
Estimations of Integrated Information Based on
Algorithmic Complexity and Dynamic Querying

Alberto Hernández-Espinosa1, Hector Zenil∗2,3,4,5, Narsis A.
Kiani2,3,4, and Jesper Tegnér3,6

1Depto. de Matemáticas, Facultad de Ciencias, UNAM, México;
2Algorithmic Dynamics Lab, Karolinska Institute (KI);

3Unit of Computational Medicine, Center for Molecular Medicine,
Department of Medicine Solna, KI, Stockholm, Sweden;

4Algorithmic Nature Group, Laboratory of Scientific Research
(LABORES) for the Natural and Digital Sciences, Paris, France;

5Oxford Immune Algorithmics, Reading, U.K.;
6Biological and Environmental Sciences and Engineering Division,
Computer, Electrical and Mathematical Sciences and Engineering,
Division, King Abdullah University of Science and, Technology

(KAUST), Kingdom of Saudi Arabia.

Abstract

Information has emerged as a language in its own right, bridging sev-
eral disciplines that analyze natural phenomena and man-made systems.
Integrated information has been introduced as a metric to quantify the
amount of information generated by a system beyond the information
generated by its elements. Yet, this intriguing notion comes with the
price of being prohibitively expensive to calculate, since the calculations
require an exponential number of sub-divisions of a system. Here we
introduce a novel framework to connect algorithmic randomness and in-
tegrated information, and a numerical method for estimating integrated
information using a perturbation test rooted in algorithmic information
dynamics. This method quantifies the change in program size of a sys-
tem, when subjected to a perturbation. The intuition behind is that if
an object is random then random perturbations have little to no effect
to what happens when a shorter program but when an objects has the
ability to move in both directions (towards or away from randomness) it
will be shown to be better integrated as a measure of sophistication telling
apart randomness and simplicity from structure. We show that an object
with a high integrated information value is also more compressible, and
is therefore more sensitive to perturbations. We find that such a pertur-
bation test quantifying compression sensitivity, provides a system with a
means to extract explanations–causal accounts–of its own behaviour. Our
technique can reduce the number of calculations to arrive to some bounds
or estimations, as the algorithmic perturbation test guides an efficient
search for estimating integrated information. Our work sets the stage for
a systematic exploration of connections between algorithmic complexity
and integrated information at the level of both theory and practice.

Keywords: integrated information; algorithmic complexity; algorithmic
information theory; algorithmic randomness; algorithmic information dy-
namics; reprogrammability test; causality.
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1 Introduction
The development of techniques to decipher the structure and dynamics of com-
plex systems is a rich inter-disciplinary research area which is not only of funda-
mental interest but also important in numerous applications. Broadly speaking,
dynamical aspects such as stability and state-transitions within such systems
have been of major interest in statistical physics, dynamical systems, and com-
putational neuroscience [21, 16, 15]. Here, complex systems are defined by a
set of non-linear evolution equations. Cellular automata, spin-glass systems,
Hopfield networks, and Boolean networks, have for example been used as nu-
merical experimental model systems to investigate the dynamical aspects of
complex systems. Due to the complexity of the analysis, notions such as sym-
metries in the systems, averaging (e.g. mean-field techniques), and separation
of time-scales, have all been instrumental in deciphering the core principles at
work in such complex systems. In parallel, network science has emerged as a
rich interdisciplinary field, essentially analyzing the structure of real networks
in different areas of science and in diverse application domains [12]. Examples
include social, biological and electrical networks, the web, business networks
and the interconnected internet. By a structural analysis, which has dominated
these investigations, we refer to statistical descriptions of network connectivity.
Networks can be described globally, in terms ranging from the degree to which
they differ from a random Poisson distribution of links, to their modular orga-
nization, including their local properties such as local clustering around nodes,
special nodes/links with high degrees of betweenness or serving specific roles
in the network, and local motif structures. Such network features can be used
to classify and describe similarities and differences between what appear to be
different classes of networks across and within different application domains.
Finally, due to the rich representational capacity of networks and their useful-
ness across science, technology, and applications, work in machine learning, in
particular graph convolutional networks and embedding techniques, is currently
making headway in devising ways to map these non-regular network objects
onto a format such that machine learning techniques can be used to analyze
their properties [13].

Now, we may ask if integrated information theory (IIT) is proposed to be
of relevance for the analysis of complex networks, we ask how is IIT related
to fundamental questions underpinning research and thinking of complex sys-
tems? On the one hand, we find a rich body of work dealing with what could be
referred to as technical, computational challenges, and application-driven inves-
tigations. For example, which global and local properties should be computed
and how to do so in an efficient manner. However, at a more fundamental level
we find essentially two challenges, which in our view have a bearing on the core
intellectual driving force of complex systems. First: What is the origin of and
mechanisms propelling order in complex systems? Secondly, and of major con-
cern for the present paper: Is the whole - in some sense - larger than the sum
of its parts? Both questions are vague when formulated in words, as above, but
they can readily be technically specified within a model class. The motivation
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for the second question is that it appears that there are indeed phenomena in
nature which cannot easily be explained only with reference to their parts, but
seem to require that we adopt a holistic view. Since Anderson’s classic 1972
essay, there has been an animated and at times heated discussion of whether
there is anything which could be referred to as emergence.[11]

Tononi and his group have developed a formalism–targeting exactly such a
holistic analysis–specifically to quantify the amount of information generated by
a system – defined as a set of interconnected elements–beyond the information
generated by the parts (subsets) of the system. Their motivation was that in
order to develop a theory of consciousness [26]. In that quest, they perceived
a necessity to define a measure which could quantify the amount and degree
of consciousness, a measure they refer to as φ, which in turn constitutes the
core of Integrated Information Theory or IIT. Importantly, in the present work
we distinguish between the issue of the relevance of φ for consciousness versus
the technical numerical question of how to calculate φ. Here we address the
computation of φ, as it is potentially a means toward a precise formulation
for the possible causal relation between a whole and the parts of a system,
regardless of its purported relevance to consciousness. To calculate φ, Tononi
and collaborators have developed a computational toolbox [25]. Yet, calculating
φ comes with a severe computational cost, as the calculation scales exponentially
with the number of elements in the network. Furthermore, the computation
requires knowledge of the transition probabilities of the system, which makes
computation of anything larger than small systems of order of one magnitude
intractable in practice. The calculation of φ requires a division of the system
into smaller subsets, ranging from large pieces down to singletons, every division

into k pieces can be instantiated in
(
N

k

)
different ways. Using this procedure

from Tononi, elements that have small causal influences on the activity of other
elements can be identified. A system with low φ is therefore characterized by the
fact that changes in subsets of the system do not affect the rest of the system.
Such a system is therefore considered to be a non-integrated system. This
observation entails a key insight, namely, that if a system is highly integrated
among its parts, then the different parts can be related to each other, or more
precisely, they can be used to describe other parts of the system. Then the parts
are in some sense simple and should be compressible.

This is the observation and intuition behind our method, which employs
a formalized notion of complexity to exploit this insight and thereby allow a
more efficient, guided search in the space of algorithmic distances, in contrast
to exhaustive computations of the distance between statistical distributions, as
currently implemented in IIT. Technically we are therefore not required to per-
form a full computation of what is referred to as the input-output repertoire (see
Methods for technical details). This, in brief, is our motivation for introducing
our method, which is based on algorithmic information dynamics [18, 43, 44].
At its core is a causal perturbation analysis and a measure of sophistication con-
nected to algorithmic complexity. Our approach exploits the idea that causal
deterministic systems have a simple algorithmic description and thus a simple
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generating mechanism sufficient to simulate and reproduce complex systemic
behaviour. Using this technique we can assess the effect of perturbations, and
thereby exploit the fact that, depending on the algorithmic complexity of a
system, the perturbation will induce different degrees of change in algorithmic
space. In short, a system will be highly integrated only if the removal or pertur-
bation of its parts has a non-linear effect on the generative program producing
the system in the first place. Interestingly, even Tononi suggested early on that
algorithmic complexity could be connected to the computation of integrated in-
formation [10]. However, a lossless compression algorithm was used to approx-
imate φ. Here we contribute to the formalization of such a suggestion by using
stronger tools, which we have recently developed, to approximate complexity.
At the core of algorithmic information is the concept of minimal program-size
and Kolmogorov-Chaitin complexity [24, 14]. Briefly, the Kolmogorov-Chaitin
complexity K(x) of an object x is the length of the shortest computer program
that produces x and halts. K(x) is uncomputable but can be approximated
from above, meaning one can find upper bounds by using compression algo-
rithms, or rather more powerful techniques such as those based on algorithmic
probability [17, 30, 39], given that popular lossless compression algorithms are
limited and more closely related to classical Shannon entropy than to K it-
self [41, 37, 38]. One reason for this state of affairs is that, as demonstrated in [3],
there is a fundamental difference between algorithmic and statistical complex-
ity with respect to how randomness is characterised in opposition to causation.
Specifically, algorithmic complexity implies a deterministic description of an ob-
ject (it defines the algorithmic information content of an individual sequence/ob-
ject), whereas statistical complexity implies a statistical description (it refers to
an ensemble of sequences generated by a certain source). Approaches such as
transfer entropy [5], Granger causality [19], and Partial Information Decompo-
sition [32, 33] that are based on regression, correlation and/or a combination
of regression, correlation and intervention but ultimately relying on probability
distributions, fall into this category. Hence for better-founded methods and al-
gorithms for estimating algorithmic complexity, we recommend the use of our
tools, which are already being used by independent groups working on, for ex-
ample, biological modelling [22], cognition [31] and consciousness [29]. These
tools are based on the theory of algorithmic probability, and are not free from
challenges and limitations, but they are better connected to the algorithmic side
of algorithmic complexity, rather than only to the statistical pattern-matching
side that current approaches using popular lossless compression algorithms ex-
ploit, making these approaches potentially misleading [41]. Our procedure, in
brief, is as follows. First, we deduce the rules in systems of interest: we apply
the perturbation test introduced in [35, 18, 44] to ascertain the computational
capabilities of networks. Next, simple rules are formalized and implemented to
simulate the behaviour of these systems. Following this analysis, we perform an
automatic procedure, referred to as a meta-perturbation test, which is applied
over the behaviour obtained by the aforementioned simple rules, in order to
arrive at explanations of such behaviour. We incorporate the ideas of an inter-
ventionist calculus (c.f. Judea Pearl [28]) and perturbation analysis within what
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we call Algorithmic Information Dynamics, and we go beyond pattern identifi-
cation using probability theory, classical statistics, and correlation analysis by
developing a model-driven approach that is fed by data. This contrasts with a
purely data-driven approach, and is a consequence of the fact that our analysis
considers the algorithmic distance between models.

2 Basic concepts - Integrated Information The-
ory (IIT)

Integrated information theory (IIT) postulates that consciousness is identical
to integrated information and that a system’s capacity for consciousness can be
expressed by a quantitative measure denoted by φ. Tononi defines integrated
information as “the amount of information generated by a complex of elements,
above and beyond the information generated by its parts” (Consciousness as
integrated information: a provisional manifesto. Tononi 2008) and states, “The
integrated information theory (IIT) of consciousness claims that, at a fundamen-
tal level, consciousness is integrated information” (Consciousness as integrated
information: a provisional manifesto. Tononi 2008, italics in original). IIT aims
to explain “relationships between consciousness and the Physical Substrate of
Consciousness (PSC), and starts from essential properties of phenomenal ex-
perience, and derives the requirements for the physical substrate of conscious-
ness.” [7]

A first formulation consisted in 5 axioms, which are held to be self-evident
within IIT:

1. Existence. It is not possible to deny the existence of consciousness, and
that consciousness exists is self-evident from within its own perspective.

2. Composition. Each experience has components.

3. Information: An experience is specific to certain things, distinct from
others.

4. Integration. Consciousness is irreducible to separate elements.

5. Exclusion. Because consciousness specifies certain things, it excludes oth-
ers; at the same time, it flows with a specific velocity.

From these axioms IIT formulates five postulates, in essence making causal
claims:

1. The existence of consciousness implies a system of mechanisms with a
particular cause-effect power.

2. The composite nature of consciousness implies that its system’s mecha-
nistic elements must have the capacity to combine, and that those combi-
nations have cause-effect power.
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3. Because consciousness is informative, it must specify, or distinguish one
experience from another.

4. Because consciousness is integrated, every one of its element must have the
capacity to act as a cause on the rest of the system and to be affected by
the rest of the system. If a system can be divided into two parts without
affecting its cause-effect structure, it fails to satisfy the requirement of this
postulate.

5. Because of its exclusivity, the various simultaneous subsets of mechanisms
in a system have varying cause-effect structures.

Since the postulates make causal claims, it is paramount to establish a quantita-
tive procedure to assess whether or not such a cause-effect structure is present.
Thus, is the system integrated with respect to its internal cause-effect organiza-
tion? To this end, IIT introduces the parameter φ as a measure of the amount of
integrated information and hence the level of consciousness of the system. The
measure φ is calculated by dividing the set of elements of a model of the system
progressively into subsets in order to identify elements whose (de)activation has
few causal consequences upon the (de)activation of other elements. Then, if
no logically possible partition of the system results in a loss of connection, the
conclusion is that the system has no positive φ value. In other words, changes
in subparts of a system that do not affect the rest of the system identify a
non-integrated system.

A φ estimation calculus

The integrated information theory defines integrated information (φ) as the
effective information of the minimum information partition (MIP) in a system
(Tononi, 2004, 2012; Oizumi et al., 2014, 2016a; Tononi et al., 2016). The MIP
is also defined as the partition having minimum effective information among all
possible partitions.

φ[X;x] =: ϕ[X;x,MIP (x)]

MIP (x) =: argminϕ(X;x, P )

Where X is the system, x is a state, and P is a partition P =M1, . . . ,Mr.
Importantly, identifying the MIP requires searching all possible partitions

and comparing their effective information φ. This effective information is speci-
fied in terms of effect and causal information, that is, the distance between two
probability distributions: one for the unpartitioned (unconstrained) partition
(this can be the full set of nodes of the whole system or one of its possible par-
titions) and a partition of this latter. Such probability distributions determine
probabilities of all possible future (effect) or past (causal) states of an arbitrary
partition being in a current state. This means that comparing one set of nodes
that can be the full set of nodes of the system or a subset (partition) of itself
with all possible partitions of this set of nodes, MIP represents the partitions
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with the minimal value of the distance between probability distributions of the
set of nodes and one of all its possible partitions.

When a set of nodes is chosen to compute effective information, this is re-
ferred to as a ‘mechanism’, and the partition to which it is compared is referred
to as the ‘purview’. The distance between probability distributions is computed
by means of an adaptation of the Earth Mover’s Distance (EMD) algorithm,
which is a method to evaluate dissimilarity between two multi-dimensional dis-
tributions in a given feature space where a distance measure between single
features, which we call the ground distance, is given. The EMD “lifts” this dis-
tance from individual features to full distributions. Note that EMD is referred
to as a Wasserstein metric in mathematics, and is commonly used in machine
learning as a natural metric between two distributions [8].

Intuitively, given two distributions, one can be seen as a mass of earth prop-
erly spread in space, the other as a collection of holes in that same space.
Then, the EMD measures the least amount of work needed to fill the holes
with earth. Here, a unit of work corresponds to transporting (by an optimal
transport method) a unit of earth a unit of ground distance.

3 Methods
In this section we introduction of the meta-perturbation analysis, additional
technical details of which are presented in the Appendix. Next, we recap the
causal perturbation and causal analysis leading up to the notion of program-size
divergence, which is our core metric for how different programs, i.e. systems–
more or less integrated–respond to perturbations

3.1 Programmability test and meta-test
In [35]a programmability test is introduced which was inspired by the Turing
test, while being based on the view that the universe and all physical systems liv-
ing in it and able to process information can be considered (natural) computers
[35] equipped with particular computational capabilities [34].

The programmability test is explained as: “...replacing the question of whether
a system is capable of digital computation with the question of whether a system
can behave like a digital computer and whether a digital computer can exhibit
the behaviour of a natural system.”

Then, in the same way that the Turing test proceeds to ask questions of a
computer in order to determine whether it is capable of computing an intelligent
behaviour, the programmability test aims to know what a specific system is
capable of computing by means of algorithmic querying [45].

In practice, the programmability test is a system perturbation test [35, 36]
that "asks" questions of a computational system in the form: what is your output
(answer) given this question (input)? . This idea is applied to φK ’s implemen-
tation so that once the set of all possible answers of a system is obtained, this
set is analyzed and generalized to deduce the rules that should not just offer a
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picture of its computability capabilities, but also simulate and give an account
of the behaviour of the system itself.

A second step after this perturbation test is to analyze its results in or-
der to construct a computer program–as simple as possible–capable not only
of reproducing the output repertoire but also of giving an account of the pro-
grammability capabilities of the system itself, that is, rules capable of producing
a certain output given an input, and at the same time explaining where, in or-
dinal terms, such an output could be placed relative to the order of the full
output repertoire. This latter aspect we refer to as the meta-perturbation test.

Then, φK not only applies a perturbation test over a system, but also a meta-
perturbation test over results obtained on the first test. The rules found in this
meta-test are used not only as compressed specifications or representations of
the behaviour itself, but also as rules that give a sort of account of the behaviour
of the system.

This can be done because the systems analyzed in IIT are well known, or
in other words, since all node-by-node operations are well defined, it is easy
to compute all possible outputs (answers) for all possible inputs (questions or
queries), corresponding to what in IIT are referred to as repertoires. In the
context of φK , a meta-test is applied in order to find the rules that describe the
behaviour embedded in repertoires of a system, instead of trying to ascertain
the rules that define how the system works.

A system specified in this manner turns on a “computer", recording it’s own
behaviour (e.g the repertoires) as well as probing itself, e.g. the action of φK ,
in such a manner as to potentially give an account of its own behaviour. To
make this possible a system specification must be enabled with an explanatory
interface based on these simple embedding behaviour rules. φK goes beyond
the original φ in that the programmability test searches for the rules underlying
the behaviour of a system rather than generating a description of its possible
causal connections. While in IIT these rules are defined a priori and induced
by perturbation, φK ’s objective is not only to find rules that simulate, but also
describe such behaviour in a brief manner (thus simple rules) and make predic-
tions about the behaviour of the system. The field of Algorithmic Information
Dynamics [18, 44] implements this approach by asking what changes to hypoth-
esized outputs mean for the hypothesized underlying program generating an
observation, after an induced or natural perturbation.

The simple rules discovered and used for the calculation of φK are used here
exclusively to compose constrained/unconstrained distributions used in IIT for
obtaining cause-and-effect information, a key concept from which the integra-
tion of information derives. The rest of the calculus–earth mover’s distance
measurements, the calculus of conceptual spaces, major complex and finding
the MIP– remains as specified in IIT 3.0.

3.2 Causal perturbation analysis
From a statistical standpoint, it would be typical to suggest that the behaviour
of two time series, let’s call them X and Z, would potentially be causally con-
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nected if they were statistically correlated. Yet, there are several other cases
that would not be distinguishable after a correlation test. A first possibility
is that the time series simply shows similar behaviour without being causally
connected, i.e. there is a shared upstream causal driver Y , concealed from
the observer. Another possibility is that they are causally connected, but that
correlation does not tell us whether it is a case of X affecting Z, or vice versa.

Perturbation analysis allows some disambiguation. The idea is to apply a
perturbation on one time series and see how the perturbation spreads to the
other time series. Perturbing the data-point in position 5 the time series Z as
shown in Figure 1 multiplying it by -2, X does not respond to the perturbation.
This means that for this data point, X remains the same. This suggests that
there is no causal influence of Z on X.

Figure 1: Causal intervention analysis on time series X and Z before and after
perturbation in Z (top) and X (bottom). The values of Z come from the moving
average of X, so there is a one-way causal relationship: perturbing X has an
effect on Z but perturbing Z has no effect on X thereby suggesting the causal
relationship.

In contrast, if the perturbation is applied to a value of X, Z changes and
follows the direction of the new value, suggesting that the perturbation of X
has a causal influence on Z. From behind the scenes, we can reveal that Z is
the moving average of X, which means that each value of Z takes two values
of X to calculate, and so is a function of X. The results of these perturbations
produce evidence in favour of a causal relationship between these processes, if
we did not know that they were related by the function we just described.
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This suggests that it is X which causally precedes Z. So we can say that
this single perturbation suggests a causal relationship illustrated in Figure 2.

Figure 2: Possible self-loopless causal relationship between two unlabelled vari-
ables X and Z.

Figure 3: Acyclic path graphs representing all possible self-loopless connected
causal relationships among 3 unlabelled variables.

There are a number of possible types of causal relationship between three
events (see Figure 3) that can be represented in what is known as a directed
acyclic graph (DAG), that is, a graph that has arrows implying a cause and
effect relationship but has no loops, because a loop would make a cause into the
cause of itself, or an effect that is also its own cause, something that would be
incommensurate with causality. In these graphs, nodes are events and events are
linked to each other if there is a direct cause-and-effect relation. In the first case,
labelled A in orange, the event X is the cause of event Y , and Y is the cause of
event Z, but X is said to be an indirect cause of Z. In general, we are, of course,
always more interested in direct causes, because almost anything can be an
indirect cause of anything else. In the second case B, an event Y is a direct cause
of both Z and X. Finally, in case C, the event Y has 2 causes, X and Z. With
an interventionist calculus such as the one performed on the time series above,
one may rule out some but not all cases, but more importantly, the perturbation
analysis offers the means to start constructing a model explaining the system
and data rather than merely describing it in terms of simpler correlations. In
our approach to integrated information, the idea is to identify the set of most
likely generating candidates able to produce certain observed behaviour even
if such behaviour may not carry any statistical regularity and for all purposes
appear statistically random [9]. Strictly speaking, computational mechanics [4,
3], is a framework that bridges statistical inference and stochastic modelling
that suggests a model based on an automaton called an ε-machine. However,
such machines are stochastic in nature and, if the methods used to reconstruct
such machines rely on statistical methods, the result is only an apparent causal
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representation with no correspondence between internal states and alleged states
of the phenomenon observed. In contrast, approaches based on algorithmic
probability as approached by algorithmic information dynamics can complement
computational mechanics as they provide means to construct non-stochastic
automata models that are independent of probability distributions and are in a
strict sense optimal and universal [6].

In the case of our two time series experiments, the time series X is produced
by the mathematical function f(x) = Sin(x), and thus Sin(x) is the generating
mechanism of time series X. On the other hand, the generating mechanism of Z
isMovAvg(f(x)), and clearlyMovAvg(f(x)) depends on f(x), which is Sin(x),
but Sin(X) does not depend onMovAvg(f(x)). In the context of networks, the
algorithmic-information dynamics of a network is the trajectory of a network
moving in algorithmic-information space together with the identification of those
elements that shoot the network towards or away from randomness.

3.3 Causal influence and sublog program-size divergence
According to Algorithmic Information Dynamics [18, 44] there is an algorithmic
causal relationship between two states st and st′ of a system M and M ′ if

|K(Mst)−K(M ′st′ )| ≤ log2(t) + c

That is, if the descriptions of such systems can be bounded by log2 and a
small constant c, then M is most likely equal to M ′ but in some other time
state.

In other words, if there is a causal influence of st on st+1 or st+1 on st as
a system in isolation, their M and M ′ short descriptions should not differ by
more than the description of the difference.

However, if the descriptions of the states of a system (which may be two sys-
tems) in different alleged state times are not causally connected, their difference
will diverge beyond above bound. In integrated information, causal influence
among its parts is what is claimed to be measured and how different elements
of a system can be explained by a single model or the other parts of the sys-
tem informs us as to how integrated a system may be. A system characterized
by large divergence is less integrated compared to a system which evolves with
small differences in its respective subpart descriptions.

We will suggest that perturbations have to be algorithmic in nature because
they need to be made or quantified at the level of the generating mechanisms
from the whole or different parts of the integrated system and not at the level
of the observations. For example, some n−ary expansions of the mathematical
constant π according to BPP (named after Bailey-Borwein-Plouffe) formulas [1]
allow perturbations to the digits that do not have any further effect because no
previous digits are needed to calculate any other segment of π in the same base.
The constant π then can be said to be information disintegrated to the extent
of the BPP representations. Algorithmically low complexity objects have low
integrated information. Similarly, highly random systems have low integrated
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information, because perturbations have little to no impact. Integrated infor-
mation is, therefore, a measure of sophistication that separates high integration
from both random and trivially non-random states.

3.4 A simplicity versus complexity test
With the previous section in mind we can proceed to introduce the idea of
φK , where K stands for the letter often used for algorithmic (from Kolmogorov
or Kolmogorov-Chaitin) complexity, and φ for the traditional of integrated in-
formation theory [26]. The measure φK mostly follows methods that Oizumi
and Tononi set forth in [26], where integrated information is measured, roughly
speaking, as distances between probability distributions that characterize a MIP
(Minimum Information Partition), that is, “the partition of [a system] that
makes the least difference”[26].

However, the difference between IIT’s φ and φK lies in how φK circumvents
what is called the “intrinsic information bottleneck principle” [27] that tradi-
tionally requires an exhaustive search for the MIP among all possible partitions
of a system, a procedure responsible for the fact that integrated information
computation requires super-exponential computational resources. In contrast
to φ, which follows a statistical approach to estimating and exhaustively re-
viewing repertoires, the approach to φK is based on principles of algorithmic
information.

Discovering the simple rules that govern a “discrete dynamical system” [25]
like those studied in IIT presupposes the analysis of its general behaviour in
pursuit of a dual agenda: first, to determine its computational capabilities, and
secondly to obtain explanations and descriptions of the behaviour of the system.

As a consequence, one of the major adaptations of IIT is that φK uses the
concept of Unconstrained Bit Probability Distribution (UBPD), that is, the
individual probabilities associated with a node of a system taking values of
1 (ON) or 0 (OFF) after it has been “fed” all its possible inputs or after a
perturbation.

In the context of φK , UBDP is computed using simulation and definition
systems governed by simple rules, unlike φ, which uses the TPM (Transition
Probability Matrix) to compute IIT’s unconstrained/constrained probability
distributions.

In Figure 4 and Table 1 the concept UBPD and its calculus is explained,
using the example used by Oizumi et. al. in [26].

In order to explain the notion of UBPD, in Figure 4 we use Oizumi’s example
used in [26] to calculate information integration. Figure 4-A shows the network
representation: three nodes fully connected with different types of operation
executed on its inputs, that is, for example, inputs to node A (coming from
B and C nodes) will be processed in a logical OR operation. In Figure 4-
B the adjacency matrix that represents the same same network is shown. This
adjacency matrix uses the number 1 to indicate if a node receives signals (inputs)
for another node. For example, the first row in the adjacency matrix indicates
that node 1 or A receives inputs from nodes B and C, denoted as nodes 2 and
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1 am = {{0 , 1 , 1} , {1 , 0 , 1} , {1 , 1 , 0}} ;
2 dyn = {"OR" , "AND" , "XOR" } ;
3 calcUBPOutputs [ 1 ,am, dyn ]//AbsoluteTiming
4 calcUBPOutputs [ 2 ,am, dyn ]//AbsoluteTiming
5 calcUBPOutputs [ 3 ,am, dyn ]//AbsoluteTiming

1 {0.000575 , <| "ZeroProb"−>0.25,"OneProb"−>0.75|>}
2 {0.000287 , <| "ZeroProb"−>0.75,"OneProb"−>0.25|>}
3 {0.000341 , <| "ZeroProb"−>0.5,"OneProb"−>0.5|>}

Table 1: Computing UBPD for system shown in Figure 1. Lines 1, 2: Definition
of the system in Figure 1 by adjacency matrix (line 1) and dynamics (line 2).
Line 3-5: Calculation of individual probabilities that each node of the system
will take values 0/1 across the whole output repertoire. Results square: time of
computation in seconds and UBPD distribution.

3. Finally, Figure 4-C shows the full input and output repertoires, that is, for
the full set of all possible inputs to this system, all corresponding outputs are
calculated according to the logical operations defined.

Table 1 shows code for computing UBPD for the system in Figure 4. This
computation starts with the specification of the adjacency matrix (line 1) and
internal dynamic (line 2) of the target system. Then, lines 1 and 2 in Table 1
represent code to network specified in Figures 4-A and 4-B.

In the IIT approach, the system is perturbed with all possible inputs to
obtain the full output repertoire (Figure 4-C). Then, in the context of φK ,
UBPD corresponds to the distribution of probabilities that each node will take
values 0/1 in the output/input repertoires after the perturbation. For instance,
in Figure 5-A, full input and output repertoires are shown for network in Figure
4-A. Now, let’s say we want to compute the future probability distribution,
that is, the probability necessary to compute effect information according to
[26]. In this case we take output repertoire as a reference and we compute the
probability of nodes in the future (outputs) taking the values 0 or 1. For node
A, for example, the probability that node A takes the value of 1 is 0.25, that is
2/8, and that it takes the value of 0 is 0.75 or 6/8. These values are called the
UBPD for node A. A resume of UBPD for all nodes is given in Figure 5-B.

Once UBPD is computed for a subject partition, in this case the full system’s
probability distribution is computed by multiplying UBDPs. Let’s take as an
example the future probability of input {0, 0, 0}, computed as P (A) = 0 *
P (B) = 0 * P (C) = 0, that is, 0.25 * 0.75 * 0.5 (see first row in Figure 5-C).
When all future probabilities are computed in this manner, the result is the
distribution shown in Figure 5-D, which is exactly the same one computed in
[26], as shown in Figure 5-E.

In general, UBDP is used to compute probability distributions of a system
in the context of φK , which mirrors the “constrained/unconstrained probability
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Figure 4: An example of using UBPC to calculate unconstrained output distri-
bution.

distributions” in [26], that is, probability distributions of input/output patterns
for specific configurations (partitions) of the system, in contrast to what IIT
3.0 does. In this last case, Mayner shows how probability distributions are
computed in the context of IIT in his S1 text mentioned in [25], using terms
such as “marginalization” and “virtual elements” that seem to be highly complex
methods.

Then, in the context of φK , UBDP aims to obtain the same results in terms
of probability distributions, in a manner equivalent to IIT but by following a
different conceptual approach. Our measure φK uses adapted methods, having
algorithmic complexity as a background, to compute information integration.

In Table 1, lines 3-5 shows Mathematica code that computes UBDP for the
system specified in lines 1 and 2, that is, by means of an adjacency matrix and
an array of computations that nodes perform, or the system dynamics. Table 1
also shows results of this computation in this order: 1) time needed to compute,
followed by probability that a node take the value zero (zeroProb) or the value
one(oneProb). One can see how the results in Table 1 correspond to UBDP
values shown in Figure 5-B.

We should note that for φK , computation of probability distributions seems
to be a task of counting, which for huge systems would be extremely difficult
or even impossible, if attempted in a classical/brute force way. But, two impor-
tant facts should be pointed out here: 1) In the context of φK , UBPD is not
calculated in this traditional way, but is calculated using the simulation of the
behaviour of a system represented by a set of simple rules. Then for φK , an
exhaustive review of repertoires is not needed to compute the individual proba-
bilities shown in Table 1, and 2) despite strong theoretical and methodological
differences between them, φK and φ lead to the same results.

In the next sections we derive simple rules of a system, using the perturbation
test and its application to implement φK .
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4 Numerical Results

4.1 Compression sensitivity as informative of integration
To understand the relationship between IIT and algorithmic complexity, we
shall briefly move away from the case of networks and focus on binary files and
the binary programs that may generate them, the programs that are natural
computable candidate models explaining the data. To illustrate the connection,
let us take some extreme cases. Let’s say we have a random file:

1

2 In : = randomf i l e=RandomChoice [CharacterRange [ "a" , "z" ] , 1 0 0 ]
3 Out = { l , q , l , d , d , x , f , e , u , l , u , b ,m, y , a , l , b , l , v , a , v , v , t , l , h , o , x , d

, i , a , z , t , z , b , r , y , v , h , c , n , s , u , l , u ,w,w, e , a , i , h , h ,w, f , d , d , k , o
, c , a , k , u , x , v , n , v , e , c , r , t , c , g , s , g , x , y , t , c , h , k ,w, c , t , y , u , e , k
, y , v , a , h , t , k , f , y , c , r , b , y , y , x}

4

5 In : = Compress [ randomf i l e ]
6 Out = 1 :eJx1kEEOgyAQRWnSi/Q+XbUnEAUhtJoKInp6zbB5CenmZTL8mf+
7 Hh55fdlBKxfuFp4/pfbuKj/CHegCL0AqNcIWy1lr4Fe7CDhqNOuM1g0zihDP
8 caxKP2QNTB1wWZMjY1gsnYfxzxQYaeHnscdDY5q8CkvfYEOBSkG1CbTC14L
9 raGZF8xJ69UTo4bugn6Fc4hubHOuxJ0FgomVOjX1lOUdJPvg==

10

11 In : = Length [ Characters@Compress [ randomf i l e ] ]
12 Out = 222

So, using the Compress algorithm, the resulting compressed object is even
longer, this is because the compression algorithms inserts the decompression
instructions together with the checksum which ends up increasing the size of
the resulting object if the object was not long and compressible enough to begin
with.

This is what happens if we perform a couple of random perturbations to the
uncompressed file:

1 In : = muta t ed f i l e=ReplacePart [ randomfi le ,{5−>"k" , 12−>"x" } ]
2 Out = { l , q , l , d , k , x , f , e , u , l , u , x ,m, y , a , l , b , l , v , a , v , v , t , l , h , o , x , d

, i , a , z , t , z , b , r , y , v , h , c , n , s , u , l , u ,w,w, e , a , i , h , h ,w, f , d , d , k , o
, c , a , k , u , x , v , n , v , e , c , r , t , c , g , s , g , x , y , t , c , h , k ,w, c , t , y , u , e , k
, y , v , a , h , t , k , f , y , c , r , b , y , y , x}

The difference between the original and perturbed files is:

1

2 In := SequenceAlignment [ randomfi le , muta t ed f i l e ] //Column
3 Out= { l , q , l , d} {{d} ,{k}} {x , f , e , u , l , u} {{b} ,{x}} {m, y , a , l , b , l ,

v , a , v , v , t , l , h , o , x , d , i , a , z , t , z , b , r , y , v , h , c , n , s , u , l , u ,w,w, e ,
a , i , h , h ,w, f , d , d , k , o , c , a , k , u , x , v , n , v , e , c , r , t , c , g , s , g , x , y , t ,
c , h , k ,w, c , t , y , u , e , k , y , v , a , h , t , k , f , y , c , r , b , y , y , x}

The files only differ by 2 characters, which can be counted using the following
code:
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1 In := Total [Length/@First /@Select [ SequenceAlignment [ randomfi le
, muta t ed f i l e ] ,Head [ \#[ [1 ] ] ]== List \&] ]

That is, 2/100 or 0.02 percent.

On the other hand, let’s take a simple object consisting of the repetition of
a single object, say the letter e:

1 In := s imp l e f i l e=Table [ " e" , 100 ]
2 Out = {e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e

, e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e
, e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e
, e , e , e , e , e , e , e , e , e , e , e , e , e , e}

A shortest program to generate such a file is just:

1 Table [ " e" , 100 ]

In other languages this could be produced by an equivalent ‘For’ or ‘Do-
While’ program. We can now perturb the program again, without loss of gen-
erality. Let’s allow the same 2 perturbations to the data only, and not to the
program instructions (we will cover this case later). The only places that can
be modified are thus ‘e’ or 1 instead of 5, say: Table[“a”,500]

1 In := Length/@First /@Select [ SequenceAlignment [Table [ "a" , 500 ] ,
Table [ " e" , 1 0 0 ] ] ,Head [# [ [ 1 ] ] ]== List&]

2 Out = {500}

Now, the original and decompressed versions differ by 500 elements, and not
just a small fraction (compared to the total program length) as in the random
case. This will happen in the general case with random and simple files; random
perturbations will have a very different effect on each case.

An object that is highly integrated among its parts means that one can ex-
plain or describe part of each part with some other part when the object is
algorithmically simple; then these parts can be compressed by exploiting the
information that the said other parts carry over from yet others, and the re-
sulting program will be highly integrated only if the removal of any of these
parts has a non-linear effect on its generating program. In a random system,
no part contains any information about any other, and the distribution of the
individual algorithmic-content contribution of each element is a normal distri-
bution around the mean of the algorithmic-content contributions, hence poorly
integrated and trivial. So integrated information is a measure of sophistication,
filtering out simple and random systems, and only ascribing high algorithmic
information content to highly integrated information systems.

The algorithmic information calculus thus consists of a 2-step procedure to
determine:

1. The complexity of the object (e.g. string, file, image)
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2. The elements in that object that are less, more, or not sensitive to pertur-
bations that can ‘causally steer the system,’ i.e. causally modify an object
in a surgical algorithmic fashion rather than on the basis of guesswork
based on statistics.

Note that this causal calculus is semi-computable, and one can perform guid-
ing perturbations based upon approximations [18, 44]. Also note that we did
not cover the case in which the actual instructions of the program were per-
turbed. This is actually just a subcase of the previous case, that separates data
from program. For any program and data, however, we conceive an equiva-
lent Turing machine with empty input, thus effectively embedding the data as
part of its instructions. Nevertheless, the chances of modifying the instruction
Print[] in the random file case are constant, and for the specific example are:
7/107 = 0.0654. While for the non-random case, the probability of modifying
any piece of the Table[] function is: 8/12 = 0.666667. Thus, the break-up of
a program of a highly causally generated system is more likely under random
perturbations.

Notice similarities to a checksum for, e.g., file exchange verification (e.g.
from corruption or virus infection for downloading from the Internet), where
the data to be transmitted is a program and the data block to check is the
program’s output file (which acts as a hash function).

Unlike regular checksums, the data block to check is longer than the program,
and the checking is not for cryptographic purposes. Moreover, the dissimilarity
distance between the original block (shared information) and the output of the
actual shared program provides a measure of both how much the program was
perturbed and the random or nonrandom nature of the data compressed by
the program. And just like checksums, one cannot tamper with the program
without perturbing the block to be verified (its output), without significantly
changing the output (block) if what the program has encoded is nonrandom
and therefore causally/recursively/algorithmically generated. Of course all the
theory is defined in terms of binary objects, but for purposes of illustration and
with no loss of generality we have shown actual programs operating on larger
alphabets (ASCII). And we also decided to perform perturbations on what seems
to be the program data and not the program itself (though we have seen that
this distinction is not essential) for illustration purposes, to avoid the worst case
in which the actual computer program becomes non-functional.

Yet, this means that the algorithmic calculus is actually more relevant, be-
cause it can tell us which elements in the program break it completely and which
ones do not. But what happens when changes are made to the program output
and not the program instructions? Say we exchange an arbitrary e for an a in
our simple sequence consisting of a single letter, e.g. the third entry (’a’ for ‘e’):

If we were to look to the generating program of the perturbed sequence, this
would need to account for the a, e.g.

1 In := ReplacePart [Table [ " e" ,100] ,3−>"a" ]
2 Out = {e , e , a , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e

, e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e
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, e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e , e
, e , e , e , e , e , e , e , e , e , e , e , e , e , e}

where the second program is longer than the original one, and has to be, if the
sequence is simple, but the program remains unchanged if the file is random
because the shortest program of a random sequence is the random sequence
itself, and random perturbations keep the sequence random. Furthermore, every
element in the simple example consisting of repetitions of e has exactly the same
algorithmic content contribution when changed or removed, as all programs after
perturbation are of the form:

1 ReplacePart [Table [ " e" , 1 00 ] , n−>x ]

Notice also how this is related to φ and possibly any measure of integrated
information based on the same principles.

We can now apply all these ideas to the language of networks, with respect
to which IIT has, for the most part, been defined. We have shown before that
networks with different topologies have different algorithmic complexity val-
ues [46], in accordance with the theoretical expectation. In this way, random
ER graphs, for example, display the highest values, while highly regular and
recursive graphs display the lowest [42]. Some more probabilistic, but yet re-
cursively generated graphs are located between these 2 extremes [40]. Indeed,
the algorithmic complexity K of a regular graph grows by O(logN), where N is
the number of nodes of the graph, as in a highly compressible complete graph.
Conversely, in a truly random ER graph, however, K will grow by O(logE),
where E is the number of edges, because the information about the location of
every edge has to be specified.

In what follows we will perform some numerical tests strengthening our
analytic derivations.

4.2 Finding simple rules in complex behaviour
A perturbation test is applied to systems which IIT is interested in. The set
of answers is analyzed in order to find the rules that 1) make it possible to
simulate the behaviour of the system, 2) define their computability power, that
is, rules that give an account of what the system can and cannot compute,
and 3) rules able to describe and predict behaviour of the same system. The
following procedure was applied to estimate φK .

1. The perturbation test was applied to systems used in IIT to obtain detailed
behaviour of the systems.

2. Results in step one were analyzed in order to reduce the dynamics of a sys-
tem to a set of simple rules. That is, in keeping with the claims of natural
computation, we found simple rules to describe a system’s behaviour.

3. Rules found in step 2 were used to generate descriptions of what a system is
or is not capable of computing and under what initial conditions, without
having to calculate the whole output repertoire.
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4. A combination of rules found in steps 2 and 3 was used to develop pro-
cedures for predicting the behaviour of a system, that is, whether it is
possible to have reduced forms that express complex behaviour. Know-
ing what conditions are necessary for the system to compute something,
it is possible to pinpoint where in the whole map of all possible inputs
(questions) of a system such conditions may be found.

5. Once rules in steps 2 and 3 are formalized, φK was turned into a kind
of interrogator whose purpose was to ask questions of a system about its
own computational capabilities and behaviour.

This kind of analysis allowed us to find that the information distribution
in the complex behaviour of systems analyzed in IIT followed a distribution
replicated at several scales that is usually and informally identified as ‘nested’
or ‘fractal’, and means that it is susceptible of being summarized in simple
rules by iteration or recursion, just as is the case with fractals proper. These
properties are used to find compressed forms to express answers given by a
system when asked for explanations of its own behaviour.

This means that, as noted before, φK does not compute the whole output
repertoire for a system but uses simple rules to express the whole behaviour of
the system. Interestingly, the way in which we proceed appears to be connected
to whether or not the system itself can explain its behaviour, or rather whether it
can see itself to be capable of producing its behaviour from an internal experience
(configuration) which is then evaluated by an observer. So φK takes the form
of an automatic interrogator that, in imitation of the perturbation test, asks
questions of the form are you capable of this specific configuration? (pattern),
and if so, say where, in the map of the behavioural repertoire, I can find it.

The benefit of representing systems using simple rules is that it allows an
alternative calculation closer to algorithmic complexity and the potential to
reduce the number of calculations to derive an educated estimation as compared
to the original version of IIT 3.0.

At this point, it is not possible to explain how simple rules define a sys-
tem in the context of φK without talking about the pattern of distribution of
information in the behaviour of systems like those studied in IIT.

4.3 Simple rules and the pattern of distribution of infor-
mation

As shown in [45], despite deriving from a very simple program, without knowing
the source code of the program, a partial view and a limited number of observa-
tions can be misleading or uninformative, illustrating how difficult it can be to
reverse-engineer a system from its evolution in order to discover its generating
code [45].

In the context of IIT, when we talk about a complex network we find that
there are different levels of understanding complex phenomena, such as knowing
the rules implemented by each node in a system and finding the rules that
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describe its behaviour over time. To achieve the second, as perhaps could be
done for the “whole [of] scientific practice” [45], we found it useful to perform
perturbation tests in order to deduce the behaviour of the subject systems.
Results were analyzed and a pattern in the distribution of information was
found to characterize the behaviour of these kinds of systems. Then, as was
to be expected, replicating behaviours were amenable to being expressed with
simple formulae.

In order to explain how simple rules were found and implemented in φK ,
consider as an example the 7-node system shown in Figure 6 whose behaviour is
computed by perturbing the system on all possible inputs. The results, or the
whole output repertoire, is shown in Table 6 in Appendix A.

Figure 5: Seven-node system. Adjacency matrix and network representation.

The strategy adopted to find rules that govern a system’s behaviour is the
same used in almost any branch of science, which is to say we separately ob-
serve the behaviour of some of the components of a phenomenon, in this case
nodes, while bearing in mind that this behaviour is not isolated but rather the
by-product of interacting elements, or in other words, we observe individual
behaviours without losing sight of the whole.

When we observe the whole behaviour of the system shown in Figure 6
(see Appendix A, Table 6), we notice mostly chaotic behaviour but with subtle
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1 ana l y s i s 0 7 [ [ All , 4 ] ]

1 {0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 1 ,
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
0 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 1}

1 ana l y s i s 0 7 [ [ All , 5 ] ]

1 {0 , 0 , 0 , 0 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 0 , 0 , 0 , 0 ,
1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ,
1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ,
1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ,
1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ,
1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ,
1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1}

Table 2: Isolated outputs for nodes {4} and {5} in system introduced in Figure
6 after perturbation.

repetitions of certain patterns.
When the behaviour of elements is isolated, the picture appears clearer. For

example, Table 2 shows the isolated behaviour of nodes {4} and {5} of the same
subject system.

In Table 2, the isolated behaviour of two nodes of the system in Figure 6 is
shown, where it is possible to observe that isolated behaviours for {4} and {5}
follow a sort of order. Such patterns are summarized in what we call behaviour
tables, shown in Figure 7.

Lowest rows in behaviour tables shown in Figure 7 (within braces) corre-
spond to a compressed representation of behaviours shown in Table 2.

Compressed expressions of behaviour for node {4}, for instance, means: 85
repetitions of digit 0, followed by a pattern repeated 2 times, this pattern being:
1 once, followed by one 0 (that is {1->1, 1->0}). This last pattern is followed
for four digits 0, and so on. Here notice that the first number 85 is the sum of
the numbers shown in the 3rd column of its behaviour table.

For node 5, a compressed representation of the behaviour means: four times
digit 0, followed by four digits 1. This pattern is followed by eight repetitions
of digit 1. The last pattern is followed for 94 (32 + 64) repetitions of digit 1.

The representation used in this isolation of behaviours is expressed in terms
of the nodes that “feed" into target nodes of this example (Node column), namely
nodes {4, 5} whose inputs, according to Figures 6 and 7 are: for node {4}:
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Figure 6: Behaviour Tables for seven-node system in Figure 6. (A) node 4,
(B) node 5. From left to right, Node column lists input-nodes that feed the
target node. node− 1 = power column computes the power used to transform
a pattern in the world of the 7-node systems from binary to decimal. 2^pow
column is the result of the binary to decimal transformation operation. The
fourth column contains divisions between elements indexed by n+ 1 in column
3 divided by the element indexed as n

{1,3,5,7}, and for node 5: {3,4,6,7}.
This first shallow analysis works to yield the intuition that the behaviour of

an isolated node can be expressed as a series of regularities in terms of its inputs.
In this context, intuition tells us that the greater the number of regularities, the
shorter the description; then if no patterns are detected the chances of a causal
relationship are lower.

Perspective changes when rule/algorithm or compressed expression of be-
haviour is not constructed from regularities identified at first sight, but from
intrinsic algorithmic properties. In this latter case, behaviour of systems can
be expressed as patterns of information with a distribution replicable at dif-
ferent scales, what we here call fractal representation or fractal behaviour. To
explain what we mean by fractal, we introduce characteristics of distribution of
information for the 7-node system shown in Figure 6 analyzed using φK . This
implementation is shown in Table 3.

Table 3 shows how behaviour of the system shown in Figure 6 can be ex-
pressed as simple rules following an analysis based on a querying scheme that
results in a reduced form to express its information distribution as a pattern
replicated at different scales or as a fractal form. Answers given by systems join
facts explored above on regularities and the fractal distribution of information.
It is important to note that the querying scheme has to be computable and algo-
rithmically random in order to avoid introducing an artificially random-looking
behaviour from the observer (experimenter/interrogator) to the observed (the
system in question).

In Table 3, after defining the target system by means of an adjacency matrix
and a dynamics vector (lines 1 to 8), φK can be regarded as testing: how 0 is
distributed in node 4 in the system of seven nodes (line 10).

The target system reacts to the φK ’s query and it “answers” in a compressed
form (Table 3, second part, lines 1 and 2). The result can be represented in
compressed form, expressed as a tiny rule that represents what we have called a
fractal pattern. Such an expression is defined, as can be seen in the second square
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1 cm07 = {{0 , 0 , 1 , 0 , 0 , 0 , 1} ,
2 {0 , 0 , 1 , 0 , 0 , 1 , 0} ,
3 {1 , 0 , 0 , 0 , 1 , 0 , 1} ,
4 {1 , 0 , 1 , 0 , 1 , 0 , 1} ,
5 {0 , 0 , 1 , 1 , 0 , 1 , 1} ,
6 {1 , 1 , 1 , 0 , 0 , 0 , 0} ,
7 {0 , 1 , 0 , 1 , 1 , 1 , 0}} ;
8 dyn07 = {"AND" , "OR" , "OR" , "AND" , "OR" , "OR" , "AND" } ;
9 (∗ computing p l a c e s in output r e p e r t o i r e where node 4 = 0 ∗)

10 re s070=onPoss ib leBehaviour [ {4} , {0} , dyn07 , cm07 ]
11 (∗Summarized r ep r e s en t a t i on o f f r a c t a l behaviour ∗)
12 gp=g iveP la c e s [ r e s070 [ "Dec imalReperto i re " ] , r e s070 [ "Sumandos" ] ] ;

1 <|"Dec imalReperto i re "−> {0 , 1 , 4 , 5 , 16 , 17 , 20 , 21 , 64 , 65 ,
68 , 69 ,80 , 81 , 84} ,

2 "Sumandos"−> {0 , 2 , 8 , 10 , 32 , 34 , 40 , 42}|>

1 {0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 ,
18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 ,

32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 ,
46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 ,
60 , 61 , 62 , 63 , 64 , 65 , 66 , 67 , 68 , 69 , 70 , 71 , 72 , 73 ,
74 , 75 , 76 , 77 , 78 , 79 , 80 , 81 , 82 , 83 , 84 , 86 , 88 , 89 ,
90 , 91 , 92 , 94 , 96 , 97 , 98 , 99 , 100 , 101 , 102 , 103 , 104 ,
105 , 106 , 107 , 108 , 109 , 110 , 111 , 112 , 113 , 114 , 115 ,
116 , 118 , 120 , 121 , 122 , 123 , 124 , 126}

Table 3: φK asking for accounts of information distribution in behaviour of
4th node of the system shown in Figure 6. Lines 1-8: Definition of the 7-node
system by means of adjacency matrix and its internal dynamics. Line 10: φK ’s
code asking for zero digit location in the whole behaviour of node 4. Line 12:
Compressing answer given by the system in line 10. Lines 1 and 2 in results
square: Compressed form of the 0 digit distribution in the behaviour of node
4. The second grey square above shows the unfolded answer of the system.
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in Table 3, by two variables: DecimalRepertoire that holds points distanced in
different proportions where the patterns defined by the Sumandos variable must
be reproduced. This means that in order to unfold the whole distribution (of
digit zero), the pattern of numbers in Sumandos must be added to each value
in DecimalRepertoire.

Once this ‘fractal’ simple rule is unfolded, we obtain the ordinal places where,
in the whole behaviour of node 4, digit 0 can be found (see third square in Table
3). The accuracy of this answer can be verified by counting ordinals where, for
node 4, its output = 0 in Table 6 in Appendix A, taking into account that
counting starts at 0.

In summary, φK is turned into a kind of interrogator that asks a system about
its own behaviour. On the other hand, a system is implemented as a set of rules
that answers in different ways, depending on the information requested. This
is unlikely with traditional approaches to φ, whose representation of the system
consists of the whole output repertoire of the system, which might represent an
important disadvantage when large networks are analyzed. φK ’s answers use
compressed forms taking advantage of the fractal distribution of the information
in the behaviour of the system, for which the answering interface is a function
of its input related to each node in question.

Obviously the whole behaviour of a system is not about isolated elements,
but about elements interacting in a non-linear manner, as IIT 3.0 makes clear.
This last, broader view is also addressed in terms of φK , and explained in
the following sections. In the next one, the advantages of simple rules over
classical/naive approaches based on an exhaustive calculus and review of whole
repertoires held in memory will be established.

4.3.1 Automatic meta-perturbation test

It can be seen that this querying system is similar to the programmability
tests suggested in [35, 36, 18] based on questions designed to ascertain the
programmability of a dynamical system.

The last section shows that systems implemented as simple rules that give
rise to complex behaviour enable the system itself to “respond” to questions
about where, in the chain of digits that conform to its behaviour (of a specific
node), a certain pattern is to be found. And the fractal nature of information
distribution in behaviour allows us to answer complex distribution questions in
short forms.

In this section we show the advantages of using an (automatic) perturbation
test based on simulation of behaviour using simple rules over the original ver-
sion of IIT 3.0 based on the “bottleneck principle” [27] in computing integrated
information.

Taking up the original perturbation test, questions take the form: what is
the output (answer) given this query (input)?. But in φK , since questions look
for explanations of the behaviour of the system itself, they take the form: tell
me if this pattern is reachable, and if so, tell me where, in the behavioural map,
it is possible to find it.
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Figure 7: Network example with 9 nodes

An example of how φK implementations turn into an automatic interrogator
is shown in Table 4, which aims to analyze the system networks shown in Figure
8.

In line 2, in the list code shown in Table 4, it is possible to see how φK asks
questions of a system. This line should be interpreted as, Can you compute the
pattern {8,9} = {1,1} when {8,9}-> {"OR”, "AND”}? If yes, tell me under
what conditions you can do so.

In this example, in the first place φK tries to find conditions needed to com-
pute a specific output. As Table 4 shows, the answer is: Yes! I can. This may
happen when {1,3,5,6,7} = {{1,1,1,0,1},{1,1,1,1,1}}. In this answer {1,3,5,6,7}
is the set of inputs to the subsystem {8,9}.

The reader would note here that the answers offered by the system actually
are conditions or inputs needed by the system to compute specific input in a for-
mat equivalent to Holland’s schemas. The schemas’ equivalent form for this case
would be: {{1,*,1,*,1,0,1,*,*}, {1,*,1,*,1,1,1,*,*}}, where ‘*’ is a wildcard that
means 0/1 (any symbol). Such schemas correspond exactly to the generalized
answer offered by the system, that is: {1,3,5,6,7} = {{1,1,1,0,1},{1,1,1,1,1}}.

This answer, like the Holland’s schema theorem [20], works by imitating
genetics, where a set of genes are responsible for specific features in phenotypes.
What φK retrieves is the general information that yields specific inputs for the
current system.

Probably the greatest advantage of the approach using φK in querying sam-
ples has to do with the computation time needed to retrieve such information,
as compared with a traditional (brute force) approach: 1/10 in this case. (For
results of brute force calculation see Appendix, Table 7).

This last suffices as proof that compression and generalization of systems
in the form of simple rules based on naturally fractal information distribution
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1 mmu=MemoryInUse [ ] ;
2 f indPatternInSharedInputs [ { 1 , 3 , 5 , 6} , "OR" , 1 , {1 , 5 , 7 , 3} ,

"AND" , 1 ]//AbsoluteTiming
3 MemoryInUse[ ]−mmu

1 {{1 , 1 , 1 , 0 , 1} , {1 , 1 , 1 , 1 , 1}}}
2 0.000736
3 2440

Table 4: φK algorithmic querying of the system about its own behaviour as
shown in Figure 8. Line 2: Query: Is it possible for this system to com-
pute {8,9} = {1,1} when {8,9}-> {"OR”, "AND”} and whose input nodes are
{1,3,5,6} and {1,5,7,3} respectively?. The results show that the system does
compute it when {1,3,5,6,7} = {{1,1,1,0,1},{1,1,1,1,1}}

has advantages over common sense or classical approaches to the analysis of
complex systems, particularly in terms of the computational resources needed
to compute integrated information.

All the above were applied to analyzing isolated or very simple cases. In the
next section the generalization of n nodes of the system is addressed, and how
this works to compute integrated information according to IIT.

4.3.2 Shrinking after dividing to rule

In previous sections it was shown how φK , applying a perturbation test, can
deduce, firstly, what a system is capable of computing and the conditions under
which a computation could be performed, and secondly, that by means of simple
rules specifying a system it is possible to obtain descriptions of its behaviour
in the form of rules that say how information is distributed, or in other words,
where, in ordinal terms, such conditions can be found.

The ultimate objective of obtaining this kind of description of the behaviour
of a system is to know how many times specific patterns appear in whole reper-
toires, and thus to construct probability distributions without need of exorbitant
computational resources, since these probability distributions are a key piece
used by IIT to compute integrated information.

φK addressed such challenges using a two-pronged strategy consisting firstly
of parallelizing the analytical process– which is no more than a technical strat-
egy available to be implemented in almost any computer language and that
falls beyond the scope of this paper–and secondly of the partition of the target
sets. This latter part of φK ’s strategy consists of two parts: 1) given a target
set to be analyzed, to divide this into parts to be interrogated by φK via the
implementation of an automatic test, and 2) to find the MIP or the Maximal
Information Partition using the algorithm proposed and proved by Oizumi in
[23].

In the context of φK , when a partition of a subject system is being analyzed,
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the search space for the remaining parts is significantly reduced, facilitating and
accelerating the analysis of the remaining parts.

In order to illustrate this idea, take for example Table 5.
Table 5 shows the definition of a system of 7 nodes (lines 1-9), where a set

of a progressively growing length is searched (lines 10-14). In this example φK
repeatedly asks the system if it is capable of finding a growing pattern of zeros.
If it is, the system is requested to show where it is possible to find the desired
pattern. Obviously, larger patterns need more computations, but as can be seen
in Table 5, in the results square, the time used by φK increases as the pattern’s
length increases (Table 5, results square, lines 1-5), but it grows linearly in
contrast to IIT 3.0, where it grows exponentially.

4.4 Limitations
When we visualize the behaviour of a system (or subsystem like an isolated
node), and take into account its implementation, from the point of view of opti-
mization of computational resources, running rules to generate the behaviour of
the whole is still a challenge because it is an expensive process in terms of time
and memory. Hence for large systems, analysis based on exhaustive reviews of
such behaviour could eventually become intractable.

In order to overcome this limitation, φK attempted to find rules that not only
give an account of the computability capabilities of a system, but also describe
its own behaviour. In other words, we wanted to know about possibilities for
finding "shortcuts to express the behaviour” of a whole system.

One other obvious limitation inherited from computability and algorithmic
complexity is that of the semi-computability of the process of trying to find
simple representations of behaviour. However, we are not required to find the
shortest (simplest) one but simply a set of possible short (simple) ones, which
would be an indication of the kind of system we are dealing with. While one
can find shorter descriptions using popular lossless compression algorithms, the
more powerful the algorithms to find shortcuts and fractal descriptions, the
faster the computation and the more telling the results, something that is to be
expected for a relationship between the way in which integrated information is
estimated, on the one hand, and algorithmic complexity.
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1 cm07 = {
2 {0 , 0 , 1 , 0 , 0 , 0 , 1} ,
3 {0 , 0 , 1 , 0 , 0 , 1 , 0} ,
4 {1 , 0 , 0 , 0 , 1 , 0 , 1} ,
5 {1 , 0 , 1 , 0 , 1 , 0 , 1} ,
6 {0 , 0 , 1 , 1 , 0 , 1 , 1} ,
7 {1 , 1 , 1 , 0 , 0 , 0 , 0} ,
8 {0 , 1 , 0 , 1 , 1 , 1 , 0}} ;
9 dyn07 = {"AND" , "OR" , "OR" , "AND" , "OR" , "OR" , "AND" } ;

10 onPoss ib leBehaviour [ {1 , 2 , 3} , {0 , 0 , 0} , dyn07 , cm07 ]//
AbsoluteTiming

11 onPoss ib leBehaviour [ {2 , 3 , 4} , {0 , 0 , 0} , dyn07 , cm07 ]//
AbsoluteTiming

12 onPoss ib leBehaviour [ {1 , 2 , 3 , 4} , {0 , 0 , 0 , 0} , dyn07 , cm07 ]//
AbsoluteTiming

13 onPoss ib leBehaviour [ {5 , 6 , 7} , {0 , 0 , 0} , dyn07 , cm07 ]//
AbsoluteTiming

14 onPoss ib leBehaviour [ {1 , 2 , 3 , 4 , 5 , 6 , 7} , {0 , 0 , 0 , 0 , 0 , 0 , 0} , dyn07 , cm07
]//AbsoluteTiming

1 {0.00076 , <| "Dec imalReperto i re "−>{0},"Sumandos"−>{0 ,2 ,8 ,10}|>}
2 {0.000647 , <| "Dec imalReperto i re "−>{0},"Sumandos"−>{0 ,2 ,8 ,10}|>}
3 {0.0009 , <| "Dec imalReperto i re "−>{0},"Sumandos"−>{0 ,2 ,8 ,10}|>}
4 {0.000656 , <| "Dec imalReperto i re "−>{0,16},"Sumandos"−>{0}|>}
5 {0.001248 , <| "Dec imalReperto i re "−>{0},"Sumandos"−>{0}|>}

Table 5: Comparing processing time when a system is divided to compute out-
puts. Line 10-14: φK asking the system defined in lines 1-9 for patterns filled
with zeros with different lengths (3, 4 and 7) and combinations. Lines 1-5 in
results square shown, time in seconds taken for computations and answers in
terms of indexes using compressed notation. In first data of results square it can
be observed that the larger the node wanted, the greater the amount of time
required to perform the computation, while the time ratio decreases.
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5 Conclusions and future directions
Here we have established connections and developed a technique to estimate
integrated information using estimations of algorithmic information, which in
turn has a solid mathematical foundation. Our computational procedure has
targeted what is referred to as the IIT 3.0 version, defined as a calculus of prob-
ability distributions. Instead of considering distances between statistical distri-
butions, we formulate the problem as a distance in an algorithmic complexity
space, properly approximated, in response to perturbations of the system.

Interestingly, such a perturbation programmability test–initially inspired by
the Turing test (establishing another interesting connection between these new
theories of consciousness and old ones)– as applied to physical systems, is a
working strategy to find explanations for the behaviour of systems. It remains
for future work to make conceptual and computational connections to what
Oizumi and Tononi et al. called the MIP (Minimum Information Partition) [27]
of a system. Having this first version of φK , we conjecture that MIP definitions
also obey and are connected to algorithmic complexity in about the same way,
as they should remain based on rules of an algorithmic nature. Thus, the next
step is to go further in the application of the test introduced in this paper
to discover simple rules that would help to find MIP in a more natural and
a faster way. Another possible direction is to systematize the finding of these
simple rules and apply more powerful methods to enable computation of larger
systems. However, here we have merely established the first principles and the
directions that can be explored following these ideas.

Finally, we think that these ideas about self-explanatory systems capable of
providing answers to questions about their own behaviour can help in devising
techniques to make other methods, in areas such as machine and deep learning,
explain their own, often obscure, behaviour.
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A Appendix

How the Meta-perturbation test works
In order to explain the advantages of the generalization of information in the
form of schemas computed by simple rules, Table 7 is introduced. In this Table
are shown all possible cases where the pattern {8,9}={1,1} can be found in the
whole output repertoire of the system introduced in Figure 8 in the main text.

On the right side of the set contained in Table 7, outputs where {8,9}={1,1}
are highlighted in red. On the left side the 9-length are inputs that yield to
outputs containing the desired pattern. On this left side, in bold, are the corre-
sponding inputs that are particularly responsible for causing the desired pattern,
that is, all possible patterns for the inputs {1,3,5,6,7}

In order to obtain the results in Table 8 using a naive (brute force) approach,
it was necessary to define the whole set of all 29 possible inputs and compute
the whole set of outputs; then an exhaustive search for {8,9}={1,1} was carried
out. Notice that time and memory used are at least 10 times greater than those
used in the φK approach. These results are shown in the last two rows in Table
8 and the results square in Table 4.
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1 cm07 = {{0 , 0 , 1 , 0 , 0 , 0 , 1} ,
2 {0 , 0 , 1 , 0 , 0 , 1 , 0} ,
3 {1 , 0 , 0 , 0 , 1 , 0 , 1} ,
4 {1 , 0 , 1 , 0 , 1 , 0 , 1} ,
5 {0 , 0 , 1 , 1 , 0 , 1 , 1} ,
6 {1 , 1 , 1 , 0 , 0 , 0 , 0} ,
7 {0 , 1 , 0 , 1 , 1 , 1 , 0}} ;
8 dyn07 = {"AND" , "OR" , "OR" , "AND" , "OR" , "OR" , "AND" } ;
9 ana l y s i s 0 7=runDynamic [ cm07 , dyn07 ] [ "Reperto ireOutputs " ]

Table 6: Seven-node system and output repertoires. (A) Network definition by
adjacency matrix (lines 1-7) and dynamics (line 8). (B) Output repertoire.
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1 {0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 1 ,
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
0 , 0 , 1 , 0 , 1 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 1}

1 {0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 ,
18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 ,

32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 ,
46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 ,
60 , 61 , 62 , 63 , 64 , 65 , 66 , 67 , 68 , 69 , 70 , 71 , 72 , 73 ,
74 , 75 , 76 , 77 , 78 , 79 , 80 , 81 , 82 , 83 , 84 , 86 , 88 , 89 ,
90 , 91 , 92 , 94 , 96 , 97 , 98 , 99 , 100 , 101 , 102 , 103 , 104 ,
105 , 106 , 107 , 108 , 109 , 110 , 111 , 112 , 113 , 114 , 115 ,
116 , 118 , 120 , 121 , 122 , 123 , 124 , 126}

Table 7: Comparison between real behaviour and unfolded nested rule of be-
haviour of node 4 of the system defined in Figure 6 of the main text. The answer
offered by the system (second results square) shows the places where digit 0 is
found in the behaviour of node 4 (first results square)
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{1,0,1,0,1,0,1,0,0}->{1,1,0,1,0,0,1,1,1},
{1,1,1,0,1,0,1,0,0}->{1,1,0,1,0,0,1,1,1},
{1,0,1,1,1,0,1,0,0}->{1,1,0,1,0,0,1,1,1},
{1,1,1,1,1,0,1,0,0}->{1,1,0,1,0,0,1,1,1},
{1,0,1,0,1,1,1,0,0}->{1,1,0,1,0,0,1,1,1},
{1,1,1,0,1,1,1,0,0}->{1,1,0,1,0,0,1,1,1},
{1,0,1,1,1,1,1,0,0}->{1,1,0,1,0,0,1,1,1},
{1,1,1,1,1,1,1,0,0}->{1,1,0,1,0,0,1,1,1},
{1,0,1,0,1,0,1,1,0}->{1,1,0,1,0,0,1,1,1},
{1,1,1,0,1,0,1,1,0}->{1,1,0,1,0,0,1,1,1},
{1,0,1,1,1,0,1,1,0}->{1,1,0,1,0,0,1,1,1},
{1,1,1,1,1,0,1,1,0}->{1,1,0,1,0,0,1,1,1},
{1,0,1,0,1,1,1,1,0}->{1,1,0,1,0,0,1,1,1},
{1,1,1,0,1,1,1,1,0}->{1,1,0,1,0,0,1,1,1},
{1,0,1,1,1,1,1,1,0}->{1,1,0,1,0,0,1,1,1},
{1,1,1,1,1,1,1,1,0}->{1,1,0,1,0,0,1,1,1},
{1,0,1,0,1,0,1,0,1}->{1,1,0,1,0,0,1,1,1},
{1,1,1,0,1,0,1,0,1}->{1,1,0,1,0,0,1,1,1},
{1,0,1,1,1,0,1,0,1}->{1,1,0,1,0,0,1,1,1},
{1,1,1,1,1,0,1,0,1}->{1,1,0,1,0,0,1,1,1},
{1,0,1,0,1,1,1,0,1}->{1,1,0,1,0,0,1,1,1},
{1,1,1,0,1,1,1,0,1}->{1,1,0,1,0,0,1,1,1},
{1,0,1,1,1,1,1,0,1}->{1,1,0,1,0,0,1,1,1},
{1,1,1,1,1,1,1,0,1}->{1,1,0,1,0,0,1,1,1},
{1,0,1,0,1,0,1,1,1}->{1,1,0,1,0,0,1,1,1},
{1,1,1,0,1,0,1,1,1}->{1,1,0,1,0,0,1,1,1},
{1,0,1,1,1,0,1,1,1}->{1,1,0,1,0,0,1,1,1},
{1,1,1,1,1,0,1,1,1}->{1,1,0,1,0,1,1,1,1},
{1,0,1,0,1,1,1,1,1}->{1,1,0,1,0,0,1,1,1},
{1,1,1,0,1,1,1,1,1}->{1,1,0,0,0,0,1,1,1},
{1,0,1,1,1,1,1,1,1}->{1,0,0,1,0,0,1,1,1},
{1,1,1,1,1,1,1,1,1}->{1,0,1,0,1,1,1,1,1},

0.166334
217920

Table 8: Naive approach to looking for algorithmic patterns based on simplicity
vs complexity in the calculation of integrated information.
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B Appendix

Algorithm 1: computeIntegratedInformation
input : AdjacencyMatrix,Dynamic,CurrentState
output: Information Integration Value

1 nodes ← GetNodes(AdjacencyMatrix);
// UPPD: Unrestricted Past Probability Distribution;
// UFPD: Unrestricted Future Probability Distribution;

2 UPPD ←
ComputesPastProbabilityDistribution(nodes,CurrentState,∅,Dynamic,am);

3 UFPD ←
ComputesFutureProbabilityDistribution(nodes,CurrentState,∅,Dynamic,am);

// am=AdjacencyMatrix; cs=CurrentState;
4 conceptualSpace ←

ComputesConceptualSpace(am,Dynamic,cs,UPPD,UFPD);
5 integratedInformationValue ← 0;
6 bipartitionsSet ← Bipartitions(conceptualSpace);
7 foreach bipartition bi ∈ bipartitionsSet do
8 aux ←EMD(bi, conceptualSpace);
9 if aux > integratedInformationValue then

10 integratedInformationValue ← aux;

Algorithm 2: computeConceptualSpace
input : AdjacencyMatrix,Dynamic,CurrentState,UPPD,UFPD
output: conceptualStructure

// UPPD: Unrestricted Past Probability Distribution;
// UFPD: Unrestricted Future Probability Distribution;

1 nodes ← GetNodes(AdjacencyMatrix);
2 mechaSet ←Subsets(nodes);
3 foreach mechanism mechai ∈ mechaSet do
4 OneConcept

←ComputeConceptOfAMechanism(mechai, nodes, CurrentState, UPPD,UFPD);

5 Append(conceptualSpace,OneConcept)
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Algorithm 3: computeConceptOfAMechanism
input : mecha-

nism,nodesForPurviews,currentState,pastDistro,futDistro,Dynamic,
AdjacencyMatrix

output: concept for current mechanism

// nodes where all purviews will be taken from
1 purviewsSet ←Subsets(nodesForPurviews);

2 for j ← 1 to Length(PurviewsSet) do
3 aPurview ← Part(j, PurviewsSet);
4 connected ← FullyConnectedQ(mechanism,APurview);
5 if connected then

// MIP: Maximal Information Partition
6 smallAlpha ← ComputesMIP(mechanism,APurview) ;

// APurviewMIP: Purview responsable to cause MIP for
current mechanism;

7 aPurviewMIP ← smallAlpha(”PurviewMIP”);
// Following sum is formalized in Figure 4, In Text S2
from Oizumi(2014);
// cs=CurrentState; am = AdjacencyMatrix;

8 pastDistribution ←
ComputesPastProbabilityDistribution(mechanism, cs, aPurviewMIP,
Dynamic, am);

9 futureDistribution ←
ComputesFutureProbabilityDistribution(mechanism, cs, aPurviewMIP,
Dynamic, am);

10 ConceptualInfo ←
EMD(pastDistro, pastDistribution)+EMD(futDistro, futureDistribution);
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Algorithm 4: ComputesMIP
input : mechanism,purview
output: MIP structure

1 mechaChildren ← Subsets(mechanism);
2 PurviewChildren ← Subsets(purview);
3 ci ← 10000;
4 ei ← 10000;
5 foreach mecha mi ∈ mechaChildren do
6 foreach purview pi ∈ PurviewChildren do

// cs=CurrentState, am=AdjacencyMatrix;
7 pastDistribution ←

ComputesPastProbabilityDistribution(mi,cs,pi,Dynamic,am);

8 futureDistribution ←
ComputesFutureProbabilityDistribution(mi,cs,pi,Dynamic,am);

9 cei ←
ComputesCEI(mecha,purview,pastDistribution,futureDistribution);

10 if cei ("ci") < ci then
11 ci ← cei ("ci");
12 pastMIP ← (mecha,purview);

13 if cei ("ei") < ei then
14 ei ← cei ("ei");
15 futMIP ← (mecha,purview);
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Algorithm 5: computesCEI
input : ChildMecha, ChildPurview, ParentMecha, ParentPurview,

ParentPastDistro, ParentFutDistro,
UnconstrainedPastDistro, UnconstrainedFutDistro

output: Causal and Effect information values

1 mechaComplement ← ComplementI(ChildMecha, ParentMecha)
2 purviewComplement ←

ComplementI(ChildPurview, ParentPurview)
3 mechaChildren ← Subsets(mechanism)
4 PurviewChildren ← Subsets(purview)
5 foreach mecha mi ∈ mechaChildren do
6 foreach purview pi ∈ PurviewChildren do
7 ChildMecha ← mi

8 ChildPurview ← pi
9 if ChildMecha=∅ then

10 pastDistribution ← UnconstrainedPastDistro
11 futureDistribution ← UnconstrainedFutDistro
12 else if ChildPurview=∅ then
13 pastDistribution ← 1
14 futureDistribution ← 1
15 else if then
16 pastDistribution ←

ComputesPastProbabilityDistribution(ChildMecha,ChildPurview,cm,am)

17 futureDistribution ←
ComputesFutureProbabilityDistribution(ChildMecha,ChildPurview,cm,am)

18

19 if mechaComplement =∅ then
20 pastDistributionComp ← UnconstrainedPastDistro
21 futureDistributionComp ← UnconstrainedFutDistro
22 else if purviewComplement =∅ then
23 pastDistributionComp ← 1
24 futureDistributionComp ← 1
25 else if then

// CPPD=ComputesPastProbabilityDistribution

// CFPD=ComputesFutureProbabilityDistribution

26 pastDistributionComp ←
CPPD(MechaComplement,PurviewComplement,cm,am)

27 futureDistributionComp ←
CFPD(MechaComplement,PurviewComplement,cm,am)

28 pastDistribution ← Normalize(pastDistribution
*pastDistributionComp)

29 futureDistribution ← Normalize(futureDistribution
* futureDistributionComp)

30 ci ← EMD(ParentPastDistro,pastDistribution)
31 ei ← EMD(ParentFutDistro,futureDistribution)
32 cei ← Min(ci,ei)
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Algorithm 6: computesPositionsOfAPatternInOutputs
input : Mechanism,Purview,AdjacencyMatrix,CurrentState,Dynamic
output: positions (indexes) where current state of mechanism is

found into the output repertoire

// work as nodes that send inputs to the mechanism.
// This remaning nodes are actually powers that define a
pattern
// of distribution of the wanted pattern defined by
mechanism

1 joinedNames ← Join(Inputs(Mechanism))
2 powers ← Complement(Range(Length(AdjacencyMatrix)),

joinedNames)-1
3 foreach node ni ∈ powers do
4 Append(sumandos, 2ni)

5 sumandos ←Subsets(sumandos)
6 foreach sumando si ∈ sumandos do
7 Append(Aux, Sum(si))

8 sumandos ←Aux

9 ins ← Inputs(FirstNode(Mechanism))
// Given a dynamic it computes all possible inputs of
defined size that
// results in a defined output (cs)

10 repertoire ← RepertoireByOutput(Length(ins),Dynamic,cs)
11 foreach node mi ∈ (mechanism− FirstNode(mechanism)) do
12 intersec ← Intersection(ins,Inputs(mi))
13 ins ← ins +(Inputs(mi)-intersec)
14 repertoire

←Combine(repertoire,CreateRepertoire( Inputs(mi)-intersec))
15 repertoire ←FilterRepertoireByOutput(repertoire,cs)

16 foreach sumando si ∈ sumandos do
17 foreach repert ri ∈ repertoire do
18 Append(indexes, Sum(si, ri))
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Algorithm 7: computesPastProbabilityDistribution
input : Mechanism,Purview,AdjacencyMatrix,CurrentState,Dynamic
output: Probability distribution for a mechanism

1 locations
←computesPositionsOfAPattern(Mechanism,CurrentState, Purview,AdjacencyMatrix)

2 allInputs ← Extract(locations,Purview)
3 probability ← 1/(Length(Locations))
4 foreach input ini ∈ allInputs do
5 correctedLocations

←FindPatternInInputs(Purview, ini, Length(AdjacencyMatrix))
6 probabilityDistribution ←

ComputesProbabilityForElements(correctedLocations)

Algorithm 8: computesFutureProbabilityDistribution
input : Mechanism,Purview,AdjacencyMatrix,CurrentState,Dynamic
output: Probability distribution for a mechanism

1 locations
←(FindPatternInInputs(Purview,CurrentState, Length(AdjacencyMatrix)))-
1

2 allOutputs ← ComputesOutputs(locations)
3 allInputs ← Extract(locations,Purview)
4 probabilityDistribution ←

ComputesProbabilityForElements(allInputs)
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Algorithm 9: findPatternInInputs
input : Nodes,WantedPattern,sizeAdjacencyMatrix
output: Finds indexes in input repertoire where nodes fullfill

wantedPattern

1 limit← 2sizeAdjacencyMatrix

2 foreach node ni ∈ Nodes do
3 powers← 2ni−1

4 repetitions← limit/powers
5 longi← limit/repetitions
6 if if expectedPatt = 1 then
7 serie← CreateSerieEvenNumbers(repetitions)
8 else
9 serie← CreateSerieOddNumbers(repetitions)

10 for i = 1; i < Length(serie); i = i+ 1 do
11 Found←

Range((( powers * serie [i])-longi)+1, powers * serie [i])

Algorithm 10: computeInputBitProbabilityDistro
input : Nodes,AdjacencyMatrix,Dynamics
output: Bit probability for given nodes

1 locations←
FindPatternInInputs(Nodes,1,Length(AdjacencyMatrix))

2 oneProbability← Length(locations)/2Length(AdjacencyMatrix)

3 zeroProbability← 1− oneProbability

Algorithm 11: computeOutputBitProbabilityDistro
input : Nodes,AdjacencyMatrix,Dynamics
output: Bit probability for given nodes

1 locations←
ComputesPositionsOfAPatternInOutputs(Nodes,1,Dynamics,AdjacencyMatrix)

2 oneProbability← Length(locations)/2Length(AdjacencyMatrix)

3 zeroProbability← 1− oneProbability
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