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Abstract

Networks are fundamental building blocks for representing
data, and computations. Remarkable progress in learning in
structurally defined (shallow or deep) networks has recently
been achieved. Here we introduce evolutionary exploratory
search and learning method of topologically flexible networks
under the constraint of producing elementary computational
steady-state input-output operations.
Our results include; (1) the identification of networks, over
four orders of magnitude, implementing computation of
steady-state input-output functions, such as a band-pass fil-
ter, a threshold function, and an inverse band-pass function.
Next, (2) the learned networks are technically controllable as
only a small number of driver nodes are required to move
the system to a new state. Furthermore, we find that the frac-
tion of required driver nodes is constant during evolutionary
learning, suggesting a stable system design. (3), our frame-
work allows multiplexing of different computations using the
same network. For example, using a binary representation of
the inputs, the network can readily compute three different
input-output functions. Finally, (4) the proposed evolutionary
learning demonstrates transfer learning. If the system learns
one function A, then learning B requires on average less num-
ber of steps as compared to learning B from tabula rasa.
We conclude that the constrained evolutionary learning pro-
duces large robust controllable circuits, capable of multiplex-
ing and transfer learning. Our study suggests that network
based computations of steady-state functions, representing ei-
ther cellular modules of cell-to-cell communication networks
or internal molecular circuits communicating within a cell,
could be a powerful model for biologically inspired comput-
ing. This complements conceptualizations such as attractor
based models, or reservoir computing.

Introduction
A Turing machine (TM) is a universal mathematical model
of computation. Given a table of rules and a tape, TM is
essentially a discrete system which can compute any com-
puter algorithm. Furthermore, a function is computable if
and only if it can be computed on a TM (Kleene 1971 1952
10th impression 1991). Yet, in addition to what is computed,
it is essential to consider how an algorithm is represented,
implemented in a specific architecture. Considering learn-
ing machines, then a learning algorithm can act on the re-
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alized architecture and/or the representation of the compu-
tation. Such considerations have resulted in different instan-
tiations of computations. For example, inspired from neu-
ral circuits, realized as (deep) neural feed-forward network
models of computation (Schmidhuber 2015), the learning
generally acts on the connections. Attractor dynamics is an-
other popular conception of neural (Hopfield 1984) compu-
tations where the fix-points correspond to memory states or
to cell-types as in the case of molecular (gene) based com-
putations (Kauffman 1969).

In this work, we are inspired by the computational pro-
cessing power in cells, where networks of molecular com-
ponents collectively sustain robust input signals to the cell
resulting in a transformed output signal at the cellular level.
In the case of neurons we can represent such a computation
as a threshold computation using a ReLU or softmax unit.
Yet in general, we do not understand the underlying net-
work of molecular computations occurring within different
cells, realizing different input-output transformations. Here
we ask if we can search and identify networks that are able
to compute different input-output functions. In particular we
address whether such system can represent different input-
output computations in the same network, whether the com-
putations are controllable in an engineering sense, and if
transfer learning can occur under these constraints. To this
end we use evolutionary search techniques to evolve net-
works of interacting elements which collectively compute
such a function. We have chosen a vanilla genetic algorithm
(GA) (Holland 1992) to illustrate that even one of the sim-
plest evolution algorithms is sufficient to generate defined
computational large-scale networks.

Our approach can be viewed as bridging between learn-
ing fundamental computational input-output operations and
the investigation of the underlying graphical model realiz-
ing such a computation without fixating the topology of the
graph in advance. Moreover, our work can be related to ar-
eas such as transductive and inductive learning with graphs
which have recently become a mainstream research focus
in artificial intelligence and machine learning for tackling
structured yet irregular data inputs (Bronstein et al. 2017;
Hamilton, Ying, and Leskovec 2017; Battaglia et al. 2018).

To this end we use evolutionary learning to perform ex-
ploratory search for large networks. The generative net-
work models, identified by the evolutionary search, are nat-
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urally of broad interest since networks are used as funda-
mental building blocks for representing data, and compu-
tations in biology, social sciences, and communication net-
works. Given a network there exists a large number of tools
for searching, navigating, and characterizing properties of
the network which as a rule has strong predictive power in
numerous application domains. Our work can be viewed as
addressing the putative nature of computations in different
networked system. One premise is that by imposing funda-
mental computational operations (input-output transforma-
tions) we can generate underlying ensembles of networks
realizing such computations.

Methods
Learning input-output computations in a Network
Equipped with internal Dynamics
We search through different network topologies using a GA
(described below). Yet, to compute an input-output function
from the full network, we need to equip the intrinsic network
structure with a set of dynamical equations, defining how a
given node interacts with its neighbours. The form of such
equations is qualitatively motivated by chemical reactions
and molecular regulatory control systems such as genes in
a cell. A non-linear threshold function summing input from
nearby nodes. For the node dynamics we use

dyi
dt

= k1i(f(
∑
ij

Wijyj) + Ii)− k2iyi (1)

where

f(x) = σ(x) =
1

1 + e−x
(2)

For each node i, y represents the activation or expres-
sion rate, f is a nonlinear sigmoid function (Equation 2),
W is the connection or interaction weight matrix, I is the
input matrix prescribed into the system, and both k1 and
k2 are constant vectors which represent the maximum ex-
pression and kinetic degradation rate respectively. Note that
the Wij represents the influence from nodes j to nodes i,
and for simplicity, we have set all elements of k1 and k2
to 1 for all our experiment – essentially removing them
from our equation. The motivation originates from the well
known hopfield network (Hopfield 1984), where we fol-
low the modifications as described in (Jaeger et al. 2004;
Mjolsness, Sharp, and Reinitz 1991; Reinitz and Sharp
1995) and (Vohradsky 2001; Geard and Wiles 2005; His-
cock 2017).

We solve he ODE numerically using the forward Euler’s
method in which yn+1 = yn + f(yn, tn)δt and δt is set
to 1. A network of such connected units collectively com-
pute a given steady-state input-output function. Equation 1
represents a special version of a recurrent neural network
(Hochreiter and Schmidhuber 1997) and the fully connected
network structure looks deceptively similar to a Boltzmann
Machine (Ackley, Hinton, and Sejnowski 1985) in which the
two visible nodes are the input and output nodes respectively
while all other hidden nodes (equipped with the above dy-
namics) are the supporting nodes. However, the links are

directed and mutually influencing between nodes. The GA
search for the appropriate links in order to implement the
desired input-output function from the system, see Figure
1a.

Learning several input-output in the same network
Now that we have the methods to generate large-scale net-
works with single input node and single output node using
GA, we further extend the framework by generating net-
works such that any single of them can receive multiple
injection inputs and produce multiple output functions. We
consider the following cases:

1. A network that has exactly 1 node that receives the in-
jection inputs and multiple nodes that can produce any
desired output functions. See Figure 1b.

2. A network that has N nodes that receives the injection
inputs and N nodes that can produce any desired output
functions. See Figure 1c.

3. A network that has N nodes that receives the injection
inputs and 2N − 1 nodes that can produce any desired
output functions. See Figure 1d.

4. A network that has N nodes that receives the injection
inputs and exactly 1 node that can produce 2N−1 number
of any desired output functions. See Figure 1e.

For the 3. and 4. scenarios, we essentially encode the ac-
tivation of the input nodes using a binary representation,
whereas in the 4. scenario, the single multiplex output node
is intrinsically multifunctional.

Design of the cost function The method of training multi-
functional networks is similar to the training of single func-
tional network as additional costs of multiple output func-
tions are merged into the total cost function. There is a
caveat, however, that merging all the costs into a single num-
ber has the detrimental effects of information loss and thus
the choice of total cost function is very crucial. We have
examined all three classical Pythagorean means – the arith-
metic mean, the geometric mean, and the harmonic mean –
and their variations and many of them provide unsatisfac-
tory results. For all experiments described in this paper, we
have used the mean squared error (MSE) or the L2-norm to
merge the respective costs of each desired output function
in the multifunctional settings. This is extremely suitable for
our case as it aggravates the impact of the outliers, forcing
the algorithm to put priority to search for a result for the out-
put nodes that have yet to have a functional output. They can
be further optimized later after all output nodes found their
appropriate functions, leading to a very dynamical training
process.

Genetic Algorithm
Following (Such et al. 2017), we have purposefully used the
simplest genetic algorithms (GA) in almost all our experi-
ments – unless specified – to set a baseline for the perfor-
mance of using gradient-free evolutionary algorithms. The
idea of GA is that there is a population P with N number of



(a) (b) (c) (d) (e)

Figure 1: Representation of directed functional network where blue nodes are the visible input nodes, red nodes are the visible
output nodes, green nodes are the hidden nodes, and purple nodes are the binary encoded input nodes. 1a shows a representation
of a standard functional network with 5 nodes. It has only an input node an output node. 1b shows another representation with
a single input and multiple output nodes. The dotted lines imply there are may be more hidden green nodes not drawn in the
figure. 1c shows another representation with a multiple input and output nodes. 1d shows a another representation with multiple
binary encoded input nodes with multiple output nodes. Finally, 1e shows another representation with multiple binary encoded
inputs and a single multiplex output node.

individuals. For each generation G, the individuals are eval-
uated for their fitness score f according to a fitness function
F . Those with the higher fitness score have a higher prob-
ability to survive while those with the lower fitness score
would probably not make it to the next generation, and this
is called the selection process. Finally, those that are deter-
mined to survive can ”mate” or crossover and randomly mu-
tated within the survivors group and repopulate the popula-
tion. To simplify we do not use crossover process for our
algorithm as crossover can be undesirable and negatively af-
fect the performance of GA since effective structures iden-
tified by the GA can be broken by crossover (Stanley and
Miikkulainen 2002). The GA algorithm is repeated until a
stopping criteria is met – either because the GA has suc-
cessfully converged (f ¡ certain convergence criteria C) and
reached a solution or if it has failed and reached the maxi-
mum allowed number of generations.

Evaluation: Except for the first ever generation (G0) in
which the whole population P is randomly generated with
function, evaluation is being done for the newly repopulated
and mutated population of each generation (Gg>0) against
our desired function. Concretely, if we determine B as the
batch size of the function, we generateB number of points in
which each point is the output level at an input level point.
Then the fitness function F simply calculate the cost, that
is the L1 or L2-norm between the output level points of the
currently simulated function and the desired function. F out-
puts fitness score f , and our objective is to minimize it.

Selection: For all the experiments in this paper – unless
specified – we have used a simple truncate-and-clone with
elitism method. That is, if we have N number of individ-
uals in a population and we set a truncation number as T .
Then, the top N

T number of individuals with the highest fit-

ness score of the generation are deemed to survive, while the
(T−1)N

T rest of the population with the lower fitness score
are removed from the algorithm. The top N

T individuals are
then cloned (T−1)N

T times to repopulate the population.

Mutation: After repopulation, we now again have N
number of individuals in the population and T duplicates
of N

T individuals. Let S0 be the original survivors and St

for each N
T group where t = 0..T . For each St group, each

weight of the individuals will be mutated according to tδ of
the current θ strength degree: θ′t = ψ(θ, δ, t) = θ ± tδθ
whereby δ is simply a small constant determining the mu-
tation rate. With one exception, the true elite – the original
best performing individual – will not be mutated. In other
words, the St group with higher value of t will have greater
mutation rate to sparse out the search.

Note that to calculate the fitness or cost between current
function and target function, we first solve the ODE to obtain
the simulated function.

Random Search In addition to GA described above, we
also turned off the selection for GA, making it essentially
a random search (RS) algorithm to check against our GA.
We compared GA and RS to the previous work of gradient
descent-based motif generation method.

Controllability
To formally validate the effectiveness of the generated large-
scale networks and multifunctional networks with respect to
their controllability – that is to discover the input settings
where the network can be driven from any initial state to
any desired final state within finite time. We used two widely
used schemes such as inspecting the degree distribution of a



Algorithm 1 Network Genetic Algorithm

Input: max generations G, points batch size B, popula-
tion size N , truncation number T , fitness function F , mu-
tation rate δ, convergence criteriaC, selection function Υ,
mutation function Ψ, random initialization function <.
<(P ); // Randomly initialize N networks
for g = 1, 2, ..., G generations do

for n = 1, 2, ..., N individuals do
fn = F (Pn, B); // Simulate ODE and compute f

end for
if fmin < C then

return P0 (Elite) // Convergence successful
else
P = Υ(P, f, T,B) // See Selection above
P = Ψ(P, δ) // See Mutation above

end if
end for

whole linear – or linearized nonlinear – time-invariant com-
plex network. (Liu, Slotine, and Barabási 2011), referred to
as a Linear Nodal Dynamics Method. The technique cap-
tures the dynamical process occurring on edges of a directed
complex network. (Nepusz and Vicsek 2012), referred to as
the Switchboard Dynamics Method.

Transfer Learning
We used the required number of GA generations as a met-
ric for the efficiency of the learning. Transfer learning oc-
curs then if the number of generations to train a steady-state
input-output function is lower if the training is initiated from
another steady-state function as compared to being initiated
from tabula rasa. That is, our hypothesis is that if a network
is trained to output A from blank state, it may already have
some structural properties facilitating the learning of another
functionB. We allow the intermediaryA to be a triangle-like
”peak” function (See Figure 2b) and B to be the band-pass
function. We first generate 200 networks to output B from
tabula rasa and record the required generations. Then, we
will generate another 200 networks to output A, and then to
output B, and record the required generations.

RESULTS
Computation of steady-state input-output
functions with large networks
Recent gradient descent-based methods have low probabil-
ity in generating large-scale networks (Nmax = 18) (Yang
et al. 2018). However, we were able to generate networks
with 500, 1000, 2000, 3000 nodes, each network targeting
a band-pass function. For the 3000 nodes, see Figure 2a. It
was somewhat unexpected that it was feasible to find large
networks which could robustly compute a defined input-
output function despite the large degree of freedom within
the network. All these networks was generated on a 56-
cores desktop computer in less than 4 hours. We remark,
that these results are generated with the simplest evolution-
ary algorithm. The node count can arguably be increased in-
definitely and appears only to be limited by the memory.

We are currently exploring what could be achieved using
modern evolutionary algorithms (Lehman and Stanley 2011;
Mouret and Clune 2015; Cully and Demiris 2017) and data
storing techniques (Stanley, D’Ambrosio, and Gauci 2009;
Ida et al. 2014; Iwashita et al. 2017). Such distributed com-
puting can most likely increase the size of the networks to
be explored by an additional couple of magnitudes.

Multiplexing of different input-output functions
using the same network
Next we ask whether we can evolve multi-functional net-
works which can compute more than one single input-
output function. Moreover, we investigated 4 particular
input-output configurations as described in the methods sec-
tion. For these experiments, the 3 output functions we tested
were the band-pass (French Flag), valley (reversed French
Flag), and threshold (Binary Step). We have arbitrarily cho-
sen these functions and we emphasize, any desired function
can be approximated with enough nodes. We have particu-
larly chosen the French Flag because of its significance and
difficulty to generate compared with easier functions like
Linear.

Multiple input-outputs scenario Figure 2c illustrate the
case where a single input can control 3 different outputs
while figure 2d shows 3 inputs controlling 3 different out-
puts. Here the GA learned the three different desired func-
tions respectively. We have also looked deeper into the latter
3-in-3-out configuration as it is similar to the former 1-in-3-
out configuration. After inspection of the generated network
structure, we confirmed our suspicion that the other two in-
put nodes were dummies and only one input node was lifting
all the heavy work. For more details, please refer to Supple-
mentary Information Figure 4.

Encoded inputs and multiplexing scenario For the fol-
lowing two experiments, we have essentially ”encoded” the
input nodes in binary format. That is, if both input nodes
are not being injected with stimuli, it will be ”00” which the
least significant number is on the right side. If only the first
input node is active, then it should be ”01”; if only the sec-
ond node is active, then it is ”10”; and finally if both input
nodes are being pumped with injections, then it is ”11”.

Figure 2f and 2e shows the ”01” encoding generating a
band-pass function for the first output node; Figure 2g shows
the ”10” encoding generating a valley function for the sec-
ond output node; Figure 2h shows the ”11” encoding gener-
ating a threshold function for the third output node.

And finally, the last experiment uses the same binary en-
codings but to output the 3 functions on a single multiplex
output node. Figure 2j, figure 2j, and figure 2j shows the
”01”, ”10”, and ”11” encodings successfully generated three
functions respectively on the same output node with intrinsic
multi-functional property.

Multiplexing with more nodes The number of nodes are
chosen arbitrarily for the 4 configurations described above,
we have also tested out with 1000 nodes for all 4 configura-
tions and their analysis results are included in Table 1.



(a) High Nodes Band-Pass (b) Peak Function (c) 1-in-3-out (d) 3-in-3-out

(e) 2-en-in-3-out-bp-1000 (01) (f) 2-en-in-3-out-bandpass (01) (g) 2-en-in-3-out-valley (10) (h) 2-en-in-3-out-threshold (11)

(i) 2-en-in-1-out-inactive (00) (j) 2-en-in-1-out-bandpass (01) (k) 2-en-in-1-out-valley (10) (l) 2-en-in-1-out-threshold (11)

Figure 2: Graphs representing the simulated activity levels within the networks plotted as the output level versus input level. 2a
shows a 3000 nodes network outputting the band-pass function. 2c and 2d shows the simulated expressions of multiple inputs
and outputs. 2f, 2g, and 2h show the simulated activity levels of 3 different outputs – band-pass, valley, and threshold – produced
by 3 different binary encodings respectively. 2e is the (01) encoding, 1000 nodes version of the same configuration. Similarly,
2i, 2j, 2k, and 2l show the 4 simulated activity levels produced by 4 different binary encodings but on a single multiplex output
node. Figure 2b shows the peak function design used in the transfer learning experiment.

Random Search
To provide a reference to the GA search, we compared the
results using a Random Search (RS) to search for any so-
lutions which the networks can generate an useful function.
Interestingly, RS fails to converge to generate any function
in all sizes from 3 nodes up to 100 nodes. We have tried us-
ing RS to search for networks that can generate other, possi-
ble more tractable functions such as a sigmoid but was to no
avail. And since gradient-descent based method fails at high
node count, our Network GA serves as the new baseline for
all future work.

The learned networks are controllable
Here as ask if these complex large networks are amenable
to an engineered control or not. To this end we used the
framework of the established controllability analysis. This
was applied to the generated networks using what is referred
to as the Linear Nodal Dynamics Method and Switchboard
Method to compute controllability, as described in the Meth-
ods Section. Table 1 summarizes all the results from the

controllability analysis experiment. The number of required
driver nodes using Linear Nodal Dynamics Method turned
out to always be 1. In contrast, using the Switchboard Dy-
namics Method, revealed an increased number of required
driver nodes as the node count increases. Approximately less
than half of the nodes were needed in order to control the
network. The average number of required driver nodes in
both cases as the network evolves, however, were approxi-
mately constant in both cases.

Transfer Learning between different steady-state
input-output functions
Finally, we conducted an experiment to explore whether the
required GA generations for the networks to train to output
a steady-state input-output function will be lower if done
from a trained state instead of from tabula rasa. We first
compute the required generations to achieve the band-pass
function from tabula rasa, band-pass from an intermediate
”peak” state (Figure 2b), and also peak from tabula rasa.

As GA generations can differ wildly between different
epochs we have averaged them out over 200 networks for



Table 1: Results from the Controllability Analysis Experiment. GD (Gradient Descent) and GD-Pruned rows show the analysis
done on networks generated using gradient descent – with and without pruning (Hiscock 2017). Note that the maximum node
count available for GD is 18 (Yang et al. 2018). The following results originates from our GA method. Edgesmax show the
total combinations available or possible for the nodes to connect to each other and themselves, which are naturally the square
of N Nodes. The number of Nodes are also the number of Vertices which is not shown here. E shows the number of ”edges”
or useful connections in the network that are dense and not close to zero (We set ”close to zero” as value between -1 and 1). e
shows the number of edges in relative fraction, which isE over Combinations. e shows the average of e throughout the evolving
process. NL is the number of driver nodes detected according to the Linear Nodal Dynamics Method while NS is the number
of driver nodes detected according to the Switchboard Dynamics Method. nL and nS are the relative fractions of the number of
driver nodes over total number of nodes of both methods respectively. nL and nS show the average of nL and nS throughout
the evolving process respectively. Analysis result done on networks generated by previous gradient descent-based work has no
average of described relative fractions throughout evolving process as they are only done on the final generated networks.

Experiment Nodes Edgesmax E e e NL nL nL NS nS nS

GD 3 9 9 1 - 1 0.333 - 1 0.333 -
GD 10 100 95 0.95 - 1 0.1 - 2 0.2 -
GD 18 324 311 0.96 - 1 0.055 - 3 0.167 -
GD-Pruned 3 9 7 0.78 - 1 0.333 - 1 0.333 -
GD-Pruned 10 100 32 0.32 - 4 0.4 - 4 0.4 -
GD-Pruned 18 324 17 0.052 - 13 0.722 - 5 0.278 -
GA 1-in-1-out 3 9 9 1 1 1 0.333 0.333 1 0.333 0.333
GA 1-in-1-out 10 100 88 0.902 0.87 1 0.1 0.1 3 0.3 0.3
GA 1-in-1-out 100 10,000 9,140 0.914 0.917 1 0.01 0.01 46 0.46 0.43
GA 1-in-1-out 200 40,000 36,432 0.911 0.915 1 0.005 0.005 89 0.445 0.444
GA 1-in-1-out 500 250,000 229,439 0.918 0.921 1 0.002 0.002 239 0.478 0.476
GA 1-in-1-out 1000 1,000,000 916,884 0.917 0.92 1 0.001 0.001 481 0.481 0.488
GA 1-in-1-out 2000 4,000,000 3,733,207 0.933 0.932 1 0.0005 0.0005 989 0.495 0.491
GA 1-in-1-out 3000 9,000,000 8,400,692 0.933 0.933 1 0.0003 0.0003 1441 0.48 0.486
GA 1-in-3-out 10 100 99 0.99 0.99 1 0.1 0.1 1 0.1 0.1
GA 3-in-3-out 10 100 97 0.97 0.975 1 0.1 0.1 1 0.1 0.1
GA 2-en-in-3-out 12 144 142 0.98 0.983 1 0.083 0.083 2 0.167 0.167
GA 2-en-in-1-out 15 225 218 0.969 0.97 1 0.067 0.067 3 0.2 0.2
GA 1-in-3-out 1000 1,000,000 926,372 0.926 0.929 1 0.1 0.1 474 0.474 0.476
GA 3-in-3-out 1000 1,000,000 925,403 0.925 0.927 1 0.1 0.1 473 0.473 0.472
GA 2-en-in-3-out 1000 1,000,000 917,637 0.918 0.919 1 0.001 0.001 480 0.48 0.485
GA 2-en-in-1-out 1000 1,000,000 930,888 0.931 0.931 1 0.001 0.001 475 0.475 0.48

Figure 3: Figure shows the probability distribution of the
number of generations required for the genetic algorithm to
learn to output the band-pass function.

each configuration. Figure 3 shows the probability distri-
bution of the number of generations required for the ge-
netic algorithm to learn to output the band-pass function.
For simplicity, the results from two separate processes –
blank to peak, peak to band-pass – are merged into one. In-
terestingly, the generations needed to reach band-pass from
peak is lower than to train a band-pass from tabula rasa (not
shown in figure), inferring transfer learning. Even more in-
terestingly, total generations needed to reach band-pass from
tabula rasa if peak is also lower than to train a band-pass
straight from tabula rasa. Also interestingly, it is ”faster” in
higher node count.

Discussion
The work presented here is clearly motivated by a perspec-
tive of how computing could occur in living systems. Our
approach hinges on the notion to encapsulate a fine structure,
i.e. network structure and dynamics, which in turns performs
well defined input-output transformations of external sig-
nals via the encapsulation. Using evolutionary algorithms,



we find here that such systems can readily evolve and be
learned. Our embedded computational network architecture
can be interpreted either at the levels of cells (internal net-
work of molecules such as genes, proteins, metabolites) or
alternatively as group or module of cells effective perform-
ing input-output transformation of external signals relative
to the module. Naturally, this does not exclude a nested ar-
chitecture ranging from cells encapsulating molecular net-
works to interacting modules composed of cells.

Historically, there have been numerous studies investigat-
ing internally stable states in networks of interacting ele-
ments equipped with some dynamics. This includes pure
spin glass models (Castellana and Bialek 2014) or those
inspired by such models, i.e. attractor networks (e.g. Hop-
field)(Hopfield 1984), networks of McCulloch-Pitts neurons
(McCulloch and Pitts 1943), or Boolean networks represent-
ing either molecular circuits (Kauffman 1969) or interact-
ing cells. This important line of work essentially frames
the problem such that; given a network architecture (e.g.
symmetric connectivity matrix, statistical connectivity con-
straints) and rules for local computation (e.g. Boolean rules,
threshold dynamics, summation of inputs) then what are the
stable states, transitions, and dynamics within the system.
Deep neural networks have successfully been trained as ef-
ficient statistical classifiers and we know that even shallow
neural networks are universal in a Turing sense.

Now, in contrast our work flips the problem formulation
around in the sense that we ask how could a system of in-
teracting components realize a given computation defined
as an input-output transformation. This is similar in spirit
in addressing how to design a transistor or a chip to imple-
ment in some medium a certain signal transformation. What
then are the advantages and limitations with our approach?
We acknowledge our ignorance of specific details of molec-
ular operations and architectures in different biological sys-
tems including neural architectures. Instead, using a global
constraint, such as a computation of an input-output trans-
formation we open up the possibility to assess what design
principles, if any, are necessary or sufficient to realize such
computations. In the last decade, there has been an increas-
ing amount of data and interest in understanding biological
networks of genes, proteins, and metabolites. In this vein,
there has been a surge of studies asking how computations
such as adaptation, detection of fold changes, and French-
flag (i.e. bandpass) can occur in biological systems(Ma et
al. 2009)(Adler et al. 2017). However, as rule, this has been
investigated using strong constraints on the specific form of
dynamics and exhaustive search in small 3-node circuits.
Here we introduce the notion to use evolutionary search
algorithms in order access large (thousands of nodes) net-
works. Our findings demonstrate the existence and fast con-
vergence to these large systems instantiating the steady-state
computations we investigate in this paper. Interestingly, in
contrast to gradient descent techniques where we find a limit
in terms of one-order of magnitude networks (N < 20)(His-
cock 2017), our vanilla GA readily exploits the search space.
Thus, we can therefore address a computational analogue to
the large networks we observe inside cells or between large
number of cells.

We like to remark that our approach may appear akin to
reservoir computing (Lukoševičius, Jaeger, and Schrauwen
2012) but there are important differences. First, here we
do not employ gradient descent training of the local (reser-
voir) network, since the evolutionary search benefits from
explorative search beyond local minima. Secondly, we train
the system to learn steady-state functions, whereas liquid
computing or reservoir computing exploits transients, i.e.
the temporal dynamics in the system, without necessarily
requiring stable states. Our motivation is that steady-state
functions provides a benchmark of what can be computed
and may constitute a fundamental computational operation
implemented in living systems. Yet, the analogy between
steady-state and temporal computing will be further inves-
tigated in future studies where we will extend our analysis
to transient temporal signals.

Furthermore, in our work we demonstrate for the first
time, to the best of our knowledge, multiplexing in such
large network architectures. Hence, a network can be
evolved to learn several different input-output transforma-
tions. Moreover, these can be configured in different man-
ners, such as allowing for example a binary input coding
projecting to either one or several different output channels.

One possible disadvantage with such large systems, com-
pared to smaller computational network modules would be
that the issue of control in an engineering and computational
sense could become insurmountable. However, when com-
puting controllability for our different circuits we observe
that are indeed controllable in a technical sense. We hypoth-
esize that this is a consequence of their fairly dense wiring,
but this is a topic we are currently investigating using our
data.

Finally, one advantageous feature for systems capable of
learning would be that when the system is trained for one
task, the system is thereby positioned to learn other tasks
faster. This was in part observed for the reinforcement learn-
ing networks that were trained on Atari games. Hence, for
any learning system we would like that as a consequence
of a given learning paradigm that nearby tasks, or nearby
(Atari) games, that transfer learning comes out as natural
feature. This was readily observed and quantified in our ex-
periments in that convergence was on average much faster
provided that the networked learned one nearby input-output
transformation. We are currently investigating to what extent
this enforce the network to forget or partially remember the
previous input-output functions.

Conclusions and future outlook
By introducing evolutionary search to identify circuits with
computational capabilities we open up for a systematic study
of the architectural and dynamical constraints of the sys-
tem which collectively computes a function. This frame-
work can readily be used to examine multifunctional circuits
where depending on the encoding of the inputs will compute
different functions using the same underlying architecture.
The dependencies between degree of network modularity,
controllability, and multiplexing when computing different
functions either in the steady-state or transient domains ap-
pears promising to investigate at this juncture.
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