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Abstract: Complex regulatory dynamics is ubiquitous in molecular networks composed of genes and proteins.
Recent progress in computational biology and its application to molecular data generate a growing number of
complex networks. Yet, it has been difficult to understand the governing principles of these networks beyond
graphical analysis or extensive numerical simulations. Here the authors exploit several simplifying biological
circumstances which thereby enable to directly detect the underlying dynamical regularities driving periodic
oscillations in a dynamical nonlinear computational model of a protein –protein network. System analysis is
performed using the cell cycle, a mathematically well-described complex regulatory circuit driven by external
signals. By introducing an explicit time delay and using a ‘tearing-and-zooming’ approach the authors reduce the
system to a piecewise linear system with two variables that capture the dynamics of this complex network. A
key step in the analysis is the identification of functional subsystems by identifying the relations between state-
variables within the model. These functional subsystems are referred to as dynamical modules operating as
sensitive switches in the original complex model. By using reduced mathematical representations of the
subsystems the authors derive explicit conditions on how the cell cycle dynamics depends on system
parameters, and can, for the first time, analyse and prove global conditions for system stability. The approach
which includes utilising biological simplifying conditions, identification of dynamical modules and mathematical
reduction of the model complexity may be applicable to other well-characterised biological regulatory circuits.
1 Introduction
Molecular networks, defined by protein–protein, protein-to-
gene and metabolic interactions, determine both the intrinsic
cellular dynamics and the cellular response to external signals.
In recent years, there have been extensive studies on
characterising relatively well-known biological networks.
Available and expanding resources of chemical binding
information can be represented as metabolic, transcription
Syst. Biol., 2009, Vol. 3, Iss. 2, pp. 113–129
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factor and protein–protein networks. As a rule, these
networks have been analysed by graph theoretical methods
simply characterising properties of the network wiring
diagram [1]. An important current topic is how to integrate
several data types in order to collect interactions from
different sources and directly construct a network graph [2,
3] using algorithms [4]. In addition to topologically large-
scale networks, there is now an increasing number of
publications on the analysis of small-scale mathematical
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dynamical models of important biological regulatory
circuits such as circadian rhythms [5], segmentation genes
[6], signal transduction pathways [7, 8], genetic switches
[9] and oscillators [10]. Thus, a growing number of
biological networks of different size and dynamical
complexity stress the importance of developing methods for
dissecting the core dynamics driving the complex circuit
behaviour [11].

These molecular networks based on experimental data are
large complicated nonlinear dynamical systems. In contrast,
tools from dynamical system theory such as bifurcation
analysis are most efficient for small systems. Thus, the
analysis of these systems has largely been limited to either
partial insights into small systems or exhaustive computer
simulations [7, 8, 12]. A logical step in the analysis of
molecular networks beyond large-scale network topology or
dynamics is therefore to ask whether there exist simplifying
operational principles for a variety of complex networks
[13, 14]. Recently, there have been several studies in this
direction, including identifying conditions for robustness in
a large kinetic model of the Drosophila segmentation
system [6], using a Boolean modelling approach [15],
formulating a global condition for the control robustness in
circuits for morphogenic gradients [16], successful
investigation on an analytical technique for detecting
multistability for positive-feedback kinetic systems [17],
division of the cell cycle into excitation and relaxation
periods based on the Jacobian of kinetic differential
equations [18] and analysis of biochemical networks based
on a linear system approach [19]. An additional
complicating feature of many biological control systems is
that there are time delays in the reaction kinetics caused by,
for example, the transcription–translation process [20–22]
or the signal transduction cascade.

Here we develop a mathematical approach to uncover what
we refer to as effective regularities in the network dynamics,
utilising several simplifying features inherent in the biological
regulatory circuit. Therefore we essentially use the biology to
reduce the complexity of the original hard mathematical
problem of dissecting the behaviour of a nonlinear
dynamical system with a time delay. We illustrate our
approach by dissecting the cell cycle, one of the most
extensively studied and essential regulatory circuits of
biology. The computational model pioneered and
developed by Novak et al. (NT-model) [23] describing the
cell cycle regulation of fission yeast incorporates and
accounts for a large body of experimental data [24]. This
biological circuit includes biological but difficult
mathematical features such as effective time delay and
nonlinear dynamical interactions. We develop a reduction
scheme, first conceptualised in Eriksson et al. [25] where
our analysis reveals a governing piecewise linear (PL)
system [26, 27] driving the cell cycle. This enables us not
only to derive explicit conditions for cell cycle oscillations
and expressions for cell mass but also to uncover the
underlying dynamical landscape of the cell cycle.
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The structure of the article is as follows. First we
summarise the original NT-model of the cell cycle and the
basic dynamics between the genes and proteins. In Section 3
we reduce the NT-model by identifying dependencies
between the variables thereby finding effective dynamical
modules in the NT-model. Using a time-lagged steady-
state approximation we simplify the description of the
modules thus setting the stage for a detailed mathematical
analysis. In Section 4 we perform a dynamical analysis in
two steps. First we identify and classify the fixed points,
and derive explicit expressions for cell mass. In the second
step we use the vector fields for performing a global
analytical stability analysis of the cell cycle. We conclude
the article with a discussion where we address the putative
value as well as current limitations of our approach for
identifying the underlying dynamical regularities driving
complex dynamics in biological regulatory circuits.

2 Cell cycle dynamics in the
NT-model
The progression of the cell cycle is driven by an orchestrated
interplay between genes and their protein products. During
the eukaryotic cell cycle in fission yeast, the cell grows,
DNA is replicated (S-phase) and divided into two daughter
cells (M-phase). Between the S-phase and the M-phase
there are also two gap-phases, referred to as G1 and G2.
These complexities has been captured remarkably well by
the pioneering work encoded in the experimentally
constrained Novak and Tyson model hereby referred to as
the NT-model [23], illustrated in Fig. 1. Mathematically
the NT-model is defined by

d[Cdc13T]

dt
¼ k1M� (k02 þ k002[Ste9]þ k0002 [Slp1])[Cdc13T]

(1)

d[preMPF]

dt
¼ kwee([Cdc13T]� [preMPF])� k25[preMPF]

� (k02 þ k002[Ste9]þ k0002 [Slp1])[preMPF] (2)

d[Ste9]

dt
¼ (k03 þ k003[Slp1])

1� [Ste9]

J3 þ 1� [Ste9]

� (k04[SK]þ k4[MPF])
[Ste9]

J4 þ [Ste9]
(3)

d[Slp1T]

dt
¼ k05 þ k005

[MPF]4

J 4
5 þ [MPF]4

� k6[Slp1T] (4)

d[Slp1]

dt
¼ k7[IEP]

[Slp1T]� [Slp1]

J7 þ [Slp1T]� [Slp1]

� k8

[Slp1]

J8 þ [Slp1]
� k6[Slp1] (5)

d[IEP]

dt
¼k9[MPF]

1� [IEP]

J9 þ 1� [IEP]
� k10

[IEP]

J10 þ [IEP]
(6)
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d[Rum1T]

dt
¼k11 � (k12 þ k012[SK]þ k0012[MPF])[Rum1T]

(7)

d[SK]

dt
¼k13[TF]� k14[SK] (8)

dM

dt
¼mM (9)
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[Trimer] ¼
2[Cdc13T][Rum1T]P

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP2
�4[Cdc13T][Rum1T]

q (10)

[MPF] ¼
([Cdc13T]� [preMPF])([Cdc13T]� [Trimer])

[Cdc13T]

(11)

[TF] ¼ G(k15M , k016 þ k0016[MPF], J15, J16) (12)
Figure 1 The original Novak and Tyson cell cycle model

a A wiring diagram describing the cell cycle machinery, modified from [23]
b Bifurcation diagram of the wild-type cell, (1)–(17) and parameters (18)
c Numerical simulation of the wild-type cell, (1)–(17) and parameters (18), SlpSte ¼ k 0 02[Ste9]þ k 0 0 02 [Slp1]. The numerical simulations
were performed using XPPAUT [30] using the method QualRK (http://www.math.pitt.edu/~bard/xpp/xpp.html). Initial values are
[Cdc13T] ¼ 0.06, [PreMPF] ¼ 0.04, [Ste9] ¼ 0.01, [Slp1] ¼ 0.0003, [Slp1T] ¼ 0.3, [IEP] ¼ 0.06, [Rum1T] ¼ 0.1, [SK] ¼ 0.9 and M ¼ 1.1
In b, the cell mass M is used as bifurcation parameter and [MPF] is a bifurcation variable. As the mass of the cell increases, the system
traverses the diagram from left to right. When the mass increases above Mc, mitoses is initiated. After going through the limit cycle to the
right, [MPF] decreases below 0.1 and the cell mass is divided by two. The bifurcation diagram was calculated by AUTO [28] via XPPAUT and
drawn by SBtoolbox [29] (www.sbtoolbox.org) for MATLAB (http://www.mathworks.com)
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kwee ¼ k0wee þ (k00wee � k0wee), G(Vawee, Viwee[MPF],

Jawee, Jiwee) (13)

k25 ¼k025 þ (k0025 � k025)G(Va25[MPF], Vi25, Ja25, Ji25)

(14)X
¼ [Cdc13T]þ [Rum1T]þ Kdiss (15)

G(a, b, c, d )

¼
2ad

b� a þ bc þ ad þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(b� a þ bc þ ad )2

� 4ad (b� a)
p

(16)

When [MPF] decreases below 0:1, M divides, M !M=2

(17)

Parameters in the NT-model are

k1 ¼ 0:03, k02 ¼ 0:03, k002 ¼ 1, k0002 ¼ 0:1,
k03 ¼ 1, k003 ¼ 10, J3 ¼ 0:01, k04 ¼ 2,
k4 ¼ 35, J4 ¼ 0:01, k05 ¼ 0:005, k005 ¼ 0:3,
k6 ¼ 0:1, J5 ¼ 0:3, k7 ¼ 1, k8 ¼ 0:25,
J7 ¼ 0:001, J8 ¼ 0:001, k9 ¼ 0:1, k10 ¼ 0:04,
J9 ¼ 0:01, J10 ¼ 0:01, k11 ¼ 0:1, k12 ¼ 0:01,
k012 ¼ 1, k0012 ¼ 3, Kdiss ¼ 0:001, k13 ¼ 0:1,
k14 ¼ 0:1, k15 ¼ 1:5, k016 ¼ 1, k0016 ¼ 2,
J15 ¼ 0:01, J16 ¼ 0:01, Vawee ¼ 0:25, Viwee ¼ 1,
Jawee ¼ 0:01, Jiwee ¼ 0:01, Va25 ¼ 1, Vi25 ¼ 0:25,
Ja25 ¼ 0:01, Ji25 ¼ 0:01, k0wee ¼ 0:15, k00wee ¼ 1:3,
k025 ¼ 0:05, k0025 ¼ 5, m ¼ 0:005:

(18)

The NT-model captures the transition between cell growth
and division where the so called check-points appear as
bifurcations of the system [24, 23]. The cell size is
represented by the mass M of the cell, and M is a
bifurcation/control parameter of the system. The system
moves between different states as M increases across
bifurcation points (Fig. 1b). The state of the system is
monitored by the active Cdc2/Cdc13-complex, also
referred to as ‘M-phase promoting factor’, (MPF). The
MPF complex is required for the initiation of DNA
replication and mitosis. A proper execution of the cell cycle
requires [MPF] activity to oscillate between low (G1
phase), intermediate (S and G2 phases) and high (M
phase) levels [31]. This is illustrated by a numerical
simulation of the NT-model (Fig. 1c).

3 Reduction of the NT-model
Our reduction of the NT-model, first described in [25], is an
iterative process based on the identification of subsets of
variables behaving as switching modules, and the subsequent
replacement of these by time lagged step functions. This is
detailed in the Supplementary Material (S1). To identify the
switching modules and determine step-function parameters,
The Institution of Engineering and Technology 2009
subsets of original model variables are characterised using
steady-state input/output graphs, an idea originating from
[14, 25]. In order to also mimic the transient time of the
subsets a time delay is used, the length of which is
determined from the switching subsets, based on a step-
response. The step-function parameters and the time delay is
finally fine tuned from cell cycle simulations of the original
model. The model reduction process results in fewer
variables, since consecutive variables are lumped together and
represented by a single function. The main simplification,
however, is due to the reduction in rate law complexity.
Instead of e.g. Michaelis–Menten or Hill-based kinetics, we
use step-functions with a time delay.

By the model reduction process we implicitly make the
assumptions that (i) variables have time to get sufficiently
close to their steady-state before there is a significant
change of input, and (ii) that the transient behaviour is not
important and (iii) that the exact form of the steady-state is
not critical for the system, for example, a sigmoid function
can be substituted by a step-function. The idea behind
the reduction is, to obtain simple enough descriptions of
the dynamical modules, to enable detailed analysis. The
biological relevance and justification of this procedure will
be further elaborated in the discussion.

For simplicity and clear disposition, we here only consider
a part of the original model, corresponding to the wild-type
cell, ignoring the dynamics of variables that are mainly
active when the cell size is smaller than during normal
conditions. This removal of variables is based on inspection
of the steady-state behaviour of the variables. Variables that
have their main activity when M , 0:8 were replaced by
constants [Supplementary Material (S1)]. This reduction
has the consequence that we cannot mimic the G1/S size
checkpoint of small cells. To show that a delayed piecewise
linear (DPL) description is also possible when M , 0:8
and to mimic different mutated strains of the wild-type
cell, an extended reduced model corresponding to the full
NT-model is given in the Supplementary Material (S1).

3.1 The reduced model (normal cell
size M . 0.8)

From the reduction process described in the Supplementary
Material (S1) and using the notation that s represents the
variables that have been approximated by step-functions, x
the unmodified variables and y denotes [MPF], we obtain
the following DPL system

_xCdc13T
(t) ¼ �s1(t � t)xCdc13T

(t)þ k1M(t) (19)

_xPreMPF (t) ¼ s2(t)xCdc13T
(t)� s3(t, t � t)xPreMPF(t) (20)

yMPF(t) ¼ xCdc13T
(t)� xPreMPF(t) (21)

s1(t � t) ¼ k02 þ sslp=ste(yMPF(t � t)) (22)

s2(t) ¼ swee(yMPF(t)) (23)
IET Syst. Biol., 2009, Vol. 3, Iss. 2, pp. 113–129
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s3(t, t � t) ¼ swee(yMPF(t))þ s25(yMPF(t))

þ k02 þ sslp=ste(yMPF(t � t)) (24)

s25(z) ¼
l25 if z � u25=wee

h25 if z . u25=wee

(
(25)

swee(z) ¼
hwee if z � u25=wee

lwee if z . u25=wee

(
(26)

sspl=ste(z) ¼
lspl=ste if z � uslp=ste

hslp=ste if z . uslp=ste

(
(27)

Mass

_M(t) ¼ mM(t) (28)

when yMPF decreases through 0:1, M is divided by two

(29)

where the parameters are

t ¼ 15, k1 ¼ 0:03, k02 ¼ 0:03, l25 ¼ 0:2,
h25 ¼ 5, u25=wee ¼ 0:25, hwee ¼ 1:3, lwee ¼ 0:15,
lslp=ste ¼ 0, hslp=ste ¼ 1:3, uslp=ste ¼ 0:4, m ¼ 0:005

(30)

The difference between this model and the model used in
[25] is that we here ignore the switch of [Ste9] around
[MPF] ’ 0:9 and merge [Ste9] and [Slp1] into one
module [Supplementary Material (S1)]. Consequently, the
matrix AEM1

of [25] disappears. There are also some minor
parameter value differences.

3.1.1 Validation: To validate the performance of the
reduced model as compared with the original model we
performed numerical simulations. A numerical solution to
the reduced models (19)–(30) is shown in Fig. 2a.
Compared with a solution to the full-scale original model,
(1)–(18), Fig. 1c, it is evident that the DPL system follows
the dynamics of the original NT-model. To evaluate the
influence of different initial conditions we compare
[Supplementary Material (S3)] the outcome of 12 different
sets of initial values corresponding to the NT- and DPL-
model, respectively.

3.2 Mutations of the wild-type strain

In order to enable reproduction of the G1/S checkpoint of
smaller cells and to mimic different mutations of the NT-
model we have extended the DPL-model, so that it can
also account for the region M , 0:8 [Supplementary
Material (S1)]. Using this extended version, we defined a
set of 12 mutated strains (Table 1) corresponding to those
mutations of reference [32] which could easily be translated
to the NT-model used in our study, as detailed in the
Supplementary Table S1. The wild-type cell and
Syst. Biol., 2009, Vol. 3, Iss. 2, pp. 113–129
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the wee12-mutation fine-tuned the parameters. For the
remaining mutations we tested how well the extended
DPL-model could capture the behaviour of the original
NT-model. For each mutation a numerical simulation was
performed, using the extended DPL-model and the NT-
model. After a transient time, three different features of the
cell cycle were recorded, cell mass at birth and the length
of G1-phase and the S/G2/M-phases. Eight out of twelve
of these strains produce similar results when comparing the
DPL- and NT-model (Table 1), the wild-type cell and the
wee12-mutation included. For three of the four mutated
strains which did not resemble the NT-model, we could in
retrospect identify parameter sets which give a matching
behaviour between DPL- and NT-model (data not shown).
The wee1�cdc25D double mutation appeared to be
particularly difficult to mimic by the DPL-model. This
strain has the particular behaviour of ‘quantised’ cycles
(inter-division times clustering around specific values
[23, 32]) and as it is modelled in the NT-model, the
transient behaviour of the variables are important to achieve

Figure 2 Illustration and validation of the DPL-model

a Validation of the DPL-model
b A control theoretical representation of the DPL-model
Numerical simulation of the DPL-model of the wild-type cell,
(19) – (29) and parameters (30). Mass ¼ M, [MPF] ¼ yMPF and
SlpSte ¼ sslp/ste. Initial values are xCdc13t(t0) ¼ 0.05,
xpreMPF(t0) ¼ 0.02, M ¼ 1.2 and yMPF(t) , uslp/ste when t , t0
117
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Table 1 Comparison between the NT- and DPL-models of simulated properties of mutant fission yeast strains

Mass at birth G1 S/G2/M Remarks

strains NT DPL NT DPL NT DPL

WT 0.99 1.06 28 14 111 125 �,�

wee12 0.50 0.45 76 78 63 61 �,�

wee1D 0.49 0.41 82 94 57 45 �,�

cdc25D 3.48 3.98 21 12 118 127 �,‡

wee12cdc25D – 1.07 – 14 – 125 �,‡,QC

wee1Dcdc25D 0.49 0.41 82 94 57 45 �,�

rum1tD 0.95 1.06 20 13 119 126 �,�

rum1tDwee12 0.48 0.46 73 80 66 59 �,�

ste9D 0.97 1.1 40 13 99 126 �,‡

ste9Dwee12 0.45 0.38 84 14 55 125 �,‡

ste9Drum1tD 0.94 1.1 33 13 106 126 �,‡

ste9Drum1tDwee12 – 0.38 – 14 – 125 �,‡,NO

� The DPL-model captures the behaviour of the NT-model (the DPL-model mass at birth is the same as for the NT-model
+20%, and the G1 or S/G2/M phases of the DPL-model are within +20 minutes of the NT-model). � The DPL-model do
not capture the behaviour of the NT-model. �G1 is defined as [MPF] , 0.02; ‡G1 is defined as [MPF] , 0.05. QC: The NT-
model displays quantised behaviour, NO: The NT-model have no sustained oscillations
this special action. Since our reduction process is based on the
steady-state behaviour and only rudimentary considers
the transient parts we cannot, by definition, reproduce this
mechanism.

4 Mathematical analysis of
the reduced model
4.1 Matrix formulation

To facilitate analysis of stability, eigenvalues and eigenvectors
the DPL model is formulated as a matrix system. Let
x ¼ (xCdc13T

xPreMPF)0 represent the state of the cell cycle
system and uext ¼M the external input, and let y ¼ yMPF

be the output from the cell cycle system. Then, the DPL-
model can be rewritten in matrix form

_x ¼ Axþ Buext, y ¼ Cx (31)

where

C ¼ (1� 1), A ¼
�s1(t � t) 0

s2(t) �s3(t, t � t)

� �

and s1, s2, s3 are combinations of step-functions defined by
(25)–(27), B ¼ (k10)0, and k1 a constant parameter from
the original NT-model. The system matrix A takes four
possible forms, indexed by Aij , i, j [ {1, 2}. A change of
index i corresponds to a change of step-functions s25 and
swee, and a change of j corresponds to a change of step-
The Institution of Engineering and Technology 2009
function sslp=ste, (26)–(30). From (22)–(24), it can be seen
that j depends on y(t � t) whereas i depends on y(t), and
the DPL-system therefore obeys

i ¼ i(y(t)) (32)

j ¼ j(y(t � t)) (33)

_x(t) ¼ Aij x(t)þ Buext (34)

y(t) ¼ Cx(t) (35)

where i and j are defined by the following switching rules

i(y(t)) ¼
1, if y(t) � u25=wee

2, if y(t) . u25=wee

(

j(y(t � t)) ¼
1, if y(t � t) � uslp=ste

2, if y(t � t) . uslp=ste

( (36)

Note that u25=wee and uslp=ste correspond to the switching
thresholds of the different step-functions. The DPL-model
is illustrated by the diagram in Fig. 2b. The resulting
system-matrices Aij correspond to

A11 ¼
�(k02 þ lslp=ste) 0

hwee �(hwee þ l25 þ k02 þ lslp=ste)

" #

A12 ¼
�(k02 þ hslp=ste) 0

hwee �(hwee þ l25 þ k02 þ hslp=ste)

" #
IET Syst. Biol., 2009, Vol. 3, Iss. 2, pp. 113–129
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A21 ¼
�(k02 þ lslp=ste) 0

lwee �(lwee þ h25 þ k02 þ lslp=ste)

" #

A22 ¼
�(k02 þ hslp=ste) 0

lwee �(lwee þ h25 þ k02 þ hslp=ste)

" #

(37)

Here hslp=ste, hwee, h25 and lslp=ste, lwee, l25 are the high and low
values of the step-functions (25)–(27) and k02 is a parameter
from the original NT-model.

4.2 Correspondence between cell cycle
phases and individual DPL-systems

To further expose the biology corresponding to the
dynamical core we analysed how the four linear systems of
the DPL-model correspond to the different phases within
the cell cycle. The different cell cycle phases were defined
based on the level of y ¼ [MPF] and on the direction of
the change of [MPF], i.e. whether [MPF] was increasing
or decreasing. We therefore have G1-phase if
[MPF] , 0:02 and increasing, S/G2-phase if 0:02 �
[MPF] � 0:25 and increasing and M-phase if [MPF] .

0:25 and increasing. The phase when [MPF] is decreasing
was identified as completion of mitoses (denoted End M-
phase). Inspection of a solution to the DPL equations gave
the following relationship between cell cycle phases and
linear systems (here denoted by their system matrices)

G1-phase � A12

S=G2-phase � A11

M-phase � A21

End M-phase � A22

This analysis implies that during each cell cycle phase, as
defined above, one individual linear system is active. Which
would mean that the protein–protein network driving the
cell cycle is effectively composed of four different networks
that are state-dependent.

4.3 Switching thresholds

The alternations between the individual linear systems
_x(t) ¼ Aij x(t)þ Buext are initiated when the output
y ¼ [MPF] increases or decreases past the switching
thresholds [MPF] ¼ u25=wee or [MPF ] ¼ uslp=ste (36). The
levels of these thresholds are therefore essential to
the behaviour of the system. In the phase-space of x the
thresholds correspond to lines and will be denoted by the
immediate switching line, SI and the delayed switching line
SD, respectively. Here SI corresponds to the immediate
change that occurs when [MPF] pass u25=wee, and SD

corresponds to the delayed change, which is initiated when
the threshold uslp=ste is passed.
Syst. Biol., 2009, Vol. 3, Iss. 2, pp. 113–129
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4.4 Dynamical analysis I: classification
of fixed points

The DPL matrix formulation sets the stage for a dissection of
fixed points and thereby elucidates the core dynamics driving
the cell cycle. Using uext ¼M as a constant parameter, each
of the linear systems _x ¼ Aij x(t)þ Buext has a fixed point,
denoted by x̂ij (¼ �A�1

ij Buext). All Aij have real negative
eigenvalues and thus all fixed points are (asymptotically)
stable, for all biologically relevant parameter values
(e.g. k02 . 0, and all other parameters �0). Using the DPL
formulation it is evident that a fixed point in a particular
linear system can only be stable in the full system, if the
fixed point is located in a region of the state space where
this particular linear system is in use according to the
switching rules.

4.4.1 Illustrative PL-example: We illustrate this
insight by using a schematic PL system (Fig. 3a). For a PL
system, the relationship between the fixed points and
switching lines is an important dynamical property of the
system. The state space of the PL system of Fig. 3a is
divided into two regimes by a switching line. In the left
system S1 drives the dynamics, whereas on the right-hand
side the dynamics is governed by system S2. The fixed
point, x̂S1, belongs to the same region as that in which S1
is defined, and all trajectories that begin in the vicinity of
x̂S1 will therefore approach this fixed point. The fixed
point, x̂S2, is located outside the region in which S2 is
defined. Therefore all trajectories in S2 are attracted by this
fixed point, but they can never get close to x̂S2, since when
they cross the border between the regions, there is a switch
to system S1 which then governs the dynamics. We will
denote the fixed point, located in the same region as that
in which the corresponding linear system is used, a bona-
fide fixed point (x̂S1), whereas a virtual fixed point refers to
the case when the fixed point is positioned outside the
region in which the linear system operates (x̂S2).

Note here that all individual linear systems of this study are
by themselves asymptotically stable (all Aij have real negative
eigenvalues). The dynamical picture would be different, if
this were not the case.

4.4.2 The DPL-model: the ‘chasing fixed point
scenario’ of the cell cycle: We will next apply our
mode of analysis to the DPL-model, using the insight that
the classification of the fixed points can reveal the
underlying dynamics driving the cell cycle. The delay of the
DPL-model makes the analysis considerably more difficult
than compared with the case without delay, since at each
point in the phase-space x there can be one out of two
linear systems in operation, i.e. one out of two vector fields
Aij xþ Buext determining the dynamics. We will therefore
here, in the first step of our dynamical analysis, only
consider fixed points in relation to the switching lines and
postpone the analysis of the vector fields until Section 4.7.
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Figure 3 Classification of fixed points

a A hypothetical example of a piecewise linear system without delay illustrating the concepts of a bona-fide fixed point (x̂S1), the fixed
point is localised in the same domain as in which the linear system S1 is defined, and a virtual fixed point (x̂S2), the fixed point is
situated outside the domain in which the linear system S2 is defined
b–d Classification of fixed points of the DPL-model
b Immediate SI and delayed SD switching lines of the DPL-model and subdivision of phase space into three domains D1, D2 and D3
c When M , MC one fixed point is a bona-fide fixed point while the other three are virtual fixed points. A typical trajectory is approaching
a stable fixed point corresponding to the bona-fide fixed point
d When M . MC all fixed points are virtual fixed points and a typical trajectory is approaching a limit cycle. In c and d two of the virtual
fixed points are almost overlapping (close to the origin)
Earlier we defined the immediate and delayed switching
lines, SI and SD, corresponding to the switching rules
(36). In the phase space of x these lines are SI

¼ {xjCx ¼
u25=wee} and SD

¼ {xjCx ¼ uslp=ste}. The switching lines
divide the phase space into three domains, D1, D2 and
D3, see Fig. 3b, i.e. D1 ¼ {xj0 � Cx � u25=wee}, D2 ¼
{xju25=wee , Cx � uslp=ste} and D3 ¼ {xjCx . uslp=ste}. The
region (Cx , 0) consists of non-biological numerical values
of x (since for biologically plausible values [Cdc13T] ¼
xCdc13T

� [PreMPF] ¼ xPreMPF).

We will first consider the case when uext ¼M is treated as a
constant parameter and then analyse the case when M
is dynamic, _M ¼ mM . When M is a constant parameter
and M , MC (Fig. 3c) the system consists of a single bona-
fide fixed point and three virtual fixed points. A trajectory of
the system will typically approach the bona-fide fixed point,
as time increases. This bona-fide fixed point is defined by
A11 and thus corresponds to the S/G2-phase of the cell cycle.

When M . MC , Fig. 3d, the system consists of only
virtual fixed points and a trajectory will typically converge
to a limit cycle. At every instant, the system moves towards
a fixed point, but along its trajectory the system passes a
switching line, which makes it start to chase for the next
fixed point, and so forth.
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When M ¼MC , the bona-fide fixed point becomes a
virtual fixed point. This corresponds to the G2/M
checkpoint, i.e. the bifurcation point, Mc , of the original
NT-model (Fig. 1b). When M follows _M ¼ mM ,
mimicking a growing cell, then the critical threshold MC is
of importance to the final cell mass of the system (large C
refers to the original system whereas small c refers to the
reduced model).

One can note here that, in the DPL-model (19)–(30),
which is valid when M . 0:8, the only cell cycle phases that
correspond to a bona-fide fixed point are the S/G2-phases.
This means that the G1 and M phases are here only
transient and depend on the length of the time delay t. This
agrees with a recent time delay model of the cell cycle [33].

4.5 Derivation of explicit expression
of cell mass

The bifurcation threshold M ¼MC is, as described above, of
importance to the final cell mass. When M increase above
this threshold, cell division is initiated. In the DPL-model,
this bifurcation takes place when the fixed point x̂11 (M)
‘traverses’ the switching line SI, i.e. when C x̂11

(MC) ¼ u25=wee. With this expression, we can solve for MC

explicitly in terms of model parameters. Since x̂11 (MC ) ¼
�A�1

11 BMC , where B are defined in (31) and A11 in (37),
IET Syst. Biol., 2009, Vol. 3, Iss. 2, pp. 113–129
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we have

MC ¼
u25=wee(k

0
2 þ lslp=ste)(k

0
2 þ l25 þ hwee þ lslp=ste)

k1(k02 þ l25 þ lslp=ste)
(38)

As revealed in expression (38), there are only a few
parameters that are essential for the critical value MC .
These parameters should have a large effect on final cell
mass, given that the rest of the system is intact.

In the original NT-model, Mc ¼ 1:55. From expression
(38) and the parameter values (30) we retrieve MC ¼ 1:66.
Expression (38) displays that the value MC is sensitive for
some of the chosen parameter values. For example,
u25=wee ¼ 0:233 gives MC ¼ 1:55 in the DPL-model.

The final cell mass, that is, the mass before cell division,
Mend can be calculated in the DPL-model, from the critical
value MC . In the DPL-model Mend corresponds to the
mass at the bifurcation point MC plus the growth of
the cell during mitosis, which can be approximated with
the time delay, that is

Mend ¼MC emt (39)

We compared this analytical result from the DPL-model
(Fig. 4, solid line) with simulations of the original NT-
model (filled circles). This was done by altering the
parameter hwee in (38) and perturbing the corresponding
parameter k00wee of the original NT-model. The DPL-
model predicted the final cell mass Mend accurately in the

Figure 4 The DPL-model gives analytical predictions on cell
cycle dynamics

Cell mass (Mend) as a function of hwee (DPL-model) or k0 0wee (NT-
model). The solid line corresponds to the analytical result (38)
and (39), from the DPLmodel (19)– (29) and parameters in (30)
except for hwee. When hwee ¼ h�wee, Mend is too large for
constraint (41) to be satisfied and the system have collapsed
(dotted black line). The filled circles correspond to Mend from
simulations of the original NT-model after parameter
perturbations to the parameter k0 0wee. Simulations without
consistent oscillations, i.e. the system has collapsed, are
indicated by filled circles at the bottom of the graph
Syst. Biol., 2009, Vol. 3, Iss. 2, pp. 113–129
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region for which it was designed (M . 0:8 which gives
Mend . 1:6), Fig. 4.

4.6 Small background level of [Ste9]
and/or [Slp1] have a large effect on cell
mass – quantitative prediction from the
DPL-model

The expressions (38) and (39) describe the dependence of cell
mass on system parameters, and thus can give new
predictions on which parameters that could influence cell
mass. One such parameter is the low value of the step-
function corresponding to [Ste9] and [Slp1], lslp=ste. Using
(38) and (39) we found that a small increase in lslp=ste
would result in a large change of cell mass. As an example,
to double the cell size of the wild-type cell (increase Mend

from Mend ¼ 2 to Mend ¼ 4) lslp=ste should be increased to
lslp=ste ¼ 0:056 (Using the parameter values in (30), except
for the ‘calibrated’ value u25=wee ¼ 0:233, see the discussion
about MC above). To test this prediction from the DPL-
model in the original NT-model, we made a corresponding
change in the NT-model by adding a constant 0.056 to
[Ste9] in (1) and (2), this gives Mend ¼ 3:9.

4.7 Dynamical analysis II: analysis of
vector fields

In order to obtain insight into the full dynamics beyond an
analysis of fixed points, we examined the four vector fields
Aij xþ Buext of the linear systems. The crucial observation
which simplified the analysis was that the dynamics most
of the time was along the slow eigenvectors of the system.
This set the stage for, to the best of our knowledge, the
first global stability analysis of the cell cycle. This analysis
showed that the cell cycle moves towards a stable fixed
point when M , MC and a limit cycle when M . MC , in
accordance with the corresponding numerical analysis of
Novak et al. [23]. More importantly, from this analysis we
could also suggest constraints that have to be satisfied in
order to keep this fixed point to limit cycle behaviour. Such
constraints provide limits on possible parameter values.

4.7.1 Slow eigenvector approximation: In order to
simplify a stability analysis we approximated the DPL-
system with its slow eigenvectors. The rationale behind this
approximation was the large difference between the
eigenvalues l1, l2 of the matrices Aij . This difference
reflects a separation of time-scales within the system,
originating from the fact that the phosphorylation of Wee1
and Cdc25 acts on PreMPF (xPreMPF) but does not
influence the total concentration of Cdc13 (xCdc13T

). The
result of the approximation was that we could consider a
system trajectory as moving along, or switching between,
specific lines passing through the fixed points.

Consider the homogeneous system _x ¼ Ax, with initial
data x(t0) ¼ x0, where A is a 2� 2 matrix (in the interest
of clarity we here only consider the homogeneous system,
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since non-homogeneous systems can be transformed into this
form by a translation). Assume that l1 and l2, with l1 = l2,
are the eigenvalues of A and v1 and v2 are the corresponding
eigenvectors. Then for any initial state x0 ¼ c1v1 þ c2v2 the
solution of the linear system is x(t) ¼
c1el1(t�t0)v1 þ c2el2(t�t0)v2. We call the direction spanned
by the eigenvector with the smallest jlj the slow
eigendirection and the direction spanned by the eigenvector
with the largest jlj the fast eigendirection.

With Aij defined in (37) together with (30), the eigenvalues
satisfy l1, l2 , 0 and jl1j , jl2j, for all Aij . The largest
difference between the eigenvalues is l2 ’ 100l1 for A21

and the smallest difference is l2 ’ 2l1 for A12. Then
el2(t�t0)

� el1(t�t0) as t increases. Even in the case A12 when
the difference between the eigenvalues is smallest, for
(t � t0) ¼ 5, the difference is evident el1(t�t0) ’ 1� 10�3

and el2(t�t0) ’ 7� 10�7. Because of this difference in
eigenvalues, we approximate the dynamics of the system to
the dynamics of the slow eigenvector for each of the
linear systems defined by Aij. We perform this approximation
by assuming that el2(t�t0) ’ 0 for all (t � t0) . 0. This slow
eigenvector system will be referred to as the approximated
DPL-system. Let us call an eigenvector that goes through the
fixed point an fp-eigenvector. Then this approximation can be
interpreted as, if a trajectory starts from an initial value x(t0),
it will first immediately follow the fast eigenvector to either,
the immediate switching line SI, or to the slow fp-
eigenvector. On the way to either of these, the delayed
switching line SD can of course also be passed, which will
result in a switch between systems t minutes later. If the
trajectory reaches the immediate switching line, there is a
switch to a new system. If the trajectory reaches the slow fp-
eigenvector then this governs the system dynamics according
to x(t) ¼ c1el1(t�t0)v1, towards the fixed point. Either it stays
on this fp-eigenvector as t ! 1, or it switches to another
system because x(t) or x(t � t) passes SI or SD. Fig. 5 shows
a comparison between a trajectory of the ordinary DPL-
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system, the approximated DPL-system and the original
NT-model.

4.7.2 Global stability analysis: The slow eigenvector
approximation enabled us to perform a global stability
analysis of the approximated DPL-model, while excluding
some inappropriate initial conditions. The result of the
analysis is displayed as a bifurcation diagram (Fig. 6b),
which can be compared with the bifurcation analysis of the
original NT-model (Fig. 6a). Below we present a theorem
on global stability, but first we need to describe a restriction
on possible initial conditions.

Since we have a delayed system the initial condition must
not only include x(t0) but also describe the system for the last
t minutes. This is accomplished by the initial function
x(t) ¼ f 0(t), t0 � t � t , t0. To exclude some numerically
possible initial conditions, which are inconsistent with the

Figure 5 The DPL-model can be approximated by its slow
eigenvectors

A solution to the DPL-model, the DPL-model approximated with
its slow eigenvectors, and the NT-model in the phase space of
xCdc13t and xPrempf ([Cdc13t], [PreMPF]) using constant mass
M ¼ 1.8. The approximated model was solved analytically the
other two numerically
Figure 6 The approximated DPL-model captures the dynamics of the original NT-model

a Bifurcation diagram of the NT-model, (1)–(17) and parameters (18)
b Bifurcation diagram of the DPL-model, (19) – (29) and parameters (30), approximated with its slow eigenvectors. The immediate
switching line corresponds to the threshold value yMPF ¼ [MPF] ¼ u25/wee of step function s25/wee, and the delayed switching line to
yMPF ¼ [MPF] ¼ uslp/ste of sslp/ste. The stable fixed points for M , MC correspond to the bona-fide fixed point Cx̂11
IET Syst. Biol., 2009, Vol. 3, Iss. 2, pp. 113–129
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model reduction process, we give the following restriction on
‘feasible’ starting conditions.

Restriction on f0: The initial function f0 can only pass SD

once.

One assumption of the model reduction process, on the
dynamics of the original system, was that each subsystem
has sufficient time to get close to steady-state before there
is a change of input. This is not satisfied for oscillations of
a frequency less than t, thus motivating this restriction.
This restriction is only meaningful if it in conjunction with
the DPL-model defines a closed set, i.e. a trajectory that
satisfies this restriction will always satisfy this restriction
under the dynamics of DPL-model. We show in
Supplementary Material (S4) that this indeed is the case.
We are now in a position to state and prove the following
theorem.

Theorem on global stability of the cell cycle: The approximated
DPL-system, under the restriction on f0, approaches a
globally stable fixed point when M , MC and a globally
stable limit cycle when M . MC as time increases.

The proof [Supplementary Material (S4)] is based on a
division of all possible initial conditions that satisfy the
restriction on f0 into four groups of starting scenarios
S1�S4 (Fig. 7). We then show that a trajectory that starts
Syst. Biol., 2009, Vol. 3, Iss. 2, pp. 113–129
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in one of these groups Si has to either remain in that
group or move to another group. This is illustrated in
Fig. 7 for a constant M . MC . Finally, we also show that
such a trajectory approaches either a limit cycle or a fixed
point.

4.7.3 Limits on parameter values retrieved from
the global analysis: In Fig. 7 and the proof of global
stability, Supplementary Material (S4), we showed that
with the parameter set defined by (30) there exists a
globally stable fixed point when M , MC and a limit cycle
when M . MC . From this picture we can also suggest
scenarios when there will not exist a limit cycle, and
therefore give constraints on model parameters, which limit
the space of possible parameter values. These constraints
are based on the observation that the relationships between
the slow fp-eigenvectors, the fixed points and the switching
lines are essential in order to have a limit cycle.

From our analysis of the DPL-model, we have found that
the critical part of the cell cycle is for [MPF] to get low
enough at the end of mitoses. In the original model, cell
division is performed when [MPF] decreases below
[MPF] ¼ 0:1 (17). In the DPL-model this corresponds to
when y ¼ Cx decreases below Cx ¼ 0:1. This event is the
part of the limit cycle that corresponds to starting scenario
S4 (Fig. 7c). Parameters that have a large effect on the
vector field of S4 can therefore make the system collapse.
Figure 7 Illustration to the proof of the theorem of stability

a–d Vector fields of the DPL-model approximated with its slow eigenvectors, for all possible initial conditions (under the restriction on f0)
subdivided into four groups Si, i [ f1, 2, 3, 4g. Red, slow fp-eigenvectors; blue, fast eigenvectors. A trajectory starting in any of these
scenarios Si will move to another of the scenarios. Shadowed regions correspond to initial values x(t0), which are inconsistent with the
Si under concern. After a transient time all trajectories will move along slow fp-eigenvectors connected by fast eigenvectors (a limit cycle)
The cell cycle follows a globally (under the restriction on f0) stable limit cycle when M . Mc
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For a limit cycle trajectory to decrease below Cx ¼ 0:1, the
slow fp-eigenvector of the linear system used in D1 of S4

(Fig. 7c), denoted ~v, must be to the left of Cx ¼ 0:1
(dotted line in Fig. 7c). In other words, Cx , 0:1 for some
x [ ~v must be satisfied. The vector ~v depends on M,
~v(M). When cell division is executed M ¼Mend, thus,
Cx , 0:1 for some x [ ~v(Mend). This is ensured if

min
x[ ~v(Mend), x�0

Cx , 0:1 (40)

Furthermore, in order to at all reach D1 of S4, the fixed point
of the linear system used in D2 < D3 (in S4 and S3) must be
localised in D1, leading to

C x̂22 (Mend) , u25=wee (41)

In the constraints (40) and (41), Mend is given by (39).

Let us exemplify this finding by again analysing the role of
the parameter hwee which has a large effect on Mend. The cell
cycle system works with increasing hwee until Mend is too large
and the system collapses. The first constraint which is
violated when hwee and Mend increase is (41). Let us denote
the point at which this happens h�wee. The limit h�wee can be
calculated by inserting (39) into (41) and solve for hwee.
Fig. 4 indicates when this constraint is violated and
compares this prediction from the DPL-model to
simulations of the original NT-model (by varying the
corresponding parameter k00wee).

5 Discussion
We have herein developed a procedure for how to reduce and
dissect the behaviour of a nonlinear oscillatory biological
control system incorporating an effective time delay. Our
methodology has been developed and applied to the
Novak–Tyson (NT) model of the cell cycle since the NT-
model captures one of the best described and important
regulatory circuits. A central notion guiding our analysis is
to take advantage of biological simplifying circumstances in
order to reduce the complexity of the underlying hard
mathematical problem of understanding a nonlinear
dynamical systems that include time delay. Below we first
discuss the insights and biological simplifications that made
our approach possible. We close the paper by addressing
advantages and limitations with our approach by comparing
with alternative strategies for understanding complex
nonlinear biological control systems.

5.1 Insights from the dissection
procedure which exposed the core
dynamics driving the cell cycle

Our reduction of the original system and mathematical
analysis enabled us to obtain insights and prove system
properties beyond what is currently possible using only
numerical bifurcation analysis or computer simulations.
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Below we specify what can be learned from the reduction
procedure, the DPL model and mathematical analysis.

5.1.1 Time-lagged steady-state approximations:
The model reduction process is based on the idea of
obtaining as simple representations of the switching
modules as possible. The variables are approximated by
their steady-state behaviour together with a time delay.
This is justified using the notion that the reduced model
have the same qualitative behaviour as the original model
during several conditions. By these approximations we
implicitly make the assumptions that (i) variables have time
to get sufficiently close to their steady-state before there is
a significant change of input, and (ii) that the transient
behaviour is not essential in a first approximation of
understanding the core dynamics of the system and finally
(iii) that the exact form of the steady-state is not critical for
the system, which is to say that a sigmoid function can be
replaced by a step-function. All these assumptions can of
course be questioned. We have, for example, found one
parameter set of the original NT-model (the wee12 cdc25D
double mutated strain) where the transient behaviour of the
modules seems to be important to achieve the particular
behaviour of this strain. We have also qualitatively observed
that approximating by a step-function assuming that a
variable is ‘sufficiently close to their steady-state’ can
actually in practice mean that the variable is only remotely
at its steady-state.

In order to analyse larger complex biological networks, we
believe that less detailed representations of the interacting
units can be useful. Here such a coarse-grained
representation is constructed by merging consecutive
variables together and reducing rate-law complexity. One
should note, that the original NT-model already contains
several simplifying assumptions, e.g. Michaelis–Menten/
Hill rate laws, and that the use of these approximation in
protein signalling networks is under debate in the field
[34–36]. This issue arises because the conditions required
for using the pseudo steady-state approximation are rarely
met, and the errors become compounded when they are
used in cascades. We have, furthermore, throughout this
study ignored the fact of discontinuity at the switching
thresholds, which in the general case needs to be
considered [37, 38].

5.1.2 Simplifying biological circumstances –
modularity, switching and separation of time-
scales: Our reduction procedure of the NT-model utilises
several biological circumstances such as (i) modularity, (ii)
switch like response and the use of (iii) different time-
scales. The reduction procedure (Section 3) relied on our
identification of effective dynamical modules by careful
inspection of the dependencies between the variables in the
NT-model. The notion that biological circuits are
organised in modules has been intensively discussed [13]
and proved to be a useful tool for analysing the static
organisation within large networks. However, as a rule
IET Syst. Biol., 2009, Vol. 3, Iss. 2, pp. 113–129
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these studies have not included the dynamics due to lack of
reliable kinetic models at this scale. Furthermore, a
dynamical module defined by variable dependencies
including both the strength and nature of the kinetic
interactions does not necessarily coincide with a definition
of modularity based on the network connectivity. Thus, for
understanding system dynamics, the notion of dynamical
modules appears to be a useful and biologically functionally
relevant concept. Making the observation that there is a lot
of switching in the NT-model we therefore defined
modules exhibiting a switching dynamics, with the
rationale of replacing these modules by step-functions.
Considering the system when M . 0:8, that is, when
cell mass is determined by the G2/S checkpoint, we
found three modules, corresponding to the NT-variable
subsets {k25}, {kwee} and f[IEP], [Slp1t], [Slp1], [Ste9]g
which determined when there were abrupt changes in the
system.

The second simplifying circumstance is the frequent
occurrence of switching in the NT-model. This mainly
due to the special form of the Michaelis–Menten-based
equations used in the model, which produces steep
sigmoid steady-state input–output curves, referred to as
Goldbeter–Koshland functions [39]. Switching has been
found in many biological systems [40–43], often
modelled using a Hill-function. Biologically this
phenomena can be due to cooperative processes, positive
feedback or enzymes which operate near saturation [44].
The cause behind the switching and the way it is
modelled (by a Hill-function, Goldbeter–Koshland
dynamics etc) is not essential for our reduction process
but only of relevance for interpreting the biological
process generating the switch-like behaviour.

Finally, the observation that biological systems operate on
different time-scales is an often used tool when reducing
biological complexity. For example, the slow variable, cell
mass M, has been treated by others as a constant parameter
when performing bifurcation analysis of the system [23].
Similarly, we make use of the different time-scales of
Cdc13 and PreMPF in the analysis of the DPL-model, by
employing what is referred to as a slow eigenvector
approximation. Thisparticular separation of time-scales
originates from the observation that phosphorylation of
Wee1 and Cdc25 acts on PreMPF but does not influence
the total concentration of Cdc13.

In summary, by removing some variables and
dependencies and substituting the remaining dynamical
modules with step-functions including a time delay we
arrived at a minimal model formulation capturing the core
dynamics driving the NT-model.

5.1.3 Validating the simplified model: To test
whether our reduced model mimics the full model and
implicitly assessing whether the above biological
simplifications are useful we used our reduced formulation
Syst. Biol., 2009, Vol. 3, Iss. 2, pp. 113–129
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of the NT-model to analytically derive the corresponding
numerical bifurcation diagram obtained from the original
NT-model. This is not possible in the full model but the
very fact that we could derive the numerically computed
bifurcation curve strongly validated our compact
reformulation. Hence, taking this derivation and numerical
simulations in the time-domain together, validated that our
reduced formulation indeed generates the appropriate
system dynamics. In conclusion, this result makes the
suggestion that concepts and practical tools for identifying
modularity, switching and separation of time-scales could
be useful in reducing other complex regulatory biological
circuits.

5.1.4 Understanding and exposing the core
dynamics driving the cell cycle: The reduction of the
original model and exposition of the underlying simplifying
biological circumstances as described above is, however,
only a first step in understanding the core dynamics which
represents the key underlying dynamical landscape that
propels the cell cycle machinery forward in time. In
particular, we are in search for a core abstract picture of
what really propels a system which is not directly analysable
in its raw NT-form which, however, already is a
simplification of the original biological system. In Section
4.4, we therefore analysed the nature of the fixed points
corresponding to the four linear systems and how the
system by crossing switching planes utilises different linear
subsystems. Interestingly, the biological cell cycle phases
correspond to different linear subsystems in our analysis. In
brief we found that a system trajectory first (when the cell
mass is small) followed a (bona-fide) stable fixed point,
which in itself was translocated with increasing mass.
When mass increased in the limit cycle regime the
trajectory started to move towards a virtual attracting fixed
point, thus chasing a fixed point. With the passing of a
switching line, the previous attractive virtual fixed point
disappeared and the ‘next’ system matrix introduced a new
virtual attractive fixed point. Such a ‘chasing fixed point ’
scenario is a novel and convenient simplifying picture. This
insight was not obtained from a regular numerical
bifurcation analysis. Biologically this corresponds to a
generalised notion of threshold (a line instead of a single
threshold value) based on the dynamical modules within
the system. Hence when the system passes a threshold, the
state of the biological circuit is changed, leading to that a
different effective subsystem of that very circuit is driving
the systems dynamics. Therefore the existence of dynamical
modules and the resulting fixed point/switching line
analysis reveals that the protein–protein network driving
the cell cycle effectively is composed of four different
networks which are state-dependent, that is, depends on
which switches that are passed or not. Thus a rather simple
discrete on/off behaviour produces different effective
systems which at the end are hidden in a complex
continuous system with nonlinear time-lagged interactions.
This discrete core dynamics is evidently not visible by
inspection from the connectivity graph of the cell cycle.
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Finally, from our analysis on the wild type cell we find that for
cells of normal size (M . 0:8, in this study) the length ofthe
G1 phase corresponds to the time delay of the Slp1/Ste9
module (step-function sslp=ste). A similar result has recently
been suggested in the analysis by Srividhya and
Gopinathan [33] using another mathematical model of
fission yeast.

Now, despite the abstract nature of the above scenario we
could use the information to quantitatively predict the cell
size and secondly to prove and predict conditions for the
global stability of the cell cycle.

5.1.5 Prediction of cell size using the reduced
core dynamical model: An important biological
application of computational models is to aid us in
understanding how key biological features are determined
from the detailed kinetics governing the protein–protein
interactions. Important biological features for the cell
cycle include the average size of the cells, which depend
on the size at which the individual cells divides. Ideally
we would like to identify key kinetic parameters by which
the cell size controls the point of cell division. Using our
reduced model we could derive (Section 4.5) analytical
expressions for the critical threshold MC in terms of
parameters that were derived from the original NT-
model. The threshold MC (38) reveals parameters that are
important for the G2/M transition and therefore
together with (39) have a large influence on final cell
mass. One example is the parameter u25/wee (38).
Biologically u25/weecorresponds to the threshold values of
Cdc25 and Wee1 at which there is a significant increase
of MPF initiating the mitoses. Furthermore, a decrease
of the parameter hwee should give smaller cells, a
prediction which is confirmed in the original model and
does not come as a surprise, since it corresponds to the
biological wee2-mutation which results in smaller cells. A
more interesting result is the prediction that a small
increase in the background level of [Ste9] and/or [Slp1]
will have a large effect on cell size as confirmed by
simulations of the original NT-model. Importantly, all
these predictions are not only qualitative, but also
quantitative. Hence, we do not only obtain a list of
which are the crucial parameters but the formula also
gives us an understanding of the dependency of the cell
mass in terms of these parameters.

5.1.6 Predicting and proving asymptotic global
dynamics and the stability of the cell cycle: For
the best understood biological circuits, such as the cell
cycle, our current understanding is as a rule captured by
complex nonlinear kinetic models. The addition of
biologically justified time delays clearly prohibits an
analysis for the majority of circuits. From a biological
perspective we would like to understand if and under
what conditions the protein–protein mediated
oscillations governing the cell cycle are a stable
behaviour or not. In Section 4.7 we took advantage of
The Institution of Engineering and Technology 2009
the observation that the circuit kinetics have different
time-scales which essentially control the switching
dynamics. This biological observation translates
mathematically into that the system matrices have large
differences in the corresponding eigenvalues. This led us
to a slow eigenvector approximation which captures the
essential system dynamics. This insight and additional
simplification enabled a proof of the global stability of a
limit cycle or fixed point solution depending on the
specific value of the cell mass, illustrated by a
bifurcation diagram. Since we have an explicit formula
for different features of the bifurcation diagram such as
critical cell mass, switching lines and fixed points, we
can predict system effects of perturbations in kinetic
parameters. From the global analysis of the cell cycle
behaviour we can thereby identify necessary constraints
on model parameters. Such constraints are helpful in
order to find parameter limits, outside which the system
cannot work. For example, considering the parameter
hwee we can calculate an upper limit of this parameter
which seems to correspond to simulations of the NT-
model (Fig. 4).

We are not the first to dissect the cell cycle by partitioning
the system into smaller subsystems [24]. Indeed, the excellent
work of Novak and Tyson displays the qualitative dynamics
within different subsystems. Our study contribute a PL
formulation which enables analytical analysis.

5.2 Strategies and limitations in
understanding complex biological
regulatory circuits

5.2.1 Simple models versus extensive computer
simulations: Our work highlights the general problem
on how to identify a suitable level of model complexity
which is simple but yet sufficiently complex to capture the
relevant dynamics underlying regulatory systems in biology.
During the last century several different strategies have
been developed in relation to computational modelling as a
tool for describing and understanding biological systems.
Biologically based computational models tend to have a
large number of inhomogeneous components (different
molecules and cells), governed by non-trivial interactions
described by a large number of parameters that cannot as a
rule be uniquely determined from experiments. Since the
models are too complicated to permit direct mathematical
analysis resorting to extensive computer simulations has
become an important tool in understanding these systems.
However, even if a large number of simulations are
performed, covering only a small part of all possible
parameter combinations, it is yet difficult to understand
why a particular phenomena occurs in the model at hand.
Therefore two successful strategies within computational
neuroscience have been developed. First, a study of small
systems using tools from nonlinear dynamical systems
theory [45, 46]. Alternatively, formulating models which
ignore a number of biological details which render these
IET Syst. Biol., 2009, Vol. 3, Iss. 2, pp. 113–129
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models amenable for mean field analysis thus yielding a
substantial insight into system dynamics [47]. In cases
where these two approaches have not been applicable the
investigator has been left to perform large-scale simulations
of complicated models, an enterprise which has not proved
to be as successful as initially thought. For example, in
these complicated models small parameter perturbation may
induce large and difficult to understand alterations in the
systems dynamics. It is therefore not surprising that
biologically relevant features such as time delays which
make these models even more complicated have as a rule
been ignored.

5.2.2 Analytical and mathematical techniques
for understanding complex network models:
There are a small number of success stories when analytical
techniques and reasoning have been applied for the
dissection of complex models [48]. Yet, to the best of our
knowledge the seminal analysis by Mackey et al. [49] on a
small system describing white blood cells is the first where
a time delay has been thoroughly analysed in a biological
context. An interesting future area to explore is the relation
between different levels of simplified models such as
Boolean versus differential equation models [50]. Recently
there has been a growing interest of developing techniques
for reducing complicated computational models in systems
biology [19, 51]. Ideas such as lumping and simplifying
variables have been explored. This is something that will
become increasingly important as more networks in
different systems are characterised with increasing
resolution. Tyson and Co-workers has performed
pioneering work utilising nonlinear dynamical systems
analysis to models of the cell cycle [24]. However, a central
limitation in a mathematical approach is that the tools from
numerical bifurcation analysis and mathematical analysis are
limited to small systems contrasting with the larger size of
biological networks. Yet, we believe that our analysis is the
first to develop a systematic reduction scheme and an
analysis for a time delay system which takes particular
biological regularities into account to enable a
reformulation of a semi-large-scale complex model to a
smaller simplified model amenable for explicit
mathematical analysis.

An important future problem is to investigate whether
structural modularity in biological systems could facilitate
reduced systems descriptions by effectively decoupling
different time and spatial scales thus setting the stage for
interconnected modular simplified models. Such a reduced
but biologically justified system description would clearly
simplify the identification of regulatory circuits from whole
genome data [4].
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