ∀S′ 6= S : Y ⊥ Xi|S
′. (7)

Proof Without loss of generalization we may take i = n and S = X1, . . .Xk, k = |S|. Let S∪{Xk+1}
be distributed as a k +1-dimensional Gaussian mixture

f (s,xk+1|y) =
1

|My|
∑

µ∈My

N(s,xk+1|µ,Σ),

My = {µ ∈ {1,0}k+1 : µ1 ⊕·· ·⊕µk+1 = (y+1)/2},

where ⊕ is the XOR operator (My is well-defined since ⊕ is associative and commutative). This dis-
tribution is a multivariate generalization of the ”noisy XOR problem” (Guyon and Elisseeff, 2003).
It is obtained by placing Gaussian densities centered at the corners of a k + 1-dimensional hyper-
cube given by the sets My, for y = ±1. It is easy to see that this gives Y 6⊥Xk+1|S and Y ⊥Xk+1|S′

if S′ ⊂ S. Next, let Xi+1 = Xi + ε for k < i < n, where ε is some strictly positive noise distribution.
Then it holds that Y 6⊥Xi|S for k < i < n, and in particular Y 6⊥Xn|S. But it is also clear that Y ⊥Xn|S′

for S′ ⊃ S, since every such S′ contain a better predictor Xi,k < i < n of Y . Taken together, this is
equivalent to (7), and f is strictly positive.

This theorem asserts that the conditioning set that satisfies the relation Y 6⊥Xi|S may be com-
pletely arbitrary. Therefore, no search method other than exhaustively examining all sets S can
possibly determine whether Xi is weakly relevant. Since ALL-RELEVANT requires that we deter-
mine this for every Xi, the following corollary is immediate.

Corollary 14 The all-relevant problem requires exhaustive subset search.

Exhaustive subset search is widely regarded as an intractable problem, and no polynomial algo-
rithm is known to exist. This fact is illustrative in comparison with Theorem 8; MINIMAL-OPTIMAL

is tractable for strictly positive distributions precisely because S∗ does not include weakly relevant
features.

Since the restriction to strictly positive distributions is not sufficient to render ALL-RELEVANT

tractable, we must look for additional constraints. In the following sections we propose two different
polynomial-time algorithms for finding SA, and prove their consistency.
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Algorithm 1: Recursive independence test (RIT)
Input: target node Y , features X
Let S = /0;
foreach Xi ∈ X do

if Xi 6⊥Y | /0 then
S = S∪{Xi};

end
end
foreach Xi ∈ S do

S = S∪RIT(Xi,X \S);
end
return S

4.1 Recursive Independence Test

A simple, intuitive method for solving ALL-RELEVANT is to test features pairwise for marginal
dependencies: first test each feature against Y , then test each feature against every variable found
to be dependent on Y , and so on, until no more dependencies are found (Algorithm 1). We refer to
this algorithm as Recursive Independence Testing (RIT). We now prove that the RIT algorithm is
consistent (converges to SA) for PCWT distributions, provided that the test used is consistent.

Theorem 15 For any PCWT distribution, let R denote the set of variables Xk ∈ X for which there
exists a sequence Zm

1 = {Z1, . . . ,Zm} between Z1 = Y and Zm = Xk such that Zi 6⊥ Zi+1| /0, i =
1, . . . ,m−1. Then R = SA.

Proof Let I = X \R and fix any Xk ∈ I. Since Y ⊥Xk| /0 and Xi ⊥Xk| /0 for any Xi ∈ R, we have
{Y}∪R⊥I| /0 by the composition property. Then Y ⊥Xk|S for any S ⊂ X \{Xk,Y} by the weak union
and decomposition properties, so Xk is irrelevant; hence, SA ⊆ R.

For the converse, fix any Xk ∈ R and let Zm
1 = {Z1, . . . ,Zm} be a shortest sequence between

Z1 = Y and Zm = Xk such that Zi 6⊥Zi+1| /0 for i = 1, . . . ,m− 1. Then we must have Zi ⊥Z j| /0 for
j > i + 1, or else a shorter sequence would exist. We will prove that Z1 6⊥Zm|Z

m−1
2 for any such

shortest sequence, by induction over the sequence length. The case m = 2 is trivial. Consider the
case m = p. Assume as the induction hypothesis that, for any i, j < p and any chain Z i+ j

i of length
j, it holds that Zi 6⊥Zi+ j|Z

i+ j−1
i+1 . By the construction of the sequence Zm

1 it also holds that

Z1⊥Zi| /0, 3 ≤ i ≤ m =⇒ Z1⊥Zi
3| /0 (8)

(composition)

=⇒ Z1⊥Zi|Z
i−1
3 . (9)

(weak union)

Now assume to the contrary that Z1⊥Zp|Z
p−1
2 . Together with (9), weak transitivity implies

Z1⊥Z2|Z
p−1
3 ∨ Z2⊥Zp|Z

p−1
3 .

The latter alternative contradicts the induction hypothesis. The former together with (8) implies
Z1⊥Zp−1

2 | /0 by contraction, which implies Z1⊥Z2| /0 by decomposition. This is also a contradiction;
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Algorithm 2: Recursive Markov Boundary (RMB)
Input: target node Y , data X , visited nodes V
Let S = M(Y |X), the Markov blanket of Y in X ;
foreach Xi ∈ S\V do

S = S∪RMB(Y,X \{Xi},V );
V = V ∪S

end
return S

hence Z1 6⊥ Zp|Z
p−1
2 , which completes the induction step. Thus Xk is relevant and R ⊆ SA. The

theorem follows.

Corollary 16 For any PCWT distribution and any consistent marginal independence test, the RIT
algorithm is consistent.

Proof Since the test is consistent, the RIT algorithm will discover every sequence Zm
1 = {Z1, . . . ,Zm}

between Z1 = Y and Zm = Xk with probability 1 as l → ∞. Consistency follows from Theorem 15.

Since the RIT algorithm makes up to n = |X | tests for each element of R found, in total RIT will
evaluate no more than n|R| tests. Thus, for small R the number of tests is approximately linear in n,
although the worst-case complexity is quadratic.

There are many possible alternatives as to what independence test to use. A popular choice
in Bayesian networks literature is Fisher’s Z-test, which tests for linear correlations and is consis-
tent within the family of jointly Gaussian distributions (Kalisch and Bühlmann, 2005). Typically,
for discrete Y a different test is needed for testing Y ⊥Xi| /0 than for testing Xi ⊥X j. A reason-
able choice is Student’s t-test, which is consistent for jointly Gaussian distributions (Casella and
Berger, 2002). More general independence tests can be obtained by considering correlations in
kernel Hilbert spaces, as described by Gretton et al. (2005).

4.2 Recursive Markov Boundary

In this section we propose a second algorithm for ALL-RELEVANT called Recursive Markov Bound-
ary (RMB), based on a given consistent estimator of Markov boundaries of Y . Briefly, the RMB
algorithm first estimates M(Y |X), then estimates M(Y |X \ {Xi}) for each Xi ∈ M(Y |X), and so on
recursively until no more nodes are found (Algorithm 2). For efficiency, we also keep track of pre-
viously visited nodes V to avoid visiting the same nodes several times. We start the algorithm with
RMB(Y,X ,V = /0). A contrived example of the RMB algorithm for a PD distribution is given in
Figure 5.

Next, we prove that also the RMB algorithm is consistent for any PCWT distribution, assuming
that we are using a consistent estimator of Markov boundaries (see below). The proof makes use of
the following concept.
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Definition 17 An independence map (I-map) over a set of features X = {X1, . . . ,Xn} is an undi-
rected graph G over X satisfying

R⊥GS|T =⇒ R⊥S|T

where R,S,T are disjoint subsets of X and ⊥ G denotes vertex separation in the graph G, that is,
R⊥GS|T holds iff every path in G between R and S contains at least one Xi ∈ T . An I-map is minimal
if no subgraph G′ of G (over the same nodes X) is an I-map.

Note that we only consider the minimal I-map over the features X (not over X ∪{Y}), since in this
case, the minimal I-map is unique for any strictly positive distribution (Pearl, 1988).

Theorem 18 For any PCWT distribution such that a given estimator M(Y |S) of the Markov bound-
ary of Y with respect to a feature set S is consistent for every S⊆X, the RMB algorithm is consistent.

Proof For every S ⊆ X , the marginal distribution over S,Y is strictly positive, and therefore every
Markov boundary M(Y |S) is unique by corollary 26 (Appendix B). Let G be the minimal I-map
over the features X , and let M1 = M(X |Y ). Fix an Xk in SA. If Xk ∈ M1, we know that Xk is found
by RMB. Otherwise, by Lemma 22, there exists a shortest path Zm

1 in G between some Z1 ∈ M1 and
Zm = Xk. We prove by induction over m that RMB visits every such path. The case m = 1 is trivial.
Let the induction hypothesis be that Zp is visited. For Zp+1, Lemma 22 implies Y 6⊥Zp+1|X \Zp+1

1 .
Since Zp is visited, RMB will also visit all nodes in Mp+1 = M(Y |X \Zp

1 ). However, Mp+1 contains
Zp+1, because it contains all Xi satisfying Y 6⊥Xi|X \Zp

1 \{Xi} by Theorem 10.

It is easy to see from algorithm 2 that the RMB algorithm requires computing |SA| Markov
blankets. We might attempt to speed it up by marginalizing out several nodes at once, but in that
case we cannot guarantee consistency. A general algorithm for estimating Markov boundaries is
given by Peña et al. (2005). This estimator is consistent in the PC class, so it follows that RMB is
consistent in PCWT in this case (see Figure 1).

At first sight, RMB may seem more computationally intensive that RIT. However, since the
Markov boundary is closely related to S∗ (see Section 3.2), we anticipate that RMB may be imple-
mented using existing FS methods. In particular, for distribution classes where the Markov bound-
ary coincides with the MINIMAL-OPTIMAL set S∗, one may compute M(Y |X) using any FS method
that consistently estimates S∗. For example, this property holds for the well-known class of jointly
Gaussian distributions f (x|y) = N(x|yµ,Σ) with p(y) = 1/2. To see this, note that the posterior and
Bayes classifier are given by

p(y|x) =
[

1+ exp{−2yµT Σ−1x}
]−1

,

g∗(x) = sgn(µT Σ−1x).

Clearly, both g∗(x) and p(y|x) are constant with respect to an xi iff (µT Σ−1)i = 0. Thus, in this
case S∗ equals the Markov boundary. SVM-based FS methods are one attractive option, as there
exist efficient optimization methods for re-computation of the SVM solution after marginalization
(Keerthi, 2002).

4.3 Related Work

We have not been able to find any previous work directly aimed at solving the ALL-RELEVANT

problem. It is related to inference of graphical probability models: for the PD distributions class,
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Figure 5: A contrieved example of the RMB algorithm for a PD distribution faithful to the DAG
shown in black arrows. Numbers denote the relevant features, Y denotes the target vari-
able. As in Theorem 18, Mi denotes Markov boundaries and Zi denotes marginalized
nodes. Note that the marginal distributions from step 2 onwards may not be PD, so ab-
sence of arrows should not be interpreted as independencies.

ALL-RELEVANT can be solved by inferring a Bayesian network and then taking SA to be the con-
nected component of Y in that network. However, this is less efficient than our approach, since
Bayesian network inference is asymptotically NP-hard, even in the very restricted PD class (Chick-
ering et al., 2004). Certainly, such a strategy seems inefficient as it attempts to ”solve a harder
problem as an intermediate step” (by inferring a detailed model of the data distribution merely to
find the set SA), thus violating Vapnik’s famous principle (Vapnik, 2000, pp. 39).

On the other hand, several methods have been proposed for solving MINIMAL-OPTIMAL that
in fact attempt to find all relevant features, since they do not assume f > 0 and therefore cannot
rule out the weakly relevant ones. These include FOCUS (Almuallim and Dietterich, 1991), which
considers the special case of binary X and noise-free labels; RELIEF (Kira. and Rendell, 1992),
a well-known approximate procedure based on nearest-neighbors; Markov blanket filtering (Koller
and Sahami, 1996; Yu and Liu, 2004), which considers the special case of marginal dependencies
(and is therefore fundamentally different from RMB, despite the similar name). All known methods
are either approximate or have exponential time-complexity.

5. Conclusion

In this paper, we have explored an alternative approach to the feature selection (FS) problem: in-
stead of designing suboptimal methods for the intractable full problem, we propose consistent and
efficient (polynomial-time) methods for a restricted data distribution class. We find that a very mild
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restriction to strictly positive distributions is sufficient for the MINIMAL-OPTIMAL problem to be
tractable (Figure 1). Therefore, we conclude that it is tractable in most practical settings.

We have also identified a different feature selection problem, that of discovering all relevant fea-
tures (ALL-RELEVANT). This problem is much harder than MINIMAL-OPTIMAL, and has hitherto
received little attention in the machine learning field. With the advent of major new applications
in the bioinformatics field, where identifying features per se is often a more important goal than
building accurate predictors, we anticipate that ALL-RELEVANT will become a very important re-
search problem in the future. We have herein provided a first analysis, proved that the problem
is intractable even for strictly positive distributions, and proposed two consistent, polynomial-time
algorithms for more restricted classes (Figure 1). We hope that these results will inspire further
research in this novel and exciting direction.
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Appendix A. Lemmas

For completeness, we here give a proof of the uniqueness of the Bayes classifier for strictly positive
distributions.

Lemma 19 For any strictly positive distribution f (x,y), the Bayes classifier g∗ is unique in the
sense that, for every classifier g, it holds that R(g) = R(g∗) iff the Lebesgue measure of {x : g(x) 6=
g∗(x)} is zero.

Proof By Theorem 2.2 of Devroye et al. (1996), the risk of any classifier g can be written as

R(g) = R(g∗)+
Z

X

∣

∣

∣

∣

max
y

p(y|x)−
1
2

∣

∣

∣

∣

1{g(x)6=g∗(x)} f (x)dx.

By property (ii) of Definition 1, we have maxy p(y|x) 6= 1/2 almost everywhere. Thus, the integral
is zero iff the Lebesgue measure of {x : g(x) 6= g∗(x)} is zero.

Lemma 20 For any conditional distribution p(y|x), it holds that

P(p(Y |Xi,Ri)= p(Y |X ′
i ,Ri)) = 1 ⇐⇒ P(p(Y |Xi,Ri)= p(Y |Ri)) = 1

provided that Xi,X ′
i are independent and identically distributed.
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Proof Assume that the left-hand side holds. Then we must have

P(p(Y |Xi,Ri) = p0) = 1

for some p0 constant with respect to Xi. But

p(y|ri) =
f (ri,y)
f (ri)

=

R

Xi
p(y|x) f (x)
R

Xi
f (x)

=
p0

R

Xi
f (x)

R

Xi
f (x)

= p0

with probability 1, which implies the right-hand side. The converse is trivial.

The following lemmas are needed for the correctness proof for the RMB algorithm.

Lemma 21 Let f (x) be any PCWT distribution, so that a unique undirected minimal I-map G of
f exists. Then, for any shortest path Zm

1 = {Z1, . . .Zm} between Z1 and Zm in G, it holds that
Z1 6⊥Zm|X \Zm

1 .

Proof The proof is by induction. For m = 2, the lemma follows immediately from the definition of
the minimal I-map (Pearl, 1988). Also, it holds that

Zi 6⊥Zi+1|X \{Zi,Zi+1} (10)

Zi⊥Z j|X \{Zi,Z j}, j > i+1. (11)

Take any distinct Zi+1
i ,Zk and assume that Zi ⊥ Zi+1|X \ {Zi,Zi+1,Zk}. Then Zi ⊥{Zi+1,Zk}|X \

{Zi,Zi+1,Zk} by contraction with (11), and therefore Zi ⊥Zi+1|X \ {Zi,Zi+1} by weak union. This
contradicts (10), so we conclude that

Zi 6⊥Zi+1|X \{Zi,Zi+1,Zk}. (12)

Next, take any sequence Z i+2
i . Applying (12), we obtain Zi 6⊥ Zi+1|X \ Zi+2

i and Zi+1 6⊥ Zi+2|X \
Zi+2

i . Using weak transitivity implies either Zi 6⊥Zi+2|X \Zi+2
i or Zi 6⊥Zi+2|X \{Zi,Zi+2}. The latter

alternative contradicts (11), so we conclude

Zi 6⊥Zi+2|X \Zi+2
i . (13)

Finally, take any Zi,Z j,Zk such that neither Zi,Z j nor Z j,Zk are consecutive in the path Zm
1 . Using

(11) with intersection (Theorem 25) and decomposition (Theorem 23), we find

Zi⊥Z j|X \{Zi,Z j}
Z j ⊥Zk|X \{Z j,Zk}

}

=⇒ Zi⊥Z j|X \{Zi,Z j,Zk}. (14)

Equations (12),(13) and (14) show that the properties (10) and (11) hold also for the shortened path
Z′

1, . . . ,Z
′
m−1 given by Z′

1 = Z1 and Z′
i = Zi+1,2 ≤ i < m (removing Z2). The lemma follows from

(10) by induction.

Lemma 22 For any PCWT distribution f (x,y), a feature Xk is relevant iff there exists a path
Zm

1 = {Z1, . . .Zm} in the minimal I-map of f (x) between some Z1 ∈ M = M(Y |X) and Zm = Xk.
In particular, for such a path it holds that Y 6⊥Zm|X \Zm

1 .

608



CONSISTENT FEATURE SELECTION IN POLYNOMIAL TIME

Proof If Zm ∈ M (that is, m = 1), the lemma is trivial. Consider any Zm /∈ M. First, assume that
there exists no path Zm

1 . Then Zm ⊥M|S for any S ⊆ X \M \ {Zm} by Lemma 21. Fix such an S.
Since Zm ⊥Y |M ∪ S, contraction and weak union gives Zm ⊥M|{Y}∪ S. Again using Zm ⊥M|S,
weak transitivity gives

Zm⊥Y |S ∨ Y ⊥M|S.

The latter alternative is clearly false; we conclude Zm⊥Y |S. Next, fix any S′ ⊆ M. By decomposi-
tion, Zm⊥M|S =⇒ Zm⊥S′|S. Combining with the above result, by the composition property

Zm⊥S′|S
Zm⊥Y |S

}

=⇒ Zm⊥{Y}∪S′|S.

Finally, weak union gives Zm⊥Y |S∪S′. Since S∪S′ is any subset of X \{Zm}, we conclude that Zm

is irrelevant.
For the converse, assume that there exists a path Zm

1 . By Lemma 21, we have Z1 6⊥Zm|X \Zm
1 .

Also, since Z1 ∈ M and Zm
2 ∩M = /0, it holds that Y 6⊥Z1|S for any S that contains M \ {Z1}. In

particular, take S = X \Zm
1 . Weak transitivity then gives

Z1 6⊥Zm|X \Zm
1

Y 6⊥Z1|X \Zm
1

}

=⇒ Zm 6⊥Y |X \Zm
1 ∨ Zm 6⊥Y |X \Zm

2 .

But the latter alternative is false, since X \ Zm
2 contains M by assumption. We conclude that

Zm 6⊥Y |X \Zm
1 and that Zm is relevant.

Appendix B. Distribution Classes and Properties

The following two theorems are given by Pearl (1988) and concern any probability distribution.

Theorem 23 Let R,S,T,U denote any disjoint subsets of variables. Any probability distribution
satisfies the following properties:

Symmetry: S⊥T |R =⇒ T ⊥S|R

Decomposition: S⊥T ∪U |R =⇒ S⊥T |R

Weak union: S⊥T ∪U |R =⇒ S⊥T |R∪U

Contraction: S⊥T |R∪U ∧ S⊥U |R =⇒ S⊥T ∪U |R

Theorem 24 Let R,S,T,U denote any disjoint subsets of variables and let γ denote a single vari-
able. Any DAG-faithful probability distribution satisfies the following properties:

Composition: S⊥T |R ∧ S⊥U |R =⇒ S ⊥ T ∪U |R

Weak transitivity: S⊥T |R ∧ S⊥T |R∪ γ =⇒ S ⊥ γ|R ∨ γ ⊥ T |R

The next theorem is a slight modification of that found in Pearl (1988), adapted to our classifi-
cation setting and our Definition 1.
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NILSSON, PEÑA, BJÖRKEGREN AND TEGNÉR

Theorem 25 Let R,S,T be disjoint subsets of X and let Y be the target variable. Any strictly
positive distribution f (x,y) satisfies the intersection property

Y ⊥ R|(S∪T ) ∧ Y ⊥ T |(S∪R) ⇒ Y ⊥ (R∪T )|S.

Proof Using Y ⊥ R|(S∪T ) we find

f (r,s, t,y) = p(y|r,s, t) f (r,s, t)

= p(y|s, t) f (r,s, t).

Similarly, from Y ⊥ T |(S∪R) we find that f (r,s, t,y) = p(y|s,r) f (r,s, t). Because f (r,s, t) > 0, it
follows that p(y|s,r) = p(y|s, t). Therefore both of these probabilities must be constant w.r.t. R and
T , that is,

p(y|s, t) = p(y|s,r) = p(y|s).

Hence, Y ⊥ R|S and Y ⊥ T |S holds. The intersection property follows by contraction.

Corollary 26 For any strictly positive distribution f (x,y), the Markov boundary M(Y |X) is unique.

Proof Let S be the set of all Markov blankets of Y , S = {T ⊆ X : Y ⊥X \T |T}. Let T1, T2 be any
two Markov blankets in S. By Theorem 25 the intersection property holds, so with T ′ = T1 ∩T2 we
obtain

{

Y ⊥X \T1|T ′∪ (T1 \T ′)
Y ⊥X \T2|T ′∪ (T2 \T ′)

=⇒ Y ⊥X \T ′|T ′

Hence T ′ is a Markov blanket of Y . Continuing in this fashion for all members of S, we obtain the
unique M(Y |X) = T1 ∩T2 ∩·· ·∩T|S|.
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Isabelle Guyon and André Elisseeff. An introduction to variable and feature selection. Journal of
Machine Learning Research, 3:1157–1182, 2003.

Isabelle Guyon, Jason Weston, Stephen Barnhill, and Vladimir Vapnik. Gene selection for cancer
classification using support vector machines. Machine Learning, 46:389–422, 2002.

Douglas P. Hardin, Constantin Aliferis, and Ioannis Tsamardinos. A theoretical characterization of
SVM-based feature selection. In Proceedings of the 21st International Conference on Machine
Learning, 2004.

Michael J. Holland. Transcript abundance in yeast varies over six orders of magnitude. Journal of
Biological Chemistry, 277:14363–66, 2002.

Anil K. Jain and William G. Waller. On the optimal number of features in the classification of
multivariate gaussian data. Pattern Recognition, 10:365–374, 1978.

George H. John, Ron Kohavi, and Karl Pfleger. Irrelevant features and the subset selection problem.
In Proceedings of the 11th International Conference on Machine Learning, pages 121–129, 1994.
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