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Abstract: Recently, important insights into static network topology for biological systems have been obtained, but
still global dynamical network properties determining stability and system responsiveness have not been
accessible for analysis. Herein, we explore a genome-wide gene-to-gene regulatory network based on
expression data from the cell cycle in Saccharomyces cerevisae (budding yeast). We recover static properties
like hubs (genes having several out-going connections), network motifs and modules, which have previously
been derived from multiple data sources such as whole-genome expression measurements, literature mining,
protein—protein and transcription factor binding data. Further, our analysis uncovers some novel dynamical
design principles; hubs are both repressed and repressors, and the intra-modular dynamics are either strongly
activating or repressing whereas inter-modular couplings are weak. Finally, taking advantage of the inferred
strength and direction of all interactions, we perform a global dynamical systems analysis of the network. Our
inferred dynamics of hubs, motifs and modules produce a more stable network than what is expected given
randomised versions. The main contribution of the repressed hubs is to increase system stability, while higher
order dynamic effects (e.g. module dynamics) mainly increase system flexibility. Altogether, the presence of
hubs, motifs and modules induce few flexible modes, to which the network is extra sensitive to an external
signal. We believe that our approach, and the inferred biological mode of strong flexibility and stability, will
also apply to other cellular networks and adaptive systems.

algorithms has revealed aspects of the static wiring of gene
networks [3-11]. A recent study by Luscombe e al. [8]

1 Introduction

Networks have proved to be a unifying language for widely
different biological systems involving, genes, proteins,
metabolites and ecological food webs [1]. Cellular
networks, defined by protein—protein, protein-to-gene and
metabolic interactions, determine cellular responses to input
signals and govern cellular dynamics [1]. Sdll, although,
expression data from microarrays are most common for
probing into the state of cells and much analysis and
network model formation are centered on this data type.
These data are often analysed by clustering over different
experiments of whole-genome expression profiles, and that
technique has provided important insights into gene
function [2]. However, clustering alone cannot resolve gene
interactions, and progress in network identification

provided a first step towards an understanding of network
dynamics by describing when different sub-networks are
active during different cellular conditions in Yeast. A
general review of various methods for uncovering the
structure of gene regulatory networks from experimental
data can be found in [12] and of graph theoretical tools for
the analysis in [13—15]. Here we present an exploration of
a gene-to-gene regulatory network, obtained through a
network identification algorithm using gene expression data
[10]. This network contains direction, strength and sign for
each interaction on a genome-wide scale, which makes it
possible to perform a dynamical systems analysis not only
on the levels of genes, motifs and modules, but also on a
global scale. As far as the present authors know, this is the
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first time such an analysis is possible and also performed for a
genome-wide gene regulatory network derived from real data.

A key issue in all network model formation is the
assessment of the inferred network. Since the true network
seldom is known, more than to some small parts, and also
this knowledge can be uncertain, it is not trivial to say
whether a new edge is a false positive or a novel discovery.
An experimental investigation will settle the issue with
some certainty, at least for individual edges, but reliable
verification on a large scale remains a challenge. (It might
be tempting to directly compare the obtained network with
others in the literature. However, before doing so, one
should notice that this is non-trivial since the number, and
even the interpretation, of nodes and edges often differ.
Nevertheless, we compare our gene-to-gene regulatory
network with some other types of regulatory networks, and
it turns out that the overlaps between our network and the
ones in the literature, as well as the overlaps among the
ones in the literature, are small. Indeed, the overlap
between our network and the one in [14] consists of seven
edges, between our network and the one in [16] is one
edge, and between the ones in [14] and [16] is actually
zero edges.) There is no generally accepted way to measure
the quality of an inferred biological network, but at least
a first step towards a commonly accepted standard was
the Dialogue on Reverse-Engineering Assessment and
Methods competition recently [17]. In the present paper,
we assess our findings on a large scale by using annotations
for the genes we make use of from the Gene Ontology
(GO) database [18]. We also compare various statistical
properties, such as degree distribution and presence of
motifs, with known facts from the literature.

The rest of the paper is constructed as follows. In Section
2, we recapitulate briefly the reverse engineering method and
indicate how the statistical significance is ensured. Section 3
shows how the genes with high out-degrees correspond to
transcription factors (T'Fs) and other biological meaningful
entities. It also contains one of our major results that out
hubs are often strongly repressed, as well as some statistical
observations on the relation between lethality and
activation/repression. In Section 4, we explore the existence
of motifs, a study which is both in line with previous
findings and uncovers some structures not presented in the
literature before, to the best of the present authors’
knowledge. In Section 5, we study a partition of the
network into modules, and find that these correspond to
biological processes and are mainly self-repressing or self-
activating. We also compare with direct hierarchical
clustering of the expression data, and see essentially no
similarity between the two partitionings, thus showing that
the graph-theoretical community concept brings in a
possibility for new understanding. Section 6 provides a
global systems analysis, based on eigenvalues, and by
adapting the definitions of stability and flexibility to the
present context, we can show that the Yeast network we
study is both more stable and more flexible than all

networks with similar statistical properties. Eventually, the
paper is concluded in Section 7 with a discussion on the
relevance of the results and possible extensions of the work.

2 Network inference and
statistical significance

The utilised inference algorithm is described in detail in [10]
and here we only sketch the most important steps in order to
make the paper self-contained. Time-course gene expression
data are fitted by least squares to a set of linear ordinary
differential equations of the form

N
k(8) =) w(e) + &,(0)
j=1

where xj(t) is the gene expression at time # of gene 7, IV is the
number of genes and &,(#) a stochastic variable. The coefficient
w;; is the net effect of gene j on the transcription rate of gene i.
By utilising a Lasso-constraint [19] of the form

N
> lwyl <
Jj=1

we both regularise the problem and obtain a sparse network
structure. In the gene-to-gene interaction matrix w, wy; > 0
means that gene j upregulates gene i with magnitude lwyl,
whereas w;; < 0 means downregulation. This algorithm is
in [10] applied to the so-called extended Spellman data
[20, 21], consisting of 73 samples of Yeast cell-cycle data
from 6178 Yeast genes (or ORFs — open reading frames),
resulting in the network we explore here. In [10] also all
details such as missing values, estimate of time-derivatives,
choice of u;, etc. are carefully described.

All results below are evaluated against (i) shuffling the rows
and columns in the array data then repeating the inference
procedure (referred to as RAND) and (ii) rewiring the
original network, preserving the degree distribution (referred
to as REWIRED) [22]. Also some other statistical

procedures are utilised occasionally, and referred to in due place.

3 Degree distribution and
categorisation of out hubs

The inferred network, from [10], contains 6178 nodes
(genes) and 11 674 directed weighted edges (interactions),
and we analyse the network statistics in detail. Fig. 1a
shows that the gene network has a significant (RAND)
broad out-degree distribution, as previously has been
observed also in protein and metabolic networks [1]. The
distribution does not follow a power law, as many
previously published biological networks do (for example
[23]). However, there is no theoretical justification why all
networks should have this property, and there are also
many examples of when this is not the case (for example
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Figure 1 Static and dynamic network properties of the edge distribution

a Cumulative distribution of out degrees for reshuffled gene expression data (RAND) and the inferred network. GO overrepresentation
analysis for different groups of genes with P-values

b Mean excess of repressed genes as a function of out degree. The bars show the excess number of repressed/activated genes (presented
as fractions) from the hypergeometric distribution and the error bars corresponds to one standard deviation

¢ Table summarising the network dynamics for gene groups divided on the basis of lethality and cell-cycle association (unknown genes are
not shown). The P-values correspond to probabilities to find at least the presented number of genes with the indicated property, that is, for
example we have from the hypergeometric distribution P = 8.3 x 102 for finding at least 1589 activated genes when we pick 3030 genes
out of a set comprising 3143 activated and 3035 repressed genes. From this, one can clearly see which categories are significantly enriched
and which are not

[24]). We also calculate the in-degree distribution, and
obtain a quite narrow range of degrees, between one and
eight, in accordance with similar calculations in [23, 24].
However, as noted in [10], this might here very well be a
possible artifact of the Lasso procedure, and we refrain
from further analysis.

The out-hub categorisation is obtained by rank ordering
the genes according to their out degree. We calculate the
degree of overrepresentation for biologically
motivated GO terms normally associated with high out
degree (for details see [25]). Worth noting is that the
presented terms are chosen from biological knowledge and
not from an exhaustive search among all terms, that is there
is no multiple testing occurring. The analysis identifies
several groups of out hubs, for example, genes annotated as

some

transcription regulators, a finding consistent with previous
reports that TFs can bind to several downstream genes
[26]. Of special interest here are those genes associated
with the cell cycle (here defined according to GO [18]),
since the data come from such measurements. We observe
that lethal genes are over-represented among the cell-cycle-
associated genes with large out degrees (Fig. 1a), a finding
in accordance with the previous observation that the
number of connections per protein is correlated with
lethality [27]. These over-representations are presented
in Fig. 1la as standard P-values, obtained from a
hypergeometric distribution, based on the annotations of
the genes in GO.

To further explore the origin of lethality of Yeast genes, we
inspect the nature of the dynamical control exerted by the
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1096 genes annotated as lethal (Fig. 1c). We refer to a gene
with a positive sum of incoming weights as an ‘activated’
gene, and a gene with a positive sum of outgoing weights
as an ‘activator gene. Corresponding definitions for
‘repressed’ and ‘repressor’ genes for negative sums apply.
The 177 lethal genes associated with the cell cycle are
found to be repressors of downstream genes. Hence, if
those repressors are knocked out, a large amount of the
repression is removed from the network and an
uncontrolled cascade of gene activation may occur, causing
cell death. In addition, an over-representation of out-going
hubs may also cause an uncontrolled cascade activation of
genes. To avoid such network instability, it may prove
beneficial for the network stability to exert strong negative
regulation on precisely those genes having the largest
number of out-going connections. (If there are feed-back
loops with an even number of negative regulations in the
network, ie. effectively self-activating sub-systems, this
argument is weakened. However, no such loops of
reasonably short length exist in the present network.) To
test this hypothesis, we determine the control of the out
hubs by calculating the sum of all the incoming
connections. Indeed, repression is largest for out hubs,
whereas genes having few outgoing connections are not
repressed (Fig. 14). A similar observation about this
dynamical control principle, defined by repressed and
repressing hubs, has very recently been reported in [28],
but is otherwise, to the best of our knowledge, unknown
within systems biology. We will return to the dynamical
consequences of this observation in Section 6 where we
perform a system analysis.

4 Motifs

A common conjecture in the present systems biology is that
so-called motifs, small subgraphs consisting of few genes
and of a distinct function [13, 16], play an essential role
in gene regulatory networks. To further analyse the
network statistics, we calculate all three and four gene
network motifs in the network graph by applying the
m-finder algorithm. (The m-finder algorithm [29] detects
motifs using the adjacency matrix 4, i.e., the matrix where
the elements are 4; =1 if w; # 0 and zero otherwise.)
All results presented are statistically significant, which
we here assure by only considering node sets (i.e. motifs)
found at least 20 times in the network and having
large Z-scores (Z(RAND) > 5 and Z(REWIRED) > 2
[8, 16]).

First, we do not consider the signs of the interactions, and
recover the previously defined motifs described in Yeast
regulatory networks [8, 16]. (In Fig. 24, we also give the
Z-values (REWIRED) for the motifs as given by [8] as Z;,
and by [16] as Zy;.) Feed-forward loops (FFL), bi-parallel
and bi-fan motifs are over-represented (Fig. 2a2). In
addition, our analysis reveals a previously uncharacterised
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Figure 2 Static and dynamic network motifs

a Static network motifs and GO analysis. Z-scores for the inferred
motifs and corresponding scores Z;, Zy, from [8, 16], respectively.
The four most significant motifs with respect to both null
hypotheses (REWIRED and RAND) are illustrated

b Dynamic network motifs and the observed density. Same
coding of the arrows as in Fig. 1b. The dichotomy of coherent/
incoherent motifs is explained in the main text

Second, we take into account the signs of the edges, that is,
we consider the net effect of activation and repression within
a motif. Each motif can be classified as either coherent or
incoherent. For 3-FFL, 4-FFL and bi-parallel, a motif is
coherent when the two pathways have the same net effect
on the target gene, and incoherent when the pathways
counteract each other. For the bi-fan motif, we call a sign
distribution coherent if it is possible to have states where
the target genes do not receive conflicting signals, and
otherwise incoherent. Note that by these definitions, the
numbers of possible coherent and incoherent motifs
become identical. Further, in the inferred network, the
actual numbers of positive and negative edges turned out to
be almost the same, which means one could expect an even
distribution of coherent and incoherent motifs. Fig. 25
illustrates that the Yeast network has such a distribution for
the 3-FFLs motifs, but that the incoherent 4-FFL motifs
are over-represented. Incoherent FFLs have recently been
shown to accelerate response time of the gal system in
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E. coli [30]. Here we find an over-representation of FFLs
among genes annotated as being part of the cell cycle
(P < 0.01). This presence of incoherent motifs in the cell
cycle may therefore suggest a mixed activation and
repression dynamics to reduce the response time. The
single most abundant coherent 3-FFL motif we identify is
the one containing only activation (not shown) as has
previously been reported by Mangan and Alon [31] derived
from a literature network [16]. However, the most
abundant incoherent 3-FFL motif in our hands only
contains repression, whereas in [31] the most abundant
incoherent 3-FFL incorporated two activating and one
repressing regulation. There turns out to be huge over-
representation of coherent sign distributions among the
bi-parallel and bi-fan motifs. Especially for the bi-fan, we
uncover only one incoherent sign distribution. Finally, we
note that the over-representation of coherent bi-fan motifs
where the pathways are identical (which are 68% of all
coherent bi-parallel motifs) may originate from gene
duplication.

5 Modules

Next, we analyse network statistics beyond local motifs.
Biological networks appear to be modular in nature [32,
33], that is, they are composed of more densely connected
subnetworks. To determine the degree of modularity and to
identify the modules, we apply a random walk Markov
CLustering algorithm (MCL) (this is GNU-freely available
software, obtained from [36], for clustering of large-scale
networks, based on the steady-state flow process of biased
random walkers. The efficiency of the MCL comes from
its ability to produce sparse steady-state solutions from
elementary matrix operations. Sparseness arises from a
manipulation of the unbiased random walker algorithm,
such that random walkers are biased towards already
popular links. This bias introduces a free parameter, which
we set to maximise the modularity [37], a goodness score
indicating how well a set of modules is fitted onto a given
network) [34, 35] to the symmetric version, fw(:), of the
weight matrix, w. (This symmetrised matrix is obtained as
wj(';) = |'wﬂ| + |wj,|)

The present network turns out to be highly modular
(modularity = 0.74 [37]) with 203 modules and is markedly
higher than the REWIRED ensemble (P < 107%9). For
each module we submit a query to GO and obtain P-values
for each GO-process term in the module from a
hypergeometric distribution. These values are denoted as Pf
for process term p in module 2 We form a module
goodness score of its biological coherence, G, from the
logarithm of the lowest P-value of GO queries with at least
10% of the module members annotated (similar results holds
for somewhat different cut-offs. Even if we consider
weighted means of the logarithmic P-values, such that each
gene explicitly contributes by its lowest P-value, similar

results apply), that is, G, = —logminp Pf. To correct the
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multiple testing of querying several GO terms, we set the
null hypothesis to be the same module sizes with random
members (we perform 1000 such queries for each module
size). Hence we estimate an expectation value, £(Gp), and a
standard deviation, 0(G), for the null hypothesis for each
module, and transform the goodness scores into Z-scores as
Z, =[G, — E(G)]/o(G,). Each of these Z-scores
corresponds to a P-value, P, which can be approximately
found from the normal distribution. The whole network
then receives a global Z-score as Z =Y, _; Z,/+/n, where n
is the number of modules. This reveals the global P-value of
the graph theoretic modules being associated with coherent
biological processes to be less than 107>, thus biologically
validating the inferred modular architecture. More
specifically, several (17) modules contain significant groups
of genes involved in the same processes (P, < 0.01), for
example, biosynthesis, ribosome biogenesis and DNA
replication. In Fig. 3, we depict the eight most significant
results among the 14 modules with P, < 0.01. Note,
although, that one specific module normally has more than
one process term associated with it.

To explore the average intra-modular communication, we
assume the signs of the edges are uniformly distributed over
the modules, and form the Z-scores

Zi,jec/{ (w; — E(w)ay)
ofw) Zz’,jeck aj;

M, =

Here C, refers to the set of nodes in community %, a;; is the
adjacency matrix element, E(w) is the mean of the non-zero
elements in w and o(w) is the corresponding standard
deviation. These M, are Z-scores for the weighted signs
within each module. As we observe large values, we utilise
a x’-test (the legitimacy of a X’-test comes from the visual
observation that the weights are almost normally
distributed (except at zero). However, we also utilised a
binomial test by simply counting the number of positive/
negative interactions, with similar result) to determine
whether there is any significant tendency in the intra-
modular communication, or if the internal dynamics
within a module is both activating and repressing.
Here, this test discards the hypothesis of a uniform sign
distribution with P < 10 *% A similar test on the inter-
modular connections, that is, the edges between modules,
turns out to yield the result that there is no dominant sign
to be found. In total, there are 38 modules with a coherent
dynamical action (P, < 0.01), for which we have almost
the same number of self-activating (26) as self-repressing

(17) modules.

To benchmark this partition of the network into functional
modules, we also perform a hierarchical clustering of the
expression data. Hierarchical clustering of whole-genome
expression data has been a useful analysis technique to
group genes and thereby suggest functions for
uncharacterised genes. Yet, clustering does not provide or
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Figure 3 Modular analysis of the network graph
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GO analysis of the major processes in the eight most coherent network modules. The pie charts illustrate the known module members,
where the area of each chart is proportional to the number of annotated genes. The text refers to the GO terms with least P-values and the
numbers in the parentheses correspond to the actual numbers of genes in the process and in the module, respectively. Some GO terms
correspond to more than one gene, which we present as double marked areas

utilise any structural information about the underlying gene
regulatory network, and it is important to compare
clustering with the partitioning we obtain from the inferred
network. Here we choose for the clustering the same
number of disjoint clusters as we obtain from the MCL
algorithm. Hierarchical clustering is in a standard form,
using the correlation as distance and the furthest distance
between clusters as collapsing criterion. To evaluate the
similarity between the modules and clusters, we utilise the
similarity index Ipnovea from [38], which essentially is a
normalised version of the number one obtains from
counting how many units have to be moved in order for
the two partitionings to coincide. It turns out that the
overlap between the network modules and hierarchical
clusters is small, only 5%, which emphasise the novelty of
the present approach. Furthermore, the same holds true for
the genes contributing to the coherent processes of the
modules, that is, they are not found in similar hierarchical
clusters more than is expected by random. Several modules,
such as ribosome biogenesis and DNA replication, could
not be detected by a regular clustering analysis since the
genes with the corresponding GO terms have a low degree
of correlation in their transcript activity for the present
data. Clearly, the inferred network and the MCL algorithm
reveal new functional units and provide direct evidence
for the relevance and existence of modules beyond the
traditional clustering [39].

6 System analysis

Several authors have discussed and suggested the hypothesis
that biological systems in general, and networks in particular,

should have a dynamical modular organisation, including
motifs, leading to a stable yet flexible system [32, 40, 41].
Here we have shown the presence of repressed and
repressing hubs, dynamical motifs, and self-activating and
repressing modules. However, it is yet not clear how these
properties collectively determines the overall dynamical
system behaviour, and the exploration of the hypothesis
‘stable yet flexible’ is the subject for the present section.

To study this issue in a more quantitative manner, we first
need to define the entities. Although system analysis is a well-
established field within engineering [42], we cannot directly
use the concepts from that domain, since the network we
study is much more uncertain and based on data of lower
quality than normal there. Nevertheless, our inferred
network includes the magnitude of activation or repression
for each gene-to-gene interaction, and we can explicitly
calculate the eigenvalues which form the basis for any
(linear) system analysis.

The degree of network stability, S, is determined here from
the instability, 7, which is the sum of eigenvalues, A;, with
positive real parts. This sum corresponds to how fast a
random perturbation will grow. Positive (negative) real
parts of the eigenvalues correspond to unstable (stable)
modes, and by summing the largest eigenvalues we can
assess the degree of network instability. Explicitly, the
instability is given by

Ny
I=)"\
i=1
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where the eigenvalues are ordered such as Re A; > Re A; 4
and N, is the number of eigenvalues with positive real
parts (the imaginary parts of the eigenvalues cancel each
other since the secular equation here has real coefficients).
System stability is then defined as

I
§=1——

max

where I is the theoretical maximum here approximated
by the Gerschgorin’s theorem. (Gerschgorin’s theorem
states that the eigenvalues of a matrix is contained within
the union of the circles with centre given by the diagonal
elements and radius by the sum of absolute values of the
corresponding off-diagonal element at the same row [43].)

Apart from stability, the network also has to possess
flexibility, indicating the responsiveness of the system to an
external signal (for a given stability). The system flexibility
is here defined from the participation ratio [44], calculated
for the V, eigenvalues A; with positive real part as

(Zf\iﬁ (Re /\i)2>2

PR =
i Re !

From this number, we determine the flexibility as (V, — PR)/

www.ietdl.org

(v, — 1), which is a normalised index between zero and unity.
Explicitly, this index is large when a few eigenvalues are
significantly larger than the other, which indicate the possible
existence of some modes that can rapidly take the system
from one state to another. Hence, for a given stability, the
flexibility tells us how responsive the system is to some
specific signal, internal or external.

We compute the stability and flexibility for our inferred
Yeast network and compare with ensembles of several
randomised versions thereof. Following the arrows of
Fig. 4, starting in the lower left corner, we have the
following scenario: first, an ensemble of Erdés—Rényi (ER)
like networks [1, 13], having a Poisson distribution of
degrees, without hubs, motifs and modules, but with the
same number of nodes and directed edges with signed
weights as the Yeast network, has the lowest stability and
flexibility of all networks considered. Second, introducing
the same degree distribution as Yeast, but otherwise no
other structure, we obtain the ensemble of REWIRED
networks. Due to the wide degree distribution, these
networks contain hubs, and increase the stability and
flexibility compared with the ER networks. The stability
and flexibility are further increased when modules and
motifs are added to REWIRED, thus corresponding to the
ensemble of Yeast Topology networks, which are the Yeast
network but with randomised sign distributions of the

Add signs
08 r I
07 | RAND I :
Zoom gy,
REWIRED

06 ""mé
> 05
3
>
2 o04r %

ER-network L] %‘o . Yeast Topology
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No motifs 5 e Yeast
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Figure 4 Dynamical systems analysis of the gene network

Stability and flexibility for the inferred network (Yeast) and several randomised versions thereof. The error bars cover two standard
deviations of the ensemble networks and are obtained from repeating the design of each network (n > 300). Starting in the lower left
corner of the figure, the ensemble of ER-like networks, we successively add topological and dynamical features to the network, thus
obtaining new ensembles of networks more and more similar to the inferred Yeast network. It is evident that almost each of the
isolated topological and dynamical features increases either stability or flexibility, or both. Aside from this exploration, we also derive
the ensemble of networks obtained from totally randomised data (RAND). It is striking how this ensemble of networks is significantly
less stable than both the inferred Yeast network and most of the ensembles of randomised networks. However, the RAND-ensemble
turns out to be almost as flexible as the inferred Yeast network, which is unexpected but also of less relevance due to its low stability
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edges. The observed network stability of the Yeast Topology
network is significantly larger than what is obtained both by
an array reshuffling (RAND) and by REWIRED. Worth
noting is also that the ensemble of RAND networks is not
markedly different from the Yeast Topology network with
respect to flexibility, but still has lower stability than both
REWIRED and the Yeast Topology network.

The last steps, from the Yeast Topology network to the
inferred Yeast network via the repressed hubs, are by
necessity small, we are close to the upper limit, but still of
uttermost importance for the understanding of our findings
of the repressing hubs and coherent motifs and modules.
The inferred distribution of activation and repression
increases network stability without influencing flexibility
more than slightly. A closer look, inset of Fig. 4, shows that
the repressed hubs significantly enhance system stability, and
the regulatory effect of the hubs alone comprises 75% of the
increase in stability from the Yeast Topology network to the
Yeast network, that is, the point repressed hubs is situated
only one-quarter from the Yeast network along the stability
axis between Yeast Topology and Yeast. As this fixing of the
values of the ingoing edges to the hubs (with out degree at
least two) corresponds to 30% of all edges, we also mark in
the inset of Fig. 4 the point representing 30% of the
distance between Yeast Topology and the Yeast network.
This, together with the huge increment in stability from the
ER-like networks, shows it is highly effective to concentrate
on the hubs for improving stability. However, the last
increase in stability comes to the expense of a decrease in
flexibility. The very last step, from repressed hubs when all
values on the edges obtain fixed to their values for the Yeast
network, compensates this decrease somewhat and also
slightly increases the stability further. Moreover, the two
drastic increments in flexibility from REWIRED to Yeast
Topology and also from repressed hubs to Yeast network in
Fig. 4 suggest that the main reason for the occurrence of the
observed complex network patterns, that is, motifs and
modules, is to produce a system responsive to selective stimuli.

This system analysis suggests that the Yeast gene network
has been tuned for maximal stability while preserving the
responsiveness of the network to selective external signals.
That is, this arrangement may facilitate the ability of the
network to rapidly switch between different dynamical
states. To elucidate the function of the genes, which
correspond to the modes that produces large network
flexibility, we eventually perform another GO analysis. We
find six unique genes (YHLO18W, FAA1, KCC4, HHT1,
RRNS5 and MRPL44) in the four dominant flexible modes
(i.e. the six most expressed genes in the eigenvectors
corresponding to the four eigenvalues with the largest real
parts) and five of those (except YHLO18W, protein of
unknown function) are related to primary (essential)
metabolism (P < 0.055). This analysis therefore suggests
that the regulation of these genes may be particularly
important in order to control state transitions in the
network dynamics.

7 Conclusions

The next logical step in the analysis of cellular networks is
the shift from describing the static topological properties to
understanding  the wunderlying dynamical principles
governing network activity. Our work is one of the first
attempts at a global scale in exploring dynamical network
properties from signed interactions with repressing hubs,
dynamical motifs and modules.

We have presented a principled statistical approach to
uncover and validate the local and global structure and
dynamics of cellular networks. We find that the detailed
organisation of activation and repression within the Yeast
network is particularly important to maximise network
stability and flexibility. This analysis sets the stage for
understanding how biological networks are organised to
balance between requirements of stability against demands
on swift responses to changes in the cellular environment.
Given the statistical robustness of our derived dynamical
principles, we expect a similar analysis of other biological
networks to reveal systems operating in a comparable
dynamical regime as the Yeast network. As more
quantitative high-throughput data sets are produced, we
expect our approach to be widely applicable also for
networks of different kinds and for other organisms. An
important development in progress is how to integrate
several different data types such as gene expression
measurements, TF binding information, protein—protein
data and sequence information into a sound statistical
inference engine, which thereby will increase the power of
the network inference thus increasing the reliability of the
reconstructed networks.

The fine tuning of these tools will most likely be produced
by work using data from model systems including Yeast and
other non-mammalian cellular systems. Yet it will become
increasingly important to adapt these tools for determining
how the cellular dynamics is altered during human complex
multifactorial diseases.
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