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Abstract. We perform a systematic evaluation of feature selection (FS)
methods for support vector machines (SVMs) using simulated high-
dimensional data (up to 5000 dimensions). Several findings previously re-
ported at low dimensions do not apply in high dimensions. For example,
none of the FS methods investigated improved SVM accuracy, indicat-
ing that the SVM built-in regularization is sufficient. These results were
also validated using microarray data. Moreover, all F'S methods tend to
discard many relevant features. This is a problem for applications such
as microarray data analysis, where identifying all biologically important
features is a major objective.

1 Introduction

In pattern recognition, feature selection (FS) is traditionally viewed as a pre-
processing step that simplifies the task of learning classifiers, rather than a learn-
ing objective in itself [I]. On the other hand, there is currently considerable
interest within the bioinformatics community to apply FS methods to discover
biologically important genes (features) that are not captured by traditional sta-
tistical testing [2]. For example, in cancer research, the primary interest is to
identify all cancer-related genes from microarray data [3]. This is a fundamen-
tally different problem, because many of the biologically important features may
not be needed for classification [4], and will therefore be discarded by FS methods
that optimize for classification accuracy.

To assess the applicability of FS methods to microarray data, we performed
a systematic evaluation of a number of FS methods in conjunction with SVMs.
To our knowledge, this study is the first systematic evaluation of feature set
accuracy, and the first to simulate high-dimensional data of the order found in
microarray studies.

2 Methods

Throughout, we assume that examples (m(i)7y(i)) are independent observations
of the random variable pair (X, Y") with distribution f(z,y) on the domain X' x ).
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We will denote components of a vector x by x;, and restrictions to a given feature
set S by xg = {z; : i € S}. A classifier is defined simply as a function g(z) : X —
Y = {-1,+1}, predicting a category y for each observed example x. For a given
sample size [, a classifier is induced from data D' = {(z® 4} _ € (X x Y)!
by an inducer (a learning algorithm), defined as a function I : (X x Y)! ~— G,
where G is some set of possible classifiers. The optimal (Bayes) classifier g* is
defined as the one that minimizes the risk functional

Rig)= 3" p(y) / 1{g(z) # 1)}/ (ly)de | (1)

yey &

In our simulations we use gaussian densities, for which R(g) is easy to calculate
directly from (), and ¢g* is unique and can be derived analytically. For comparing
learning algorithms, are we interested in the overall performance of an inducer I,
rather than the performance of a particular g [5]. We evaluate the performance
of I using the expected risk

p=Ep[R(I(D"))] . (2)

We will also evaluate accuracy with respect to the set of relevant features. This
set is defined as [4]

SrEL = {i: 35 : p(ylwi, vs) # p(ylrs)} , (3)

where p(y|zs) is the conditional density of Y after observing Xg = zg. Infor-
mally, a feature is relevant if it carries ”information” about the target variable
Y. Relevant features are either strongly or weakly relevant; the latter may be
"redundant” in the sense that they are not required for optimal classification
[4]. The optimal feature set with respect to classification accuracy is defined as

Sopr = argmin Ep, [R(Is(D))] , (4)

where Ig is a suitable inducer for the data DY, using the features S. In gen-
eral, Sopt may not be unique, and the minimization may require an exhaustive
search among all subsets of Sggr,, which is an NP-complete problem [6]. How-
ever, in our simulations Sopt was identical to the features used by the Bayes
rule g*. Therefore, we are able to measure feature set precision and recall against
both Sggr, and Sopr. In analogue with the risk measure above, for describing
the performance of a FS algorithm we consider the distribution of these mea-
sures when D! is a random variable, and estimate the expected value of this
distribution.

An overview of our simulation/evaluation procedure is shown in figure[Il For a
given data distribution f(z,y), we first take a sample D! to be used as training
data (step 1). We then perform FS and classifier (SVM) induction. Finally,
we calculate classifier error probabilities (steps 3,4), the feature sets Srgr, and
Sopt(step 5) and the precision and recall (step 6) with respect to these sets.
For each FS algorithm, this process is repeated 100 times and averaged values
are reported.
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Fig. 1. A schematic view of the evaluation process

We chose five well-known FS methods for evaluation: Pearson Correlation
(PC) [1], SVM Naive Weight Rank (WR) [7], Recursive Feature Elimination
(RFE) [7], Linear Programming-SVM (LPSVM) [8] and Approximation of the
zeRO-norm Minimization (AROM) [9]. PC is a filter method, WR and RFE
are wrapper methods, while AROM and LPSVM are embedded methods. We
also refer PC, WR and RFE as ”ranking methods” since they merely output a
ranking of features, while LPSVM and AROM output a set .S, thus determining
|S| automatically. Throughout, we used a linear SVM [I0] as the inducer I(D?).

For more detailed method descriptions, we refer to the extended version of
this paper, available at www.ifm.liu.se/~rolle/ecm12006.pdf.

3 Results

We used a gaussian data distribution for all simulations. This was designed so
that a subset of m features X7, ..., X, were relevant to Y, while X,,,41,..., X,
were irrelevant. Of the m relevant features, m/2 were in the optimal feature
set; further, half these (m/4) were marginally independent of Y and thus un-
detectable by univariate filter methods like PC. We sampled 100 training data
points and normalized data to zero mean and unit variance before applying
each method. The key parameters to the "difficulty” of the learning problems
represented by this data distribution are m and n. We chose a parameter grid
8 < m <500, 20 < n < 5000, with values evenly spaced on a logarithmic scale
(figure[2A).

The expected risk p for the SVM without FS on the (m,n) parameter grid
is shown in figure 2A. We find that p increases slightly with n, but decreases
rapidly with respect to m. Thus, more features is in general better for the SVM:
as long as we can obtain a few more relevant features, we can afford to include
many irrelevant ones. Therefore, improving SVM performance by FS is very
difficult. In particular, an FS method must provide very good recall, or SVM
performance will degrade quickly.

To validate our results, we also tested the FS methods on a large microar-
ray data set consisting of 12,600 features (genes) and 136 samples [11]. For
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Fig.2. A: Plot of expected SVM risk p vs. number of relevant features m and total
number of features n. B: Dotted line, plot of SVM risk vs. n for simulations, corre-
sponding to the dotted diagonal in (A). Solid line, SVM risk vs. n for microarray data.
Here m is unknown but proportional to n.
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Fig. 3. Sensitivity to the SVM C-parameter. A: Sensitivity defined as maxc R—min¢ R
plotted against m and n. B: For simulated data, detailed plot of R against C for the
cases (m,n) marked by arrows in (A), roughly corresponding to the cases in (C).
C: For microarray data, plot of R against C for n = 20 and n = 2000.

comparison with our simulations, we first extracted the 5000 features with largest
variance and then extracted random subsets of sizes 10, ..., 5000 from these. Al-
though m is unknown in this case, in expectation this procedure gives a constant
m/n ratio, since we draw features with equal probability. This roughly corre-
sponds to a diagonal in figure 2IA. We selected random training sets of [ = 100
samples, estimated R(g) on the remaining 36 samples, and repeated this process
300 times for each n. The resulting risk estimate was found to agree qualitatively
with our simulations (figure 2B).

The value of the regularization parameter C' has been found to strongly im-
pact SVM classification accuracy in low dimensions [I2]. In our simulations, we
optimized C over a range 10~%,...,10% for each (m,n). We found that C was no
longer important in higher dimensions (figure BlA), regardless of the value of m.
At lower dimensions, C' = 1 provided good performance (figure[3B), so we fixed
C' =1 for the remainder of this study. We observed the same (and even stronger)
trend for the microarray data (figure BIC). We conclude that the parameter C
has virtually no impact on classification accuracy in high dimensions.

Next, we investigated the accuracy of the feature rankings produced by PC,
WR and RFE. To address this question without involving the problem of choos-
ing | S|, we constructed ROC-curves (figure ). We found that RFE outperforms
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Fig. 4. ROC-curves for the PC, WR and RFE methods. Here we fixed m = 8 relevant
features and varied n = 20,...,5000 as indicated by grey arrows. Dashed diagonals
indicate expected result for randomly selected features.
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Fig.5. A: Number of selected features |S| for each (m,n) for simulated data. All plots
are scaled equally to (0,300). B: Number of selected features |S| vs. n, corresponding
to the dashed diagonal in (A), for simulated and microarray data. Plots are scaled
differently.

WR, which in turn outperforms PC, in agreement with Guyon et al. [7]. This was
expected, since 1/4 of the relevant features are not detectable by PC. However,
these differences diminished with increasing n. At n = 5000, the simpler WR
method was as accurate as RFE.

To use ranking methods in practise, a critical issue is how to determine |S]|
(LPSVM and AROM decide this automatically by heuristics that favor small
feature sets [89]). A common strategy is to minimize some risk estimate R(gs)
for the classifier gg induced using the feature set S, over a number of possi-
ble choices of |S| [I3]. For this purpose, we chose the radius-margin bound [14,
section 10.7]. Overall, we found that the ranking methods tend to select more
features than AROM or LPSVM (figure [HA). We also found that |S| tends to
increase with n. This can be explained by noting that with better rankings we
reach low classifier risk R(gs) for small |S|. Therefore, PC chooses the largest
|S], and RFE the smallest. This was also verified for the microarray data (fig-
ure BB). More surprisingly, there was also a tendency for |S| to decrease with
m (most evident for RFE). This can be understood in the same fashion: the
FS problem becomes harder as m decreases, so rankings become more inaccu-
rate and a larger | S| must be used. We conclude that, by selecting | S| to minimize
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Fig. 6. A: Risk difference p(g) — p(gs), using each respective FS method to obtain S
(negative means worse accuracy with FS), simulated data. B: Estimated risk vs. n,
corresponding to the dashed diagonal in (A), for simulated and microarray data.

risk, we obtain methods that attempt to control recall but sacrifice precision.
LPSVM produced smaller feature sets than RFE, but otherwise exhibited the
same tendencies discussed above. Again, the simulation results were consistent
with microarray data (figure BIB).

In principle, if R(gs) is accurate, then optimizing this estimate over | S| should
at least guarantee that ranking methods do not increase classifier risk. Our sim-
ulations verified this: in figure [BA, the difference p(g) — p(gs) is close to 0.
Thus, the radius-margin bound seems to be accurate, so our results should be
attributed to the rankings themselves. LPSVM and AROM worked best around
n ~ 100 (figure[BA,B), corresponding to the data sets used in the original publi-
cations [89]. In higher dimensions however, these methods tend to increase the
SVM risk. AROM in particular increased p by up to 15%, probably because it
insisted on very small feature sets. Results on microarray data were similar (fig-
ure [BB) except possibly for RFE, which was less accurate on microarray data.
In summary, none of the FS methods improved SVM accuracy.

For the simulated data, we measured the accuracy of selected feature sets by
precision and recall vs. Sopr (figure[@A,B) and Srgy, (figure[dC,D). There are in-
teresting differences between these two feature sets. Concerning recall vs. Spgr,,
we see that PC > WR > RFE > LPSVM > AROM. The filter method PC
presumably performs best here since it does not distinguish between strong and
weak relevance. In fact, we see that PC selects more weakly than strongly rel-
evant features (since it gives lower recall vs. Sopr). In contrast, RFE, LPSVM
and AROM have higher recall vs. Sopt than wvs. Sggr. All of these meth-
ods involve some form of risk optimization, and therefore target Sopt. Con-
sequently, they tend to miss (or, avoid, depending on one’s perspective) many
of the weakly relevant features. All methods have low precision; AROM pro-
vided the best precision, but at the price of lower recall. This is natural since
AROM was biased towards very small |S| (figure[]). The remaining methods were
comparable.
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4 Discussion

A striking trend in our results is that both classification and feature selection
(FS) methods behave very differently in high vs. low dimensions. For example,
while AROM and LPSVM improve classification accuracy for SVMs for lower n
and m < n [8/9], we find no improvement at high n (figure [fl). Also, while the
C-parameter is crucial for low n, it has little or no influence at high n (figure[3).
Thus, we recommend that simulation studies of F'S methods are performed with
dimension comparable to that of real data.

None of the F'S methods tested improved SVM classification accuracy in high
dimensions. To explain this, one may consider F'S as a minimization of the Lg-
norm of a vector of feature weights, while the SVM minimizes the La-norm [I5].
Our results the imply that in high dimensions, the Lo-norm is simply the better
choice. For multi-class problems however, there are indications that FS may
improve SVM performance [16].

In microarray data analysis, it is often desirable to control precision while
maximizing recall [I7]. It is clear from figure [7] that none of the methods tested
provide such control. A feature selection method that solves this problems would
be most useful for microarray data analysis.
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