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ABSTRACT
Motivation: For the last few years, Bayesian networks (BNs) have
received increasing attention from the computational biology com-
munity as models of gene networks, though learning them from
gene-expression data is problematic. Most gene-expression data-
bases contain measurements for thousands of genes, but the existing
algorithms for learning BNs from data do not scale to such high-
dimensional databases. This means that the user has to decide in
advance which genes are included in the learning process, typically
no more than a few hundreds, and which genes are excluded from it.
This is not a trivial decision. We propose an alternative approach to
overcome this problem.
Results: We propose a new algorithm for learning BN models of gene
networks from gene-expression data. Our algorithm receives a seed
gene S and a positive integer R from the user, and returns a BN
for the genes that depend on S such that less than R other genes
mediate the dependency. Our algorithm grows the BN, which initially
only contains S, by repeating the following step R +1 times and, then,
pruning some genes; find the parents and children of all the genes
in the BN and add them to it. Intuitively, our algorithm provides the
user with a window of radius R around S to look at the BN model of
a gene network without having to exclude any gene in advance. We
prove that our algorithm is correct under the faithfulness assumption.
We evaluate our algorithm on simulated and biological data (Rosetta
compendium) with satisfactory results.
Contact: jmp@ifm.liu.se

1 INTRODUCTION
Much of a cell’s complex behavior can be explained through the
concerted activity of genes and gene products. This concerted activity
is typically represented as a network of interacting genes. Identifying
this gene network is crucial for understanding the behavior of the cell
which, in turn, can lead to better diagnosis and treatment of diseases.

For the last few years, Bayesian networks (BNs) (Neapolitan,
2003; Pearl, 1988) have received increasing attention from the
computational biology community as models of gene networks
(Badea, 2003; Bernard and Hartemink, 2005; Friedmanet al., 2000;
Harteminket al., 2002; Ottet al., 2004; Pe’eret al., 2001; Peña,
2004). A BN model of a gene network represents a probability dis-
tribution for the genes in the network. The BN minimizes the number
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of parameters needed to specify the probability distribution by tak-
ing advantage of the conditional independencies between the genes.
These conditional independencies are encoded in an acyclic directed
graph (DAG) to help visualization and reasoning. Learning BN
models of gene networks from gene-expression data is problematic;
most gene-expression databases contain measurements for thousands
of genes (Hugheset al., 2000; Spellmanet al., 1998), but the existing
algorithms for learning BNs from data do not scale to such high-
dimensional databases (Friedmanet al., 1999; Tsamardinoset al.,
2003). This implies that in the references cited above, for instance,
the authors have to decide in advance which genes are included
in the learning process (in all the cases<1000) and which genes
are excluded from it. This is not a trivial decision. We propose an
alternative approach to overcome this problem.

In this paper, we propose a new algorithm for learning BN models
of gene networks from gene-expression data. Our algorithm receives
a seed geneS and a positive integerR from the user, and returns
a BN for the genes that depend onS such that less thanR other
genes mediate the dependency. Our algorithm grows the BN, which
initially only containsS, by repeating the following stepR +1 times
and, then, pruning some genes; find the parents and children of all
the genes in the BN and add them to it. Intuitively, our algorithm
provides the user with a window of radiusR aroundS to look at the
BN model of a gene network without having to exclude any gene in
advance.

The rest of the paper is organized as follows. In Section 2, we
review BNs. In Sections 3, we describe our new algorithm. In
Section 4, we evaluate our algorithm on simulated and biological
data [Rosetta compendium (Hugheset al., 2000)] with satisfactory
results. Finally, in Section 5, we discuss related works and possible
extensions to our algorithm.

2 BAYESIAN NETWORKS
The following definitions and theorem can be found in most books
on Bayesian networks (Neapolitan, 2003; Pearl, 1988). We assume
that the reader is familiar with graph and probability theories. We
abbreviate if and only if by iff, such that by st and with respect to
by wrt.

Let U denote a non-empty finite set of random variables. A BN
for U is a pair(G, θ), whereG is a DAG whose nodes correspond to
the random variables inU, andθ are parameters specifying a condi-
tional probability distribution for each nodeX given its parents inG,
p(X|PaG(X)). A BN (G, θ) represents a probability distribution for
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U, p(U), through the factorizationp(U) = ∏
X∈U p(X|PaG(X)).

Hereafter,PCG(X) denotes the parents and children ofX in G, and
NDG(X) the non-descendants ofX in G.

Any probability distributionp that can be represented by a BN with
DAGG, i.e. by a parameterizationθ ofG, satisfies certain conditional
independencies between the random variables inU that can be read
from G via the d-separation criterion, i.e. ifd-sepG(X, Y|Z), then
X⊥⊥pY|Z with X, Y andZ three mutually disjoint subsets ofU. The
statementd-sepG(X, Y|Z) is true when for every undirected path in
G between a node inX and a node inY there exists a nodeW in
the path st either (1)W does not have two parents in the path and
W ∈ Z, or (2)W has two parents in the path and neitherW nor any
of its descendants inG is in Z. A probability distributionp is said
to be faithful to a DAGG whenX⊥⊥pY|Z iff d-sepG(X, Y|Z).

The nodesW , X andY form an immorality in a DAGG when
X → W ← Y is the subgraph ofG induced byW , X and Y .
Two DAGs are equivalent when they represent the same d-separation
statements. The equivalence class of a DAGG is the set of DAGs
that are equivalent toG.

Theorem 1. Two DAGs are equivalent iff they have the same
adjacencies and the same immoralities.

Two nodes are at distanceR in a DAG G when the shortest
undirected path inG between them is of lengthR · G(X)R denotes
the subgraph ofG induced by the nodes at distance at mostR

from X in G.

3 GROWING PARENTS AND CHILDREN
ALGORITHM

A BN models a gene network by equating each gene with a ran-
dom variable or node. We note that the DAG of a BN model of
a gene network does not necessarily represent physical interactions
between genes but conditional (in)dependencies. We aim to learn BN
models of gene networks from gene-expression data. This will help
us to understand the probability distributions underlying the gene
networks in terms of conditional (in)dependencies between genes.

Learning a BN from data consists in, first, learning a DAG and,
then, learning a parameterization of the DAG. Similar to the works
cited in Section 1, we focus on the former task because, under the
assumption that the learning data contain no missing values, the latter
task can be efficiently solved according to the maximum likelihood
(ML) or maximum a posteriori (MAP) criterion (Neapolitan, 2003;
Pearl, 1988). To appreciate the complexity of learning a DAG, we
note that the number of DAGs is super-exponential in the number of
nodes (Robinson, 1973). In this section, we present a new algorithm
for learning a DAG from a databaseD. The algorithm, named grow-
ing parents and children algorithm orAlgorithmGPC for short, is
based on the faithfulness assumption, i.e. on the assumption thatD

is a sample from a probability distributionp faithful to a DAGG.
AlgorithmGPC receives a seed nodeS and a positive integerR as
input, and returns a DAG that is equivalent toG(S)R . AlgorithmGPC
grows the DAG, which initially only containsS, by repeating the
following stepR + 1 times and, then, pruning some nodes; find
the parents and children of all the nodes in the DAG and add them
to it. Therefore, a key step inAlgorithmGPC is the identification
of PCG(X) for a given nodeX in G. The functionsAlgorithmPCD
and AlgorithmPC solve this step. We have previously introduced
these two functions in Peñaet al. (2005) to learn Markov boundaries

Table 1. AlgorithmPCD, AlgorithmPC andAlgorithmGPC

AlgorithmPCD(S)
1 PCD = ∅
2 CanPCD = U \ {S}
3 repeat

/* step 1: remove false positives fromCanPCD */
4 for each X ∈ CanPCD do
5 Sep[X] = arg minZ⊆PCDdepD(X,S|Z)

6 for each X ∈ CanPCD do
7 if X⊥⊥DS|Sep[X] then
8 CanPCD = CanPCD \ {X}

/* step 2: add the best candidate toPCD */
9 Y = arg maxX∈CanPCDdepD(X,S|Sep[X])
10 PCD = PCD ∪ {Y }
11 CanPCD = CanPCD \ {Y }

/* step 3: remove false positives fromPCD */
12 for each X ∈ PCD do
13 Sep[X] = arg minZ⊆PCD\{X}depD(X,S|Z)

14 for each X ∈ PCD do
15 if X⊥⊥DS|Sep[X] then
16 PCD = PCD \ {X}
17 until PCD does not change
18 return PCD

AlgorithmPC(S)
1 PC = ∅
2 for each X ∈ AlgorithmPCD(S) do
3 if S ∈ AlgorithmPCD(X) then
4 PC = PC ∪ {X}
5 return PC

AlgorithmGPC(S, R)
1 DAG = {S}
2 for 1, . . . ,R + 1 do
3 for each X ∈ DAG do
4 PC[X] = AlgorithmPC(X)

5 for each X ∈ DAG do
6 AddAdjacencies(DAG,X, PC[X])
7 Prune(DAG)
8 AddImmoralities(DAG)
9 return DAG

from high-dimensional data. They are correct versions of an incorrect
function proposed in (Tsamardinoset al., 2003).

Hereafter,X	⊥⊥DY |Z (X⊥⊥DY |Z) denotes conditional (in)depend-
ence wrt the learning databaseD, anddepD(X,Y |Z) is a measure of
the strength of the conditional dependence wrtD. In order to decide
on X 	⊥⊥DY |Z or X ⊥⊥DY |Z, AlgorithmGPC runs aχ2-test whenD
is discrete and a Fisher’sZ test whenD is continuous and, then, uses
the negativeP -value of the test asdepD(X,Y |Z) [see Spirteset al.
(1993) for details on these tests].

Table 1 outlinesAlgorithmPCD. The algorithm receives the node
S as input and returns a superset ofPCG(S) in PCD. The algorithm
tries to minimize the number of nodes not inPCG(S) that are returned
in PCD. The algorithm repeats the following three steps untilPCD
does not change. First, some nodes not inPCG(S) are removed from
CanPCD, which contains the candidates to enterPCD (lines 4–8).
Second, the candidate most likely to be inPCG(S) is added toPCD
and removed fromCanPCD (lines 9–11). Since this step is based on
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the heuristic at line 9, some nodes not inPCG(S) may be added to
PCD. Some of these nodes are removed fromPCD in the third step
(lines 12–16). The first and third steps are based on the faithfulness
assumption.AlgorithmPCD is correct under some assumptions (see
Appendix for the proof).

Theorem 2. Under the assumptions that the learning database D

is an independent and identically distributed sample from a probabil-
ity distribution p faithful to a DAG G and that the tests of conditional
independence are correct, the output of AlgorithmPCD(S) includes
PCG(S) but does not include any node in NDG(S) \ PaG(S).

The assumption that the tests of conditional independence are
correct means thatX⊥⊥DY |Z iff X⊥⊥pY |Z.

The output ofAlgorithmPCD(S)must be further processed in order
to obtainPCG(S), because it may contain some descendants ofS in
G other than its children. These nodes can be easily identified: if
X is in the output ofAlgorithmPCD(S), thenX is a descendant
of S in G other than one of its children iffS is not in the output
of AlgorithmPCD(X). AlgorithmPC, which is outlined in Table 1,
implements this observation. The algorithm receives the nodeS as
input and returnsPCG(S) in PC. AlgorithmPC is correct under some
assumptions (See Appendix for the proof).

Theorem 3. Under the assumptions that the learning database D

is an independent and identically distributed sample from a probabil-
ity distribution p faithful to a DAG G and that the tests of conditional
independence are correct, the output of AlgorithmPC(S) is PCG(S).

Finally, Table 1 outlinesAlgorithmGPC. The algorithm receives
the seed nodeS and the positive integerR as inputs, and returns a
DAG in DAG that is equivalent toG(S)R . The algorithm works in
two phases based on Theorem 1. In the first phase, the adjacencies in
G(S)R are added toDAG, which initially only containsS, by repeat-
ing the following stepR + 1 times and, then, pruning some nodes,
PCG(X) is obtained by callingAlgorithmPC(X) for each nodeX
in DAG (lines 3–4) and, then,PCG(X) is added toDAG by calling
AddAdjacencies(DAG,X, PCG(X)) for each nodeX in DAG (lines
5–6). The functionAddAdjacencies(DAG,X, PCG(X)) simply adds
the nodes inPCG(X) to DAG and, then, links each of them toX
with an undirected edge. In practice,AlgorithmPC and AddAdja-
cencies are not called for each node inDAG but only for those they
have not been called for before. Since lines 3–6 are executedR + 1
times, the nodes at distanceR + 1 from S in G are added toDAG,
although they do not belong toG(S)R . These nodes are removed
from DAG by calling Prune(DAG) (line 7). In the second phase of
AlgorithmGPC, the immoralities inG(S)R are added toDAG by call-
ing AddImmoralities(DAG) (line 8). For each triplet of nodesW , X

andY st the subgraph ofDAG induced by them isX−W−Y , the func-
tion AddImmoralities(DAG) adds the immoralityX → W ← Y to
DAG iff X 	⊥⊥DY |Z ∪ {W } for anyZ st X ⊥⊥DY |Z andX,Y /∈ Z. In
practice, such aZ can be efficiently obtained:AlgorithmPCD must
have found such aZ and could have cached it for later retrieval.
The functionAddImmoralities(DAG) is based on the faithfulness
assumption.

We note that the only directed edges inDAG are those in the
immoralities. In order to obtain a DAG, the undirected edges in
DAG can be oriented in any direction as long as neither directed
cycles nor new immoralities are created. Therefore, strictly speak-
ing,AlgorithmGPC returns an equivalence class of DAGs rather than

a single DAG (Theorem 1).AlgorithmGPC is correct under some
assumptions (see Appendix for the proof).

Theorem 4. Under the assumptions that the learning database D

is an independent and identically distributed sample from a probabil-
ity distribution p faithful to a DAG G and that the tests of conditional
independence are correct, the output of AlgorithmGPC(S,R) is the
equivalence class of G(S)R .

Although the assumptions in Theorem 4 may not hold in practice,
correctness is a desirable property for an algorithm to have and,
unfortunately, most of the existing algorithms for learning BNs from
data lack it.

4 EVALUATION
In this section, we evaluateAlgorithmGPC on simulated and
biological data [Rosetta compendium (Hugheset al., 2000)].

4.1 Simulated data
We consider databases sampled from two discrete BNs that have been
previously used as benchmarks for algorithms for learning BNs from
data, namely the Alarm BN (37 nodes and 46 edges) (Herskovits,
1991) and the Pigs BN (441 nodes and 592 edges) (Jensen, 1997).
We also consider databases sampled from Gaussian networks (GNs)
(Geiger and Heckerman, 1994), a class of continuous BNs. We gen-
erate random GNs as follows. The DAG has 50 nodes, the number
of edges is uniformly drawn from [50, 100], and the edges link
uniformly drawn pairs of nodes. Each node follows a Gaussian dis-
tribution whose mean depends linearly on the value of its parents. For
each node, the unconditional mean, the parental linear coefficients
and the conditional standard deviation are uniformly drawn from
[−3, 3], [−3, 3] and [1, 3], respectively. We consider three sizes
for the databases sampled, namely 100, 200 and 500 instances. We
do not claim that the databases sampled resemble gene-expression
databases, apart from the number of instances. However, they make
it possible to compare the output ofAlgorithmGPC with the DAGs
of the BNs sampled. This will provide us with some insight into the
performance ofAlgorithmGPC before we turn our attention to gene-
expression data in the next section. Since we useR = 1, 2 in the next
section, it seems reasonable to useR = 1, 2 in this section as well.

The comparison between the output ofAlgorithmGPC and the
DAGs of the BNs sampled should be done in terms of adjacencies
and immoralities (Theorem 1). Specifically, we proceed as follows
for each database sampled from a BN with DAGG. We first run
AlgorithmGPC with each node inG as the seed nodeS andR = 1, 2
and, then, report the average adjacency (immorality) precision and
recall for each value ofR. Adjacency (immorality) precision is the
number of adjacencies (immoralities) in the output ofAlgorithmGPC
that are also inG(S)R divided by the number of adjacencies (immor-
alities) in the output. Adjacency (immorality) recall is the number
of adjacencies (immoralities) in the output ofAlgorithmGPC that
are also inG(S)R divided by the number of adjacencies (immoral-
ities) inG(S)R . It is important to monitor whether the performance
of AlgorithmGPC is sensitive or not to the degree ofS. For this
purpose, we also report the average adjacency (immorality) preci-
sion and recall over the nodes inG with five or more parents and
children (4 nodes in the Alarm BN and 39 nodes in the Pigs BN).
The significance level for the tests of conditional independence is the
standard 0.05.
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Table 2. Adjacency precision and recall ofAlgorithmGPC

Data Size R Precision Recall Precision5 Recall5

Alarm 100 1 0.88± 0.06 0.52± 0.05 0.89± 0.06 0.34± 0.04
Alarm 100 2 0.87± 0.08 0.33± 0.05 0.87± 0.10 0.23± 0.04
Alarm 200 1 0.94± 0.04 0.64± 0.06 0.97± 0.06 0.45± 0.05
Alarm 200 2 0.93± 0.05 0.44± 0.06 0.96± 0.04 0.35± 0.06
Alarm 500 1 0.97± 0.03 0.78± 0.03 0.99± 0.03 0.57± 0.07
Alarm 500 2 0.97± 0.04 0.63± 0.03 0.99± 0.01 0.49± 0.04
Pigs 100 1 0.70± 0.01 0.75± 0.02 0.85± 0.03 0.55± 0.02
Pigs 100 2 0.58± 0.02 0.53± 0.02 0.68± 0.03 0.36± 0.02
Pigs 200 1 0.85± 0.02 0.93± 0.01 0.96± 0.01 0.81± 0.01
Pigs 200 2 0.80± 0.02 0.78± 0.02 0.87± 0.02 0.63± 0.03
Pigs 500 1 0.88± 0.01 1.00± 0.00 0.96± 0.02 1.00± 0.00
Pigs 500 2 0.85± 0.01 1.00± 0.00 0.90± 0.01 1.00± 0.00
GNs 100 1 0.86± 0.06 0.51± 0.10 0.91± 0.09 0.38± 0.09
GNs 100 2 0.84± 0.07 0.29± 0.10 0.88± 0.10 0.20± 0.08
GNs 200 1 0.88± 0.05 0.60± 0.12 0.92± 0.09 0.43± 0.12
GNs 200 2 0.85± 0.06 0.38± 0.15 0.88± 0.10 0.26± 0.12
GNs 500 1 0.88± 0.05 0.67± 0.10 0.91± 0.06 0.51± 0.14
GNs 500 2 0.85± 0.07 0.46± 0.13 0.86± 0.09 0.33± 0.14

Table 3. Immorality precision and recall ofAlgorithmGPC

Data Size R Precision Recall Precision5 Recall5

Alarm 100 1 0.82± 0.14 0.28± 0.09 0.00± 0.00 0.00± 0.00
Alarm 100 2 0.79± 0.12 0.18± 0.06 0.56± 0.31 0.06± 0.04
Alarm 200 1 0.80± 0.11 0.46± 0.07 1.00± 0.00 0.03± 0.04
Alarm 200 2 0.78± 0.10 0.29± 0.05 0.52± 0.11 0.12± 0.03
Alarm 500 1 0.90± 0.07 0.62± 0.04 1.00± 0.00 0.19± 0.12
Alarm 500 2 0.92± 0.05 0.46± 0.06 0.82± 0.13 0.24± 0.05
Pigs 100 1 0.65± 0.02 0.46± 0.03 0.49± 0.05 0.35± 0.05
Pigs 100 2 0.55± 0.02 0.41± 0.03 0.59± 0.06 0.27± 0.02
Pigs 200 1 0.83± 0.02 0.76± 0.03 0.69± 0.08 0.64± 0.04
Pigs 200 2 0.76± 0.02 0.71± 0.02 0.73± 0.04 0.58± 0.03
Pigs 500 1 0.90± 0.01 0.97± 0.02 0.89± 0.05 0.94± 0.04
Pigs 500 2 0.83± 0.02 0.95± 0.02 0.82± 0.04 0.94± 0.02
GNs 100 1 0.59± 0.22 0.15± 0.09 0.41± 0.32 0.04± 0.07
GNs 100 2 0.59± 0.22 0.09± 0.07 0.55± 0.28 0.05± 0.08
GNs 200 1 0.70± 0.17 0.25± 0.12 0.52± 0.32 0.09± 0.11
GNs 200 2 0.70± 0.17 0.17± 0.11 0.59± 0.29 0.08± 0.07
GNs 500 1 0.67± 0.14 0.34± 0.13 0.56± 0.29 0.19± 0.17
GNs 500 2 0.68± 0.14 0.24± 0.13 0.61± 0.21 0.13± 0.11

Table 2 summarizes the adjacency precision and recall of
AlgorithmGPC. The columns Precision and Recall show the aver-
age adjacency precision and recall, respectively, over all the nodes.
The columns Precision5 and Recall5 show the average adjacency
precision and recall, respectively, over the nodes with five or more
parents and children. Each row in the table shows average and stand-
ard deviation values over 10 databases of the corresponding size for
the Alarm and Pigs BNs, and>50 databases for the GNs. We reach
two conclusions from the table. First, the adjacency precision of
AlgorithmGPC is high in general, though it slightly degrades with
R. Second, the adjacency recall ofAlgorithmGPC is lower than the
adjacency precision, and degrades with both the degrees ofS andR.
This is not surprising given the small sizes of the learning databases.

Table 3 summarizes the immorality precision and recall of
AlgorithmGPC. The main conclusion that we obtain from the table
is thatAlgorithmGPC performs better for learning adjacencies than
for learning immoralities. This is particularly noticeable for GNs.
The reason is that learning adjacencies as inAlgorithmGPC is more
robust than learning immoralities. In other words, learning immor-
alities as inAlgorithmGPC is more sensitive to any error previously
made than learning adjacencies. This problem has been previously
noted in Badea (2003, 2004) and Spirteset al. (1993); a solution has
been proposed in Badea (2003, 2004), which we plan to implement
in a future version ofAlgorithmGPC.

In short, the most noteworthy feature ofAlgorithmGPC is its high
adjacency precision. This is an important feature because it implies
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that the adjacencies returned are highly reliable, i.e. there are few
false positives among them.

4.2 Biological data
We use the Rosetta compendium (Hugheset al., 2000) in order
to illustrate the usefulness ofAlgorithmGPC to learn biologically
coherent BN models of gene networks from gene-expression data.
The Rosetta compendium consists of 300 full-genome-expression
profiles of the yeastSaccharomyces cerevisiae. In other words, the
learning database consists of 300 instances and 6316 continuous
random variables.

Iron is an essential nutrient for virtually every organism, but
it is also potentially toxic to cells. We are interested in learning
about the iron homeostasis pathway in yeast, which regulates the
uptake, storage, and utilization of iron so as to keep it at a non-toxic
level. According to Lesuisseet al. (2001), Philpottet al. (2002) and
Protchenkoet al. (2001), yeast can use two different high-affinity
mechanisms, reductive and non-reductive, to take up iron from the
extracellular medium. Genes FRE1, FRE2, FTR1 and FET3 con-
trol the reductive mechanism, whereas genes ARN1, ARN2, ARN3
and ARN4 control the non-reductive mechanism. Genes FIT1, FIT2
and FIT3 facilitate iron transport. The iron homeostasis pathway in
yeast has been previously used in Margolinet al. (2004) and Pe’er
et al. (2001) to evaluate the accuracy of their algorithms for learning
models of gene networks from gene-expression data. Specifically,
both papers report models of the iron homeostasis pathway learnt
from the Rosetta compendium, centered at ARN1 and with a radius
of two. Therefore, we runAlgorithmGPC with ARN1 as the seed
geneS andR = 2. The significance level for the tests of conditional
independence is the standard 0.05. The output ofAlgorithmGPC is
depicted in Figure 1. Gray-colored genes are related to iron homeo-
stasis, whereas white-colored genes are not known to be related to
iron homeostasis. The gray-colored genes include 9 of the 11 genes
mentioned above as related to iron homeostasis, plus SMF3 which
has been proposed to function in iron transport (Jensen and Culotta,
2002). IfR = 1, then the output involves 4 genes, all of them related
to iron homeostasis. IfR = 2, then the output involves 17 genes,
10 of them related to iron homeostasis. Therefore, the output of
AlgorithmGPC is rich in genes related to iron homeostasis. We note
that all the genes related to iron homeostasis are dependent one on
another, and that any node that mediates these dependencies is also
related to iron homeostasis. This is consistent with the conclusions
drawn in Section 4.1, i.e. the adjacencies returned byAlgorithmGPC
are highly reliable. Regarding running time,AlgorithmGPC takes
6 min for R = 1 and 37 min forR = 2 (C++ implementation,
not particularly optimized for speed, and run on a Pentium 2.4 GHz,
512 MB RAM and Windows 2000). In general, we expect the run-
ning time ofAlgorithmGPC to be exponential inR. However,R will
usually be small because we will usually be interested in those genes
that depend onS, and none or few genes mediate the dependency.
This is also the case in Margolinet al. (2004) and Pe’eret al. (2001).

In comparison, the model of the iron homeostasis pathway in
Margolin et al. (2004) involves 26 genes (16 related to iron homeo-
stasis), whereas the model in Pe’eret al. (2001) involves 9 genes
(6 related to iron homeostasis). Further comparison with the latter
paper which, unlike the former, learns BN models of gene networks
makes clear the main motivation of our work. In order for their
algorithm to be applicable, Pe’eret al. focus on 565 relevant genes
selected in advance and, thus, exclude the remaining 5751 genes

ARN1

ARN3

ARN2

FTR1 FIT2SMF3

FRE1

FET3 FIT1

FIT3

AVT2

YDL038C ILV3 SDH1 UTH1 YMR245W RPL21B

Fig. 1. BN model of the iron homeostasis pathway learnt byAlgorithmGPC
from the Rosetta compendium with ARN1 as the seed geneS andR = 2.
Gray-colored genes are related to iron homeostasis according to Jensen and
Culotta (2002), Lesuisseet al. (2001), Philpottet al. (2002) and Protchenko
et al. (2001), whereas white-colored genes are not known to be related to iron
homeostasis.

from the learning process. However,AlgorithmGPC produces a bio-
logically coherent output, only requires identifying a single relevant
gene in advance, and no gene is excluded from the learning process.

5 DISCUSSION
We have introducedAlgorithmGPC, an algorithm for growing BN
models of gene networks from seed genes. We have evaluated it on
synthetic and biological data with satisfactory results. In Hashimoto
et al. (2004), an algorithm for growing probabilistic Boolean network
models of gene networks from seed genes is proposed. Our work can
be seen as an extension of the work by Hashimotoet al. to BN
models of gene networks. However, there are some other significant
differences between the two works. Unlike Hashimotoet al. we have
proved the correctness of our algorithm. Their algorithm requires
binary data, whereas ours can learn from both discrete and continuous
data. They report results for a database with only 597 genes, whereas
we have showed that our algorithm can deal with databases with
thousands of genes. An other work that is related to ours, though in a
lesser degree, is Tanay and Shamir (2001), where an algorithm that
suggests expansions to a given gene pathway is presented.

Most of the previous works on learning BN models of gene net-
works from gene-expression data, (e.g. Badea, 2003; Bernard and
Hartemink, 2005; Harteminket al., 2002; Ottet al., 2004; Peña,
2004), do not address the poor scalability of the existing algorithms
for learning BNs from data. They simply reduce the dimensionality
of the gene-expression data in advance so that the existing algorithms
are applicable. To our knowledge, Friedmanet al. (2000) and Pe’er
et al. (2001) are the only exceptions to this trend. These works
build upon the algorithm (Friedmanet al., 1999) which, in order
to scale to high-dimensional data, restricts the search for the parents
of each node to a small set of candidate parents that are heuristic-
ally selected in advance. Unfortunately, they do not report results for
databases with more than 800 genes. Moreover, the performance of
their algorithm heavily depends on the number of candidate parents
allowed for each node, which is a user-defined parameter, and on the
heuristic for selecting them. For instance, if the user underestimates
the number of parents of a node, then the node will lack some of its
parents in the final BN and, even worse, these errors may propagate
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to the rest of the BN.AlgorithmGPC does not involve any heuristic
or parameter that may harm the performance. Instead, it copes with
high-dimensional data by learning a local BN around the seed node
rather than a global one.

We are currently extendingAlgorithmGPC with the following two
functionalities. In order to release the user from having to specify the
radiusR, we are developing an automatic criterion to decide when to
stop growing the BN. In order to assist the user in the interpretation
of the BN learnt, we are implementing the methods in Friedmanet al.
(2000), Pe’eret al. (2001) and Peña (2004), to assess the confidence
in the BN learnt.
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APPENDIX

Proofs of the Theorems
For any probability distributionp that can be represented by a
BN with DAG G, the d-separation criterion enforces the local
Markov property, i.e.X⊥⊥pNDG(X) \ PaG(X)|PaG(X) (Neapolitan,
2003; Pearl, 1988). Therefore,X ⊥⊥ pY |PaG(X) for all Y ∈
NDG(X) \ PaG(X) due to the decomposition property (Pearl, 1988).

Proof of Theorem 2. First, we prove that the nodes inPCG(S)

are included in the outputPCD. If X ∈ PCG(S), thenX 	⊥⊥pS|Z for
all Z stX,S /∈ Z owing to the faithfulness assumption. Consequently,
X entersPCD at line 10 and does not leave it thereafter as a result of
the assumption that the tests of conditional independence are correct.

Second, we prove that the nodes inNDG(S) \ PaG(S) are not
included in the outputPCD. It suffices to study the last time that lines
12–16 are executed. At line 12,PaG(S) ⊆ PCD as per the paragraph
above. Therefore, ifPCD still contains someX ∈ NDG(S) \ PaG(S),
thenX⊥⊥pS|Z for someZ ⊆ PCD \ {X} owing to the local Markov
and decomposition properties. Consequently,X is removed from
PCD at line 16 owing to the assumption that the tests of conditional
independence are correct.

Proof of Theorem 3. First, we prove that the nodes inPCG(S)

are included in the outputPC. If X ∈ PCG(S), then S ∈
PCG(X). Therefore,X andS satisfy the conditions at lines 2 and
3, respectively, as per Theorem 2. Consequently,X entersPC at
line 4.

Second, we prove that the nodes not inPCG(S) are not included in
the outputPC. Let X /∈ PCG(S). If X does not satisfy the condition
at line 2, thenX does not enterPC at line 4. However, ifX satisfies
the condition at line 2, thenX must be a descendant ofS in G other
than one of its children and, thus,S does not satisfy the condition at
line 3 as per Theorem 2. Consequently,X does not enterPC at line 4.

Proof of Theorem 4. We have to prove that the outputDAG has
the same adjacencies and the same immoralities asG(S)R as per
Theorem 1. It is immediate thatDAG has the same adjacencies as
G(S)R at line 8 as per Theorem 3. Similarly, it is immediate that
DAG has the same immoralities asG(S)R at line 9 due to the faith-
fulness assumption and the assumption that the tests of conditional
independence are correct.
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