Vol. 21 Suppl. 2 2005, pages i224-i229
doi:10.1093/bioinformatics/bti1137

Algorithms

Growing Bayesian network models of gene networks from

seed genes

J. M. Pefia’*, J. Bjérkegren? and J. Tegnér'2

TComputational Biology, Department of Physics and Measurement Technology, Link&ping University,
581 83 Linkdping, Sweden and 2Center for Genomics and Bioinformatics, Karolinska Institutet,

171 77 Stockholm, Sweden

ABSTRACT

Motivation: For the last few years, Bayesian networks (BNs) have
received increasing attention from the computational biology com-
munity as models of gene networks, though learning them from
gene-expression data is problematic. Most gene-expression data-
bases contain measurements for thousands of genes, but the existing
algorithms for learning BNs from data do not scale to such high-
dimensional databases. This means that the user has to decide in
advance which genes are included in the learning process, typically
no more than a few hundreds, and which genes are excluded from it.
This is not a trivial decision. We propose an alternative approach to
overcome this problem.

Results: We propose a new algorithm for learning BN models of gene
networks from gene-expression data. Our algorithm receives a seed
gene S and a positive integer R from the user, and returns a BN
for the genes that depend on S such that less than R other genes
mediate the dependency. Our algorithm grows the BN, which initially
only contains S, by repeating the following step R + 1 times and, then,
pruning some genes; find the parents and children of all the genes
in the BN and add them to it. Intuitively, our algorithm provides the
user with a window of radius R around S to look at the BN model of
a gene network without having to exclude any gene in advance. We
prove that our algorithm is correct under the faithfulness assumption.
We evaluate our algorithm on simulated and biological data (Rosetta
compendium) with satisfactory results.

Contact: jmp@ifm.liu.se

1 INTRODUCTION

of parameters needed to specify the probability distribution by tak-
ing advantage of the conditional independencies between the genes.
These conditional independencies are encoded in an acyclic directed
graph (DAG) to help visualization and reasoning. Learning BN
models of gene networks from gene-expression data is problematic;
most gene-expression databases contain measurements for thousands
of genes (Hugheat al., 2000; Spellmast al., 1998), but the existing
algorithms for learning BNs from data do not scale to such high-
dimensional databases (Friedmetral., 1999; Tsamardinoet al.,
2003). This implies that in the references cited above, for instance,
the authors have to decide in advance which genes are included
in the learning process (in all the case4000) and which genes
are excluded from it. This is not a trivial decision. We propose an
alternative approach to overcome this problem.

In this paper, we propose a new algorithm for learning BN models
of gene networks from gene-expression data. Our algorithm receives
a seed gend and a positive integeR from the user, and returns
a BN for the genes that depend 6nsuch that less thar other
genes mediate the dependency. Our algorithm grows the BN, which
initially only containsS, by repeating the following step + 1 times
and, then, pruning some genes; find the parents and children of all
the genes in the BN and add them to it. Intuitively, our algorithm
provides the user with a window of radi&sarounds to look at the
BN model of a gene network without having to exclude any gene in
advance.

The rest of the paper is organized as follows. In Section 2, we
review BNs. In Sections 3, we describe our new algorithm. In
Section 4, we evaluate our algorithm on simulated and biological
data [Rosetta compendium (Hughatsal., 2000)] with satisfactory

eresults. Finally, in Section 5, we discuss related works and possible

Much of a cell’s complex behavior can be explained through th

concerted activity of genes and gene products. This concerted activi

is typically represented as a network of interacting genes. ldentifying

this gene network is crucial for understanding the behavior of the cel2  BAYESIAN NETWORKS

which, inturn, can lead to better diagnosis and treatment of diseaseshe following definitions and theorem can be found in most books
For the last few years, Bayesian networks (BNs) (Neapolitanon Bayesian networks (Neapolitan, 2003; Pearl, 1988). We assume

2003; Pearl, 1988) have received increasing attention from thenat the reader is familiar with graph and probability theories. We

computational biology community as models of gene networksapbreviate if and only if by iff, such that by st and with respect to
(Badea, 2003; Bernard and Hartemink, 2005; Friedstah, 2000;  py wrt.

Harteminket al., 2002; Ottet al., 2004; Pe'eret al., 2001; Pefia, | et U denote a non-empty finite set of random variables. A BN
2004). A BN model of a gene network represents a probability disfor U is a pair(G, 6), whereG is a DAG whose nodes correspond to
tribution for the genes in the network. The BN minimizes the numberthe random variables id, ando are parameters Specifying a condi-
tional probability distribution for each nodegiven its parents i,
p(X|Pag(X)). ABN (G, 6) represents a probability distribution for

g)(tensions to our algorithm.

*To whom correspondence should be addressed.
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U, p(U), through the factorizatiop(U) = []y.y p(X|Pag(X)).
HereafterPCgs (X) denotes the parents and children¥ofn G, and

Table 1. AlgorithmPCD, AlgorithmPC andAlgorithmGPC

ND¢ (X) the non-descendants &fin G.

Any probability distributiorp that can be represented by a BN with
DAG G, i.e. by aparameterizati@rof G, satisfies certain conditional
independencies between the random variabléstinat can be read
from G via the d-separation criterion, i.e.dfsep; (X, Y|Z), then
X 1L,Y|Z with X, Y andZ three mutually disjoint subsets bf The
statementl-sep; (X, Y|Z) is true when for every undirected path in
G between a node iX and a node ir¥ there exists a nod# in
the path st either (1)¥ does not have two parents in the path and
W e Z, or (2) W has two parents in the path and neitiémor any
of its descendants iv is in Z. A probability distributionp is said
to be faithful to a DAGG whenX 1LY |Z iff d-sep;(X,Y|Z). 10

The nodesW, X andY form an immorality in a DAGG when 1
X — W <« Y is the subgraph of; induced byw, X andY.

Two DAGs are equivalent when they represent the same d-separatiqp
statements. The equivalence class of a DAGs the set of DAGs 13

AlgorithmPCD(S)

W N

w0~ O A

that are equivalent tG. 14
15
THEOREM 1. Two DAGs are equivalent iff they have the same 16
adjacencies and the same immoralities. 17
Two nodes are at distanck in a DAG G when the shortest 18
undirected path irG between them is of lengtR - G(X)® denotes  AlgorithmPC(S)
the subgraph ofG induced by the nodes at distance at mdst
fromX in G.
3
4
3 GROWING PARENTS AND CHILDREN 5

ALGORITHM AlgorithmGPC(S, R)

A BN models a gene network by equating each gene with a rani
dom variable or node. We note that the DAG of a BN model of 2
a gene network does not necessarily represent physical interactiols
between genes but conditional (in)dependencies. We aim to learn BR
models of gene networks from gene-expression data. This will helr?
us to understand the probability distributions underlying the gene,
networks in terms of conditional (in)dependencies between genes.g
Learning a BN from data consists in, first, learning a DAG and, g
then, learning a parameterization of the DAG. Similar to the works

PCD=¢
CanPCD = U\ {S}
repeat
/* step 1: remove false positives froBanPCD */
for each X € CanPCD do
Sep[X] = argminzcpepdepp (X, S12)
for each X € CanPCD do
if X1 pS|Sep[X]then
CanPCD = CanPCD \ {X}
/* step 2: add the best candidateRGD */
Y = arg maxyccanpcodepp (X, S|Sep[X1)
PCD = PCD U {1}
CanPCD = CanPCD \ {Y}
/* step 3: remove false positives froRCD */
for each X € PCD do
Sep[X] = arg minzcpepy (x)depp, (X, S|12)
for each X € PCD do
if X 1L pS|Sep[X] then
PCD = PCD\ {X}
until PCD does not change
return PCD

PC=¢
for each X € AlgorithmPCD(S) do
if S € AlgorithmPCD(X) then
PC =PCuU {X}
return PC

DAG = {S}
for1,...,R+1do
for each X € DAG do
PC[X] = AlgorithmPC(X)
for each X € DAG do
AddAdjacencies(DAG, X, PC[X])
Prune(DAG)
Addlmmoralities(DAG)
return DAG

cited in Section 1, we focus on the former task because, under the
assumption that the learning data contain no missing values, the latter
task can be efficiently solved according to the maximum likelihood

(ML) or maximum a posteriori (MAP) criterion (Neapolitan, 2003; from high-dimensional data. They are correct versions of an incorrect
Pearl, 1988). To appreciate the complexity of learning a DAG, wefunction proposed in (Tsamardinesal., 2003).

note that the number of DAGs is super-exponential in the number of HereafterX X pY|Z (X1 pY|Z) denotes conditional (in)depend-
nodes (Robinson, 1973). In this section, we present a new algorithrance wrt the learning databaBe anddep,, (X, Y |Z) is a measure of
for learning a DAG from a databade The algorithm, named grow- the strength of the conditional dependence Birin order to decide
ing parents and children algorithm éigorithmGPC for short, is  onX L pY|Z or X 1LY |Z, AlgorithmGPC runs ay2-test whenD
based on the faithfulness assumption, i.e. on the assumptio@that is discrete and a Fisherstest whenD is continuous and, then, uses
is a sample from a probability distributign faithful to a DAG G. the negativeP-value of the test adep,, (X, Y|Z) [see Spirtest al.
AlgorithmGPC receives a seed nodeand a positive integeR as  (1993) for details on these tests].

input, and returns a DAG that is equivalentioS) . AlgorithmGPC Table 1 outlineAlgorithmPCD. The algorithm receives the node
grows the DAG, which initially only contains, by repeating the S as input and returns a superseRdl; (S) in PCD. The algorithm
following stepR + 1 times and, then, pruning some nodes; find tries to minimize the number of nodes noHE () that are returned
the parents and children of all the nodes in the DAG and add thenm PCD. The algorithm repeats the following three steps up@D

to it. Therefore, a key step iAlgorithmGPC is the identification  does not change. First, some nodes né@g; (S) are removed from
of PG (X) for a given nodeX in G. The functionsAlgorithmPCD CanPCD, which contains the candidates to enf®@D (lines 4-8).
and AlgorithmPC solve this step. We have previously introduced Second, the candidate most likely to beéP@g (S) is added tdPCD
these two functions in Pef@hal. (2005) to learn Markov boundaries and removed fron€anPCD (lines 9-11). Since this step is based on
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the heuristic at line 9, some nodes noFB; (S) may be added to
PCD. Some of these nodes are removed fi®8D in the third step

a single DAG (Theorem 1)AlgorithmGPC is correct under some
assumptions (see Appendix for the proof).

(lines 12-16). The first and third steps are based on the faithfulness ] )
assumptionAlgorithmPCD is correct under some assumptions (see  [HEOREM 4. Under the assumptionsthat thelearning database D

Appendix for the proof).

THEOREM 2. Under the assumptionsthat thelearning database D
isanindependent and identically distributed samplefroma probabil -
ity distribution p faithful toa DAG G and that thetests of conditional
independence are correct, the output of AlgorithmPCD(S) includes
PCq (S) but does not include any nodein NDg (S) \ Pag (S).

isanindependent and identically distributed samplefroma probabil -
ity distribution p faithful toa DAG G and that thetests of conditional
independence are correct, the output of AlgorithmGPC(S, R) isthe
equivalence class of G(S)*®.

Although the assumptions in Theorem 4 may not hold in practice,
correctness is a desirable property for an algorithm to have and,
unfortunately, most of the existing algorithms for learning BNs from

The assumption that the tests of conditional independence ar@ata lack it.

correct means that 1 pY|Z iff X 1L ,Y|Z.

The output ofAlgorithmPCD(S) must be further processedinorder 4 EVALUATION

to obtainPCg (S), because it may contain some descendanssiof
G other than its children. These nodes can be easily identified:
X is in the output ofAlgorithmPCD(S), then X is a descendant
of S in G other than one of its children iff is not in the output
of AlgorithmPCD(X). AlgorithmPC, which is outlined in Table 1,
implements this observation. The algorithm receives the rfode
input and return®Cg (S) in PC. AlgorithmPC is correct under some
assumptions (See Appendix for the proof).

THEOREM 3. Under the assumptionsthat the learning database D
isanindependent and identically distributed samplefroma probabil -
ity distribution p faithful toa DAG G and that thetests of conditional
independence are correct, the output of AlgorithmPC(S) isPCg (S).

Finally, Table 1 outlinef\lgorithmGPC. The algorithm receives
the seed nodé& and the positive integeR as inputs, and returns a
DAG in DAG that is equivalent ta&5 (S)®. The algorithm works in

iLn this section, we evaluatéigorithmGPC on simulated and
iological data [Rosetta compendium (Hugleeal., 2000)].

4.1 Simulated data

We consider databases sampled from two discrete BNs that have been
previously used as benchmarks for algorithms for learning BNs from
data, namely the Alarm BN (37 nodes and 46 edges) (Herskovits,
1991) and the Pigs BN (441 nodes and 592 edges) (Jensen, 1997).
We also consider databases sampled from Gaussian networks (GNs)
(Geiger and Heckerman, 1994), a class of continuous BNs. We gen-
erate random GNs as follows. The DAG has 50 nodes, the number
of edges is uniformly drawn from [50, 100], and the edges link
uniformly drawn pairs of nodes. Each node follows a Gaussian dis-
tribution whose mean depends linearly on the value of its parents. For
each node, the unconditional mean, the parental linear coefficients
and the conditional standard deviation are uniformly drawn from

two phases based on Theorem 1. In the first phase, the adjacencieq#3, 3], [-3, 3] and [1, 3], respectively. We consider three sizes

G(S)® are added tdAG, which initially only containsS, by repeat-

for the databases sampled, namely 100, 200 and 500 instances. We

ing the following stepR + 1 times and, then, pruning some nodes, do not claim that the databases sampled resemble gene-expression

PCs (X) is obtained by callingAlgorithmPC(X) for each nodeX
in DAG (lines 3—4) and, therRC (X) is added tdAG by calling
AddAdjacencies(DAG, X, PCs (X)) for each nodeX in DAG (lines
5-6). The functiorAddAdjacencies(DAG, X, PC¢ (X)) simply adds
the nodes iIrPCg; (X) to DAG and, then, links each of them %
with an undirected edge. In practicAlgorithmPC and AddAdja-
cencies are not called for each node AG but only for those they
have not been called for before. Since lines 3-6 are exeduted
times, the nodes at distan&e+ 1 from S in G are added t®AG,
although they do not belong t6(S)R. These nodes are removed
from DAG by calling Prune(DAG) (line 7). In the second phase of
AlgorithmGPC, the immoralities irG (5)® are added t©AG by call-
ing Addimmoralities(DAG) (line 8). For each triplet of node&, X
andY stthe subgraph @AG induced by themi¥ —W —Y, the func-
tion Addimmoralities(D AG) adds the immoralitk — W <« Y to
DAGIiff X LpY|ZU{W}foranyZ stX 1 pY|ZandX,Y ¢ Z. In
practice, such & can be efficiently obtaineddlgorithmPCD must
have found such & and could have cached it for later retrieval.
The functionAddimmoralities(DAG) is based on the faithfulness
assumption.

We note that the only directed edgesDAG are those in the

databases, apart from the number of instances. However, they make
it possible to compare the output AfgorithmGPC with the DAGs

of the BNs sampled. This will provide us with some insight into the
performance oAlgorithmGPC before we turn our attention to gene-
expression data in the next section. Since weRise 1, 2 in the next
section, it seems reasonable to #se- 1, 2 in this section as well.

The comparison between the outputAlfjorithmGPC and the
DAGs of the BNs sampled should be done in terms of adjacencies
and immoralities (Theorem 1). Specifically, we proceed as follows
for each database sampled from a BN with DAG We first run
AlgorithmGPC with each node ifG as the seed nodgandR = 1,2
and, then, report the average adjacency (immorality) precision and
recall for each value oR. Adjacency (immorality) precision is the
number of adjacencies (immoralities) in the outpudlgiorithmGPC
that are also i (S)® divided by the number of adjacencies (immor-
alities) in the output. Adjacency (immorality) recall is the number
of adjacencies (immoralities) in the output AlfgorithmGPC that
are also inG(S)R divided by the number of adjacencies (immoral-
ities) in G(S)®. It is important to monitor whether the performance
of AlgorithmGPC is sensitive or not to the degree §f For this
purpose, we also report the average adjacency (immorality) preci-

immoralities. In order to obtain a DAG, the undirected edges insion and recall over the nodes dh with five or more parents and
DAG can be oriented in any direction as long as neither directechildren (4 nodes in the Alarm BN and 39 nodes in the Pigs BN).
cycles nor new immoralities are created. Therefore, strictly speakThe significance level for the tests of conditional independence is the
ing, AlgorithmGPC returns an equivalence class of DAGs rather thanstandard 0.05.
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Table 2. Adjacency precision and recall 8fgorithmGPC

Data Size R Precision Recall Precisign Recalk
Alarm 100 1 0.88+ 0.06 0.524-0.05 0.8 0.06 0.344+0.04
Alarm 100 2 0.87:0.08 0.33+ 0.05 0.87+0.10 0.23+0.04
Alarm 200 1 0.94+ 0.04 0.644-0.06 0.974-0.06 0.45+0.05
Alarm 200 2 0.93+ 0.05 0.44+ 0.06 0.96+ 0.04 0.35+ 0.06
Alarm 500 1 0.9A4-0.03 0.78+0.03 0.99%-0.03 0.5740.07
Alarm 500 2 0.9 0.04 0.63+0.03 0.99+0.01 0.49+0.04
Pigs 100 1 0.7&:0.01 0.75+0.02 0.85+0.03 0.554+0.02
Pigs 100 2 0.58 0.02 0.53+ 0.02 0.68+ 0.03 0.36+ 0.02
Pigs 200 1 0.85-0.02 0.93+0.01 0.96+0.01 0.814-0.01
Pigs 200 2 0.8 0.02 0.78+ 0.02 0.8+ 0.02 0.63+0.03
Pigs 500 1 0.88:0.01 1.00+ 0.00 0.96+ 0.02 1.004 0.00
Pigs 500 2 0.85-0.01 1.00+ 0.00 0.90+0.01 1.00+ 0.00
GNs 100 1 0.86:0.06 0.514-0.10 0.914-0.09 0.38+0.09
GNs 100 2 0.84-0.07 0.2%+-0.10 0.88+0.10 0.20+0.08
GNs 200 1 0.88:0.05 0.604-0.12 0.924-0.09 0.43+0.12
GNs 200 2 0.85-0.06 0.38+0.15 0.88+0.10 0.26+0.12
GNs 500 1 0.88:0.05 0.674-0.10 0.914-0.06 0.514-0.14
GNs 500 2 0.85-0.07 0.46+0.13 0.86+ 0.09 0.33+0.14
Table 3. Immorality precision and recall &flgorithmGPC

Data Size R Precision Recall Precisign Recalk
Alarm 100 1 0.82-0.14 0.28+ 0.09 0.00+ 0.00 0.00+ 0.00
Alarm 100 2 0.79+0.12 0.18+0.06 0.56+0.31 0.06+ 0.04
Alarm 200 1 0.80+0.11 0.46+ 0.07 1.00+ 0.00 0.03+0.04
Alarm 200 2 0.78+0.10 0.2%-0.05 0.52+0.11 0.12+0.03
Alarm 500 1 0.9G+ 0.07 0.62+0.04 1.00+ 0.00 0.19+0.12
Alarm 500 2 0.92+ 0.05 0.46+ 0.06 0.82+0.13 0.244+0.05
Pigs 100 1 0.65-0.02 0.46+ 0.03 0.49+ 0.05 0.35+ 0.05
Pigs 100 2 0.5%-0.02 0.414+0.03 0.59+-0.06 0.274+-0.02
Pigs 200 1 0.830.02 0.76+ 0.03 0.69+0.08 0.64+ 0.04
Pigs 200 2 0.76-0.02 0.714+0.02 0.73+0.04 0.58+0.03
Pigs 500 1 0.96: 0.01 0.97+ 0.02 0.89+ 0.05 0.94+ 0.04
Pigs 500 2 0.83:0.02 0.95+ 0.02 0.82+-0.04 0.9440.02
GNs 100 1 0.59- 0.22 0.15+ 0.09 0.41+0.32 0.04+ 0.07
GNs 100 2 0.59-0.22 0.09+0.07 0.55+0.28 0.054+0.08
GNs 200 1 0.7G: 0.17 0.25+0.12 0.52+0.32 0.09+0.11
GNs 200 2 0.76:0.17 0.17+0.11 0.59+-0.29 0.08+0.07
GNs 500 1 0.64-0.14 0.34+0.13 0.56+ 0.29 0.19+0.17
GNs 500 2 0.68-0.14 0.244+0.13 0.614+-0.21 0.13+0.11

Table 2 summarizes the adjacency precision and recall of Table 3 summarizes the immorality precision and recall of
AlgorithmGPC. The columns Precision and Recall show the aver-AlgorithmGPC. The main conclusion that we obtain from the table
age adjacency precision and recall, respectively, over all the nodeis thatAlgorithmGPC performs better for learning adjacencies than
The columns Precisignand Recall show the average adjacency for learning immoralities. This is particularly noticeable for GNs.
precision and recall, respectively, over the nodes with five or morér'he reason is that learning adjacencies & gorithmGPC is more
parents and children. Each row in the table shows average and stanabust than learning immoralities. In other words, learning immor-
ard deviation values over 10 databases of the corresponding size falities as inAlgorithmGPC is more sensitive to any error previously
the Alarm and Pigs BNs, angd50 databases for the GNs. We reach made than learning adjacencies. This problem has been previously
two conclusions from the table. First, the adjacency precision ohoted in Badea (2003, 2004) and Spirteal. (1993); a solution has
AlgorithmGPC is high in general, though it slightly degrades with been proposed in Badea (2003, 2004), which we plan to implement
R. Second, the adjacency recallAforithmGPC is lower than the in a future version oAlgorithmGPC.
adjacency precision, and degrades with both the degreeamdR. In short, the most noteworthy featureAlfjorithmGPC is its high
This is not surprising given the small sizes of the learning databasesdjacency precision. This is an important feature because it implies
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that the adjacencies returned are highly reliable, i.e. there are few
false positives among them.

RPL21B

4.2 Biological data

We use the Rosetta compendium (Hugleesl., 2000) in order
to illustrate the usefulness @figorithmGPC to learn biologically
coherent BN models of gene networks from gene-expression data.
The Rosetta compendium consists of 300 full-genome-expression
profiles of the yeas®accharomyces cerevisiae. In other words, the
learning database consists of 300 instances and 6316 continuous
random variables.

Iron is an essential nutrient for virtually every organism, but
it is also potentially toxic to cells. We are interested in learning
about the iron homeostasis pathway in yeast, which regulates the
uptake, storage, and utilization of iron so as to keep it at a non-toxi¢ig. 1. BN model of the iron homeostasis pathway learntiyorithmGPC
level. According to Lesuisset al. (2001), Philpotet al. (2002) and  from the Rosetta compendium with ARN1 as the seed geaadR = 2.
Protchenkeet al. (2001), yeast can use two different high-affinity Gray-colored genes are related to iron homeostasis according to Jensen and
mechanisms, reductive and non-reductive, to take up iron from thé&ulotta (2002), Lesuisse al. (2001), Philpottt al. (2002) and Protchenko
extracellular medium. Genes FRE1, FRE2, FTR1 and FET3 congt@. (2001), whereas white-colored genes are not known to be related to iron
trol the reductive mechanism, whereas genes ARN1, ARN2, ARN3IOMeostasis.
and ARN4 control the non-reductive mechanism. Genes FIT1, FIT

and FIT3 facilitate iron transport. The iron homeostasis pathway ”]ogically coherent output, only requires identifying a single relevant

yeast has been previously used in Margeliral. (2004) and Pe’er ene in advance, and no gene is excluded from the learning process
et al. (2001) to evaluate the accuracy of their algorithms for Iearningg ! 9 gp '

models of gene networks from gene-expression data. Specificall
both papers report models of the iron homeostasis pathway Iear¥n:{ DISCUSSION
from the Rosetta compendium, centered at ARN1 and with a radiusVe have introducedlgorithmGPC, an algorithm for growing BN
of two. Therefore, we rullgorithmGPC with ARN1 as the seed models of gene networks from seed genes. We have evaluated it on
geneS andR = 2. The significance level for the tests of conditional synthetic and biological data with satisfactory results. In Hashimoto
independence is the standard 0.05. The outpéd gdrithmGPC is etal. (2004), an algorithm for growing probabilistic Boolean network
depicted in Figure 1. Gray-colored genes are related to iron homeanodels of gene networks from seed genes is proposed. Our work can
stasis, whereas white-colored genes are not known to be related be seen as an extension of the work by Hashirmebtal. to BN
iron homeostasis. The gray-colored genes include 9 of the 11 genesodels of gene networks. However, there are some other significant
mentioned above as related to iron homeostasis, plus SMF3 whictlifferences between the two works. Unlike Hashimeital. we have
has been proposed to function in iron transport (Jensen and Culottproved the correctness of our algorithm. Their algorithm requires
2002). IfR = 1, then the output involves 4 genes, all of them relatedbinary data, whereas ours can learn from both discrete and continuous
to iron homeostasis. IR = 2, then the output involves 17 genes, data. They report results for a database with only 597 genes, whereas
10 of them related to iron homeostasis. Therefore, the output ofve have showed that our algorithm can deal with databases with
AlgorithmGPC is rich in genes related to iron homeostasis. We notethousands of genes. An other work that is related to ours, thoughin a
that all the genes related to iron homeostasis are dependent one l@sser degree, is Tanay and Shamir (2001), where an algorithm that
another, and that any node that mediates these dependencies is atslgests expansions to a given gene pathway is presented.
related to iron homeostasis. This is consistent with the conclusions Most of the previous works on learning BN models of gene net-
drawn in Section 4.1, i.e. the adjacencies returnedliggrithmGPC works from gene-expression data, (e.g. Badea, 2003; Bernard and
are highly reliable. Regarding running timalgorithmGPC takes Hartemink, 2005; Harteminkt al., 2002; Ottet al., 2004; Pena,
6 min for R = 1 and 37 min forR = 2 (C++ implementation, 2004), do not address the poor scalability of the existing algorithms
not particularly optimized for speed, and run on a Pentium 2.4 GHzfor learning BNs from data. They simply reduce the dimensionality
512 MB RAM and Windows 2000). In general, we expect the run-of the gene-expression data in advance so that the existing algorithms
ning time ofAlgorithmGPC to be exponential iR. However,R will are applicable. To our knowledge, Friedn&iral. (2000) and Pe’er
usually be small because we will usually be interested in those geness al. (2001) are the only exceptions to this trend. These works
that depend or§, and none or few genes mediate the dependencybuild upon the algorithm (Friedmaet al., 1999) which, in order
This is also the case in Margolabal. (2004) and Pe’egt al. (2001).  to scale to high-dimensional data, restricts the search for the parents
In comparison, the model of the iron homeostasis pathway irof each node to a small set of candidate parents that are heuristic-
Margolinet al. (2004) involves 26 genes (16 related to iron homeo-ally selected in advance. Unfortunately, they do not report results for
stasis), whereas the model in Pe&tral. (2001) involves 9 genes databases with more than 800 genes. Moreover, the performance of
(6 related to iron homeostasis). Further comparison with the lattetheir algorithm heavily depends on the number of candidate parents
paper which, unlike the former, learns BN models of gene networksllowed for each node, which is a user-defined parameter, and on the
makes clear the main motivation of our work. In order for their heuristic for selecting them. For instance, if the user underestimates
algorithm to be applicable, Pe’et al. focus on 565 relevant genes the number of parents of a node, then the node will lack some of its
selected in advance and, thus, exclude the remaining 5751 genparents in the final BN and, even worse, these errors may propagate

%rom the learning process. HowevatgorithmGPC produces a bio-
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to the rest of the BNAIgorithmGPC does not involve any heuristic European Conference on Symbolic and Quantitative Approaches to Reasoning with

or parameter that may harm the performance. Instead, it copes with Uncertainty, Springer, pp. 136-147. S N

high-dimensional data by learning a local BN around the seed nodg"!Pot.C.Cetal. (2002) The response toiron deprivatiorsirtcharomyces cerevisiae:
expression of siderophore-based systems of iron upBikehem. Soc. Trans., 30,

rather than a global one. 698-702.

We are currently extending gorithmGPC with the following two  protchenko,Oet al. (2001) Three cell wall mannoproteins facilitate the uptake of iron
functionalities. In order to release the user from having to specify the  in Saccharomyces cerevisiae. J. Biol. Chem., 276, 49244-49250.
radiusR, we are developing an automatic criterion to decide when ta?0Pinson,R.W. (1973) Counting labeled acyclic digragiew Directions in Graph

. . . . . Theory, Academic Press, NY, pp. 239-273.
stop growing the BN. In order to assist the user in the Ir]terpn:"tatlorgpellman,P.Tet al. (1998) Comprehensive identification of cell cycle-regulated genes

of the BN learnt, we are implementing the methods in Friedetah of the YeasSaccharomyces cerevisiae by microarray hybridizatiorMol. Biol. Cell,
(2000), Pe'eet al. (2001) and Pefia (2004), to assess the confidence 9, 3273-3297.
in the BN learnt. Spirtes,P., Glymour,C. and Scheines,R. (19@8)sation, Prediction, and Search.

Springer-Verlag, NY
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