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Abstract

Motivation: The use of differential equations (ODE) is one of the most
promising approaches to network inference. The success of ODE-based
approaches has, however, been limited, due to the difficulty in estimating
parameters and by their lack of scalability. Here we introduce a novel
method and pipeline to reverse engineer gene regulatory networks from
gene expression of time series and perturbation data based upon an im-
provement on the calculation scheme of the derivatives and a pre-filtration
step to reduce the number of possible links. The method introduces a
linear differential equation model with adaptive numerical differentiation
that is scalable to extremely large regulatory networks.
Results: We demonstrate the ability of this method to outperform cur-
rent state-of-the-art methods applied to experimental and synthetic data
using test data from the DREAM4 and DREAM5 challenges. Our method
displays greater accuracy and scalability. We benchmark the performance
of the pipeline with respect to data set size and levels of noise. We show
that the computation time is linear over various network sizes.
Availability: The Matlab code of the HiDi implementation is available
at: www.complexitycalculator.com/HiDiScript.zip
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 Introduction

In recent years, we have witnessed remarkable advances in measurement tech-
nologies associated with data-acquisition techniques in many areas, including
biological domains and engineering. We can simultaneously measure the ex-
pression levels of thousands of genes under different experimental conditions.
Techniques to extract useful information from big data are needed. A funda-
mental reason for the difficulty in attempting to analyze many large scale data
sets is low measurement density [20]. Such datasets are high-dimensional and
consist of a small number of points in a high-dimensional space, and it can be
extremely challenging to find structures in such data.

Networks provide a fundamental setting for representing and interpreting
information. Network inference deals with the reconstruction of molecular net-
works directly from experimental data. Data is becoming ever larger, more dy-
namic, heterogeneous, noisy and incomplete, exacerbating the difficulty of the
network inference challenge. For example, in the construction of genetic reg-
ulatory networks, we can simultaneously measure the expression of thousands
of genes, but the number of experiments we can perform is limited when set
against the combinatorial explosion of possible testable conditions. What some-
times makes an approximate inference possible in such situations is that many
such systems in the real world have characteristic properties that allow them to
be represented or approximated with a much smaller number of parameters than
the dimensions of the phase space. On the one hand, there is a wide variety of
different approaches available that can be used to infer molecular networks from
experimental data, but a reliable network inference method remains a challenge
and an open area of intensive research. Mathematical gene regulation network
(GRN) models range from logical models with only Boolean values to contin-
uous ones including detailed biochemical interactions ([16, 12, 11, 7]). On the
other hand, logical models require fewer biological details and are computa-
tionally more efficient but also display limited dynamic behavior. In contrast,
concrete models can describe more details of specific network dynamics but the
computational cost of determining parameters becomes intractable.

In brief, given N molecular elements, the challenge of network reconstruction
is to decipher the complex interplay of the interacting molecules among an ex-
ponential number of possible topologies (all element interactions). For example,
Median-Corrected Z-Scores [5], Context Likelihood of Relatedness (CLR) [14],
etc. can be applied to extract information about network topology from steady-
state data. Methods based on steady-state data have the inherent weakness of
being unable to readily distinguish between direct interactions and indirect in-
teractions, because by the time the steady state is established the initial pertur-
bation will have spread into the network. One of the most promising approaches
for addressing this problem is the use of differential equations [13, 24, 8]. Here
we interpret the problem of high-dimensional inference within the framework of
linear differential equations. The main goal is to develop a flexible and prin-
cipled pipeline for uncovering hidden structure underlying high-dimensional,
complex data. Here, Ordinary Differential Equation (ODE) models are used
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Figure 1: HiDi: Network inference pipeline including pre-filtration, parameter
identification and network inference.

to represent the dependence of the concentration of one molecular species on
other molecular species. The linear ODE model [13], nonlinear ODE model [24]
and nonparametric additive ODE model [8] have been developed to cope with
time-series (dynamic) data. These methods have the ability to detect transient
perturbations in a network, but they require a large number of parameters to
be determined. There are also other methods based on machine learning [3],
singular value decomposition (SVD) [23], Bayesian networks [22], etc., all with
different limitations and degrees of success.

In this paper we introduce a novel method with which to reverse-engineer
gene regulatory networks from time-course perturbation data with greater ac-
curacy and scalability than has been possible using other methods. Our method
uses a linear differential equation model with adaptive numerical differentiation
to identify extremely large regulatory networks. The method is computationally
very cheap and the size of the network is no longer of paramount concern, both
with respect to computational cost and data limitation. Furthermore, we ad-
dress another challenge, the huge number of possible topologies, by embedding
a filtration step within the method to reduce the number of free parameters
before simulating the dynamical behavior. The latter is used to produce more
information about the network’s structure. We evaluate our method on simu-
lated data, and study its performance with respect to data set size and levels
of noise on a 1565-gene E.coli gene regulatory network. We show the compu-
tation time over various network sizes and estimate the order of computational
complexity. We then use our method to study 5 networks in the benchmark
collection DREAM4 Challenge. We show that our method outperforms current
state-of-the-art methods applied to synthetic data and allows the reconstruc-
tion of bio-physically accurate dynamic models from noisy data, the only (and
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important) caveat being that it requires a large number of perturbation exper-
iments.

2 Methods

2.1 Differential Equations Model

We represent a genetic regulatory network (GRN) as a directed graph G =
(V,E), with nodes V = {v1, . . . , vn} corresponding to genes and directed edges
E = {e1, . . . , em} corresponding to regulatory interactions. An edge from vertex
i to vertex j indicates that the expression of gene i, xi, influences the expression
of gene j, either by activating or by inhibiting it. We use a linear ODE model
to model the dynamics of a GRN, that is, we assume that different regulators
act independently, such that the total effect on the expression of gene i can be
written as the sum of the individual effects. This is clearly an oversimplification,
and can be generalized by considering the products of the effects of different
genes.

The ODE model can be written as:

dx

dt
= a0 + Ax (1)

where x ∈ Rn×1,a0 ∈ Rn×1,A ∈ Rn×n.
The basal synthesis and degradation rate for each gene is represented by aii.
X(t) is the concentration of genes at time t. aij denotes the regulation strength
of component xi on xj . aij > 0 corresponds to an activation, aij < 0 to an
inhibition, and aij = 0 means that there is no regulation of gene j by gene i.

Even though using a linear ODE model is an oversimplification in a first
approximation, its advantage is that the number of parameters is smaller as
compared to non-linear models, and therefore the parameter values can be more
accurately estimated, leading to more reliable descriptions of the dynamics of
the gene regulatory networks, as we will show. This allows the method to scale
up to a very large system.

Traditionally, experimental data are organized in a matrix where the effect
of perturbation of one gene in time xti ∈ Rn, i = 1, ..., T , and it can be encoded
as follows:

X =

 xt1

...
xtT

 ∈ RT×n

Applying different perturbations to the same gene leads to replicates, of which
the r-th replicate can be denoted as:

Xr ∈ RT×n,

Therefore, all R replicates can be denoted in a series of matrices:
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X1,X2, ...,Xr, ...,XR

We employ the same notation for the observations of dxdt in one perturbation
experiment. Therefore:

Y =


dx
dt

∣∣
t1

...
dx
dt

∣∣
tT

 ∈ RT×n;

as well as R replicates:

Y1, ...,Yr, ...,YR.

Using these notations, we will reformulate the problem of network recon-
struction as an optimization problem.

2.2 Parameter estimation of ODE systems

The estimation of model parameters from experimental time series data for dif-
ferential equation models is typically carried out iteratively in two steps: (1) use
of integration schemes to numerically generate solutions x(t) for given parame-
ters, and then (2) comparison of the model’s prediction with the experimental
data to calculate the error.

Initial values and model parameters are then modified to minimize this error.
Prominent techniques, common in the literature, are the least square (LS) and
Kalman filtering methods. When the number of parameters to be estimated
increases, the loss of lock problem grows very fast [21]. To circumvent this,
here we convert the parameter identification problem in the ODE system into
a minimization problem, but using Frobenius’ norm, denoted by ‖.‖F .

The minimization problem can be written as:

J(Ã) =
1

2R
‖Dy −DxÃT ‖2F . (2)

where

Dy =



Y1

...
Yr

...
YR

 and Dx =



1 X1

...
...

1 Xr

...
...

1 XR

 .

From now on we refer to Dy and Dx as Derivative matrix and Design matrix
respectively.
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y = sin(t)

y = sin(t) + noise
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estimated derivative by Euler’s scheme
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Figure 2: An illustration of the derivative estimated by polynomial fitting using
different schemes. The curve is y = sin(t), with theoretical derivative ẏ = cos(t)
(blue dash line). The derivative at time point t = t0 is estimated from the noisy
data with σ0 = 0.1 by fitting a 2nd order polynomial locally around 8 neighbors,
i.e. by FCDS(8,2) (red dash line) and by Euler’s scheme (green dash line).
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(a) performance on data size = 300 (b) performance on data size = 3 600

Figure 3: Precision-Recall Curve and ROC Curve of the prediction of ODE
model with FCDS(8,8) scheme on data size 3 600 and 300 respectively.

7



In many cases, some knowledge of the biological processes underlying a par-
ticular data set will already be available. This can be used to formulate ad-
ditional constraints to be included in the optimization problem or to add a
regularization term to the objective function:

min
Ã∈Rn×(n+1)

J(Ã) :=
1

2R
‖Dy −DxÃT ‖2F +

α

2R
‖A‖2F

subject to

akl = 0, ∀(k, l) ∈ C

(3)

where akl, an entity of A, andC ⊂ {(i, j)|i, j ∈ {1, .., n}} contain all constraints.
α can be determined via cross validation.

We use the Lagrange multipliers (λ) method to solve the above problem. We
introduce a new variable λ into the objective function. Thus we have:

L(Ã, λ) =
1

2R
‖Dy −DxÃT ‖2F +

α

2R
‖A‖2F +

1

R

∑
(k,l)∈C

λklakl (4)

To find the global minimum, we should solve the following linear system.
∂L(Ã,λ)

∂ÃT
= 0

∂L(Ã,λ)
∂λkl

= 0, ∀(k, l) ∈ C
. (5)

In order to solve this linear system, we use a vectorization operator.

Definition 2.1 (vectorization operator). Let A = [a1, ...,ai, ...,an] ∈ Rm×n
and ai ∈ Rm×1 be the i-th column of A; the vectorization operator vec :
Rm×n → Rmn×1 maps A into a column vector by queuing the column vectors
of A to the rear of the queue one by one:

vec(A) =


a1

a2

...
an

 ∈ Rmn×1.

With the vectorization operator, the linear system (5) can be written in a
matrix form: [

P EC

ET
C 0

] [
vec(ÃT )
λ

]
=

[
vec(Dx

TDy)
0

]
where

P = In+1 ⊗
(
Dx

TDx + αÊ
)
∈ R(n+1)2×(n+1)2 ,

EC = [..., vec(Ekl), ...] ∈ R(n+1)2×|C|,

λ = [..., λkl, ...]
T ∈ R|C|×1,

Ekl = [eij ] ∈ R(n+1)×n with eij = δki δ
l
j , i, j = 1, ..., n.
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in which (k, l) ∈ C, |C| is the number of elements or cardinality of set C and
δji is the Kronecker delta.

The coefficient matrix [
P EC

ET
C 0

]
is called the Karush-Kuhn-Tucker (KKT) matrix, and it is nonsingular if and
only if P + ECET

C is positive definite.
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Figure 4: Performance of ODE model without pipeline on different data
sizes, with derivatives estimated by Euler’s scheme, 3-point central scheme,
FCDS(8,2), FCDS(8,6), and FCDS(8,8) schemes. Shown are AUROC and
AUPR.

2.3 Numerical Differentiation of Noisy Data

Derivative matrices, in most cases, should be estimated from the observed x
data which is noisy due to measurement errors. Instead of the finite differ-
ence formulas such as the explicit Euler scheme or the 3-point central difference
scheme that are not a good choice for noisy data, we propose the use of poly-
nomial fitting rather than interpolation, and only central difference schemes,
which yield greater accuracy [2].

The main idea is to fit a polynomial locally with a few neighbor points and
then differentiate the fitted polynomial.

Theorem 2.1 (Fitted Central Derivative Scheme). Let Pn(t) be a polynomial
of order n:

Pn(t) = a0 + a1(t− t0) + ...+ an(t− t0)n,

fitted into (t0, x(t0)) and its m = 2k neighbor nodes:

t0 − kh ... t0 − h t0 t0 + h ... t0 + kh
x(t0 − kh) ... x(t0 − h) x(t0) x(t0 + h) ... x(t0 + kh)
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then the derivative of x at the point t = t0 can be approximated by a1, which
can be solved from the following linear system:

(V TV + λI)


a0
a1
...
an

 = V T



x(t0 − kh)
...

x(t0)
...

x(t0 + kh)

 (6)

where V is the Vandermonde matrix

V =


...

...
...

...
...

1 −ih (−ih)2 . . . (−ih)n

...
...

...
...

...

 ∈ R(m+1)×(n+1),

i = −k, ..., 0, ..., k

Proof. The parameters in the polynomial can be fitted by the classical linear
least squares regression:

min
a0,a1,...,an∈R

1

2

k∑
i=−k

|x(t− ik)− Pn(t− ih)|2 +
λ

2

n∑
i=0

a2i

, of which the solution is well known, as shown in equation (6) in this theorem.
Furthermore, the estimation of dx/dt is:

dx

dt

∣∣∣∣
t=t0

≈ Pn(t)

dt

∣∣∣∣
t=t0

= a1

We call this scheme the Fitted Central Derivative Scheme and it is denoted
FCDS(m,n). m is the window length of the moving fitting, indicating how
many nodes are involved; n is the order of the fitted polynomial and shows the
accuracy of the difference scheme. Once m and n are given, the scheme can be
determined. If m ≥ n, the solution is unique. As n decreases, the fitted poly-
nomial becomes smoother and the accuracy of differentiation decreases. When
n = m, the schemes are the classical central difference schemes, which, however,
are the worst at noise control because they are deduced from Lagrange interpo-
lation under the assumption that the curve passes exactly through these points,
which is not the case for noisy data. If m = n and λ = 0, then the polynomial
fitting collapses to a Lagrange interpolation, which yields the classical (m+ 1)-
point central difference scheme. Fig.2 is an example illustrating that FCDS is
more robust than Euler’s scheme.
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2.4 Network inference

In the previous section we suggested an approach for dealing with noisy data.
The introduction of FCDS is key to coping with experimental and biological vari-
ability. We can now solve the linear system (5) to find the network underlying
the data. This would be reasonable if the problem were not undetermined and
the data were not noisy. However, since the optimization problem encountered
for real data is typically underdetermined, marginal distributions for parame-
ters show wide peaks and large confidence intervals. In many biological settings,
available data are insufficient to unambiguously reconstruct the underlying net-
work. In such situations, strict regularization of the objective function, using,
for example, maximum parsimony, or the inclusion of additional prior biological
knowledge can be helpful ([12]). In this section we show how we can drive solu-
tions to sparse networks, and make the inference feasible even in the presence
of substantial amounts of missing data. We show how prior knowledge can be
formulated as a constrained optimization problem. We use a filter for a sparse
ODE system based on three outlier detection techniques: generalized (extreme
studentized deviate), ESD test [18] and modified Z-Scores [9]. An alternative is
to use normal differential gene expression analysis [17] (not very different from
our approach) to avoid the need to fine-tune one of the parameters (r). How-
ever, this may detect too many or too few genes as outliers and thus reintroduce
a parameter. We use a filtration step and approximate the derivative matrix
numerically and simulate the dynamics of the model with parameters for each
knockout, and then compare the simulation results at each step. The workflow
of the proposed method is shown in Fig. 1. The outlier detection first filters out
unlikely links and thus some parameters in the ODEs are restricted to zero. The
constrained optimization solution for identification of parameters described can
then be applied. Thereafter, the knockout experiments can be simulated nu-
merically. Unlike the steady-state knockout data, the ODE model can simulate
the effects of knockout in an arbitrarily short time period. With the simulated
transient knock-out data, Z-scores can be computed and normalized as final
scores ranking the possible links. The time-series data Xr of gene expression
level can be directly used for parameter optimization. The absolute values of
the parameters were used as scores ranking confidence in the prediction of links:
a larger aij indicated a stronger influence of gene-i on gene-j. The sign of the
parameters tells whether the interaction is an inhibition or an activation. We fil-
ter out unlikely edges in the network by analyzing wild-type data and knock-out
data. This step shrinks the parameters searching space, thus reducing the data
size required for fitting. If gene-i has an edge (or a path) leading to gene-j and
is knocked out in the experiment, the knock-out steady-state gene expression
data of gene-j, denoted as xkoij , would be expected to change significantly from

its wild-type level xwtj . So the Generalized ESD test would be able to detect the

deviation xkoij − xwtj as an outlier, and the modified Z-score will also be high.
If gene-i does not have many direct or indirect interactions with gene-j and

is knocked out in the experiment, it would be expected that xkoij will not change

significantly, excepting noisy fluctuation from its wild-type level xwtj , so that the
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Generalized ESD test will not be able to detect the deviation xkoij − xwtj as an
outlier and the modified Z-score will not be high. There are two parameters
to be specified in the filtration process: the upper bound of number of outliers
r and significance level α. In the context of a network, the upper bound of
number of outliers r is the limit of in-degrees of all gene nodes. Since only up to
r outliers will be detected, only up to r regulators per gene can be found. One
can choose r based on the size of the network to be inferred, prior knowledge
or subjective expectations. One should also consider the number of data sets
available, since a larger r yields more non-zero parameters in ODE, which then
will require more data for fitting. Significance level α (type I error) and β (type
II error) can be interpreted as:

α : P (an edge is detected when there is no edge)
β : P (an edge is not detected but there is an edge)
We need to choose a large significance level α when the outlier detection

technique is applied to filtration, whereas we need to choose a small significance
level α when only the outlier detection technique is applied in finding possible
interactions.

3 Results

3.1 Data simulation

We evaluate the performance of HiDi and other methods on six benchmark
datasets, each consisting of a compendium of gene expression data, a gold stan-
dard set of verified interactions which we ideally would like to reconstruct. Ex-
pression data are either simulated or experimentally measured under a wide
range of perturbations. Data simulation has been done using GeneNetWeaver
(GNW) ([16, 19]), an in silico (numerical) simulator containing dynamic models
of gene regulatory networks of E.coli [4] and S.cerevisiae [1], including a ther-
modynamic model of transcriptional regulation, mRNA and protein dynamics,
enabling it to generate gene expression data. Table 5 summarizes the statis-
tics pertaining to these networks. We simulated 3 different types of data: gene
expression, time course gene expression and perturbation data at steady state.

Network TF Genes Chips Verified links

E. coli Network from 1565 1565 1565 3758

D4 Multi-net* 1 100 100 100 176

D4 Multi-net* 2 100 100 100 249

D4 Multi-net* 3 100 100 100 195

D4 Multi-net* 4 100 100 100 211

D4 Multi-net* 5 100 100 100 193

Table 1: Six Benchmark data sets used in our study. *’D4 Multi-net’ stands for
’DREAM4 Multifactorial Network’.
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3.2 Performance

We compare HiDi to several other GRN inference methods. We use results from
the DREAM challenge and compare inferred networks to known regulations to
assess the number of true positives (TP, the number of known regulations among
the top predictions), false positives (FP, the number of predicted regulations in
the top K which are not known regulations), false negatives (FN, the number of
known interactions which are not among the top predictions) and true negatives
(TN, the number of pairs not among the top predictions which are not known
regulations). We then compute precision (TP/(TP + FP)), recall (TP/(TP
+ FN)). We assess globally how these statistics vary with the number of top
predictions by computing the area under the receiver operating characteristic
(ROC) curve and the precision-recall curve (AUROC and AUPR respectively).
We also compute a p-value for the AUROC and AUPR scores, based on all
DREAM participants’ predictions as used by the DREAM5 organizers to rank
the teams. This involves randomly drawing edges from the teams’ prediction
lists and computing the probabilities of obtaining an equal or larger AUPR (or
AUROC) by chance. Finally, we compute a score for our inference method by
integrating the AUROC and AUPR p-values, as was suggested by the DREAM
organizers.

3.3 DREAM4 and DREAM5 Network Challenges

The wild-type data set, knock-out data set and 10 replicates of the time-series
data set have been provided for each network. Since only 10 replicates of the
time-series data are provided, which is insufficient to determine 10 100 parame-
ters for a 100-node network, we used our pre-filtration procedure to dramatically
reduce the searching dimension. The effectiveness of filtration on one of the
networks network-1 in the DREAM4 challenge is shown in Fig. 1 in the supple-
mentary document.The original 9 900 possible arcs in a 100-gene network were
reduced to a few hundreds, so that the required data for parameter estimation
was dramatically reduced.

We first display the effect of choosing the significance level α in the pre-
filtration procedure. Then we compare the performance of the pipeline method
being presented here with those of participating teams, using the data provided
by the challenge organizers.

Fig. 5 shows that both the precision TP/(TP + FP ) and the False Negative
Rate FN/(FN + TP ) decreased as α increased in the prediction of Network 1.
A pre-filtration is good if the False Negative Rate is low, while a prediction is
bad if the precision is low. This is consistent with the statement in Section 2.4
that a large α is recommended in the pre-filtration while a small α is advisable
for separate use.

Table 3 shows the performance on the five networks for different values of α.
Now, we compare the performance with those of participating teams.
Compared to other teams we ranked first, with an overall score of 71.589,

and we also came first in the sub-ranking of AUPR, with a score of 103.068;
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AUPR p-value of AUPR

Net1 0.630 (T395: 0.536) 1.60E-150 (T395: 1.23E-121 )
Net2 0.448 (T296: 0.396) 8.31E-206 (T296: 1.80E-177)
Net3 0.413 (T395: 0.390) 7.94E-101 (T395: 5.20E-95)
Net4 0.491 (T271: 0.403) 6.41E-117 (T271: 2.93E-95)
Net5 0.251 (T532: 0.326) 2.78E-56 (T532: 3.82E-74)

AUROC p-value of AUROC

Net1 0.916 (T548: 0.917) 2.94E-41 (T548: 1.92E-41)
Net2 0.868 (T395: 0.801) 3.65E-64 (T395: 4.33E-45)
Net3 0.797 (T515: 0.844) 5.27E-39 (T515: 2.84E-51)
Net4 0.852 (T549: 0.848) 4.20E-45 (T549: 2.56E-44)
Net5 0.803 (T548: 0.778) 2.36E-35 (T548: 1.82E-30)

Overall AURR score 125.345 (Team395: 103.068)
Overall AUROC score 44.250 (Team548: 40.962)

Overall score 84.798 (Team395: 71.589)

Table 2: Performance of the pipeline on 5 networks in the DREAM4 challenge.
(TXXX refers to the top score for a team participating in the DREAM Chal-
lenge.) The top teams in each subcategory are in brackets, together with their
scores; the bold item indicates that the score has exceeded the top one. The
performance reported for HiDi is achieved with these settings: α = 0.9, r = 20
in pre-filtration, FCDS(8,6) scheme in ODE model and dt = 0.1 in the post-
modeling stage.
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Team 548 ranked first in the AUROC, with a score of 40.962. Table 2 shows the
performance of the proposed method on the five 100-gene networks with respect
to the top performers in the challenge.

α = 0.01 α = 0.5 α = 0.9

A
U

P
R

Net1 0.571 0.627 0.630
Net2 0.430 0.460 0.448
Net3 0.316 0.407 0.413
Net4 0.389 0.467 0.491
Net5 0.173 0.249 0.251

A
U

R
O

C

Net1 0.878 0.894 0.916
Net2 0.783 0.854 0.868
Net3 0.769 0.813 0.797
Net4 0.807 0.852 0.852
Net5 0.711 0.773 0.803

Overall AUPR Score 106.878 125.042 125.345

Overall AUROC Score 31.969 42.378 44.250

Overall Score 69.424 83.710 84.798

Table 3: Performance on the DREAM4 challenge networks for different values
of α. All values have been calculated using the scoring scripts provided in the
Dream challenge.

We then use HiDi without filtration, provided adequate data are available.
The software GeneNetWeaver (GNW) 3.1.1 Beta can be set to generate the
time-series data for the five networks in the DREAM4 Challenge, with the same
model and the same noise level as in the challenge. This allows us to produce as
much data as we want and to show how the performance is improved with more
data, as is evident from Table 5. The method, with filtration, has produced
quite a good result, especially with such a limited amount of data. However,
without filtration it can achieve an even better performance, despite the fact
that the amount of data required would be large. One can also see how poor
its performance would be if applied on limited data without filtration.

3.4 Reconstruction of the E.coli GRN

We tested the impact of data size on performance with the 1 565-node E.coli
network. Fig. 4 shows that increase of replicates produces S-shape curves of
both AUPR and AUROC. It indicates that the fitting problem always requires
adequate data; with more data, one can expect a better performance. However,
the performance has an upper limitation despite the fact that surplus data are
supplied. In this test, the upper limitations of AUPR and AUROC for the
FCDS(8,8) scheme are 0.624 and 0.95 respectively.

Fig. 3b shows the Precision-Recall Curve and Receiver-Operating Charac-
teristic (ROC) Curve when this limitation is achieved; Fig. 3a shows that when
there is not enough data, the prediction is no better than mere random guess-
work.
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Euler’s scheme, the 3-point central scheme, the FCDS(8,2), FCDS(8,6), and
FCDS(8,8) schemes have truncation errors on the order of O(h), O(h2), O(h2),
O(h6), and O(h8) respectively. Fig. 4 also shows that a higher order of trun-
cation error leads to a better performance. As regards details, Euler’s scheme
(O(h)) turned in the worst performance. FCDS(8,2) and the 3-point central
scheme (both with O(h2)) yielded a similar performance in some ranges, but
FCDS(8,2) eventually surpassed the latter.

The performances of FCDS(8,6) and FCDS(8,8) are very similar, which in-
dicates that a truncation error of O(h6) is sufficient for this test and that an
increase in accuracy leads to no improvement.

To further demonstrate the applicability of our method to real biological
data, we applied HiDi to the four networks from the DREAM 5 challenge, con-
sisting of one derived by insilico simulation and three obtained experimentally
from three species. Due to limited knock-out data provided for Network 2 and
Network 4, we could not run the model for these networks, only for network 1
and network 3. The result has been shown in table 4. The reported perfor-
mance for HiDi is achieved with these settings: α = 0.9, r = 20 in pre-filtration,
FCDS(8,2) scheme in the ODE model and dt = 0.1 in the post-modeling stage.

Method Net1AUROC Net1AUPR Net3AUROC Net3AUPR
GENIE3 0.815 0.291 0.617 0.093
Other 2 0.78 0.245 0.671 0.119

HiDi 0.792 0.272 0.638 0.105

Table 4: Comparison between HiDi and top performing methods in DREAM5
challenges.

3.5 Computational time complexity

The computation time was evaluated by varying the size of the ODE system
from 500 to 10 000 variables, which implied a calculation of over 0.25 million to
100 million parameters to be optimized.

The time for reconstruction of the 500-gene network was 0.6s, and 1766s
(about 30min) for the 10 000-gene network, in which over 100 million parameters
were optimized; the (log10 n, log10 t) was fitted into a straight line which shows
that the time complexity of this algorithm is about O(1/107.6 · n2.7).

The distribution of the computation time is shown in Fig.2 in the supple-
mentary document. The linear system was solved by the Matlab backslash (\)
operator, which is quite efficient and stable. The cross validation has to solve
up to 20 times the linear system and to compute the Frobenius norm 20 times
to choose a better regularization term α in equation 3. As a consequence the
cross validation takes a long chunk of the actual calculation time, but this is not
relevant to the time complexity of the core algorithm. Note that the networks
and data for these tests were randomly generated, since generating dynamic
data for large networks is another challenging task.
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Data Size R=10 R=110 R=1110 R=2110

A
U

P
R

Net1 0.168 0.496 0.605 0.612
Net2 0.100 0.271 0.429 0.438
Net3 0.074 0.352 0.487 0.496
Net4 0.124 0.409 0.540 0.553
Net5 0.046 0.293 0.434 0.441

A
U

R
O

C

Net1 0.774 0.863 0.925 0.935
Net2 0.654 0.744 0.870 0.881
Net3 0.641 0.800 0.851 0.864
Net4 0.720 0.820 0.890 0.913
Net5 0.644 0.789 0.871 0.881

Overall AUPR 22.270 94.697 136.954 139.813

Overall AUROC 14.893 34.335 52.182 55.495

Overall Score 18.581 64.516 94.568 97.654

Data Size R*=10 R**=10

A
U

P
R

Net1 0.630 0.536
Net2 0.448 0.396
Net3 0.413 0.390
Net4 0.491 0.403
Net5 0.251 0.326

A
U

R
O

C

Net1 0.916 0.917
Net2 0.868 0.801
Net3 0.797 0.844
Net4 0.852 0.848
Net5 0.803 0.778

Overall AUPR 125.345 103.068

Overall AUROC 44.250 40.962

Overall Score 84.798 71.589

Table 5: Performance on different data sizes. R is the number of replicates of
time-series data. Columns under ‘R’ are the performances without filtration;
R* represents performances with filtration and R** represents the performances
of the top participants in the DREAM4 Challenge, as shown in Table 2. The
highest scores are marked in bold.
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Figure 5: Precision and False Negative Rate (FNR) on network 1 in the
DREAM4 challenge vs significance level α. The precision decreases as α in-
creases, indicating an increasing type I error ; a decreasing FNR indicates a
decreasing type II error.
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4 Conclusions

We focused on the identification of parameters for the linear ODE systems.
A computationally cheap solution of both unconstrained and constrained op-
timization problems was devised using the Frobenius norm, so that we could
determine parameters in large linear ODE systems from experimental data. Be-
cause the experimental data are usually noisy, a series of fitted central difference
schemes were provided to handle the derivatives in the ODE system. For sparse
ODE systems, we devised a way for outlier detection to introduce sparsity into
the system.

We applied the unconstrained solution to reconstruct gene regulatory net-
works, the dynamics of which were simplified into a linear ODE system. The
results on the 1 565-gene E.coli regulatory networks, of which about 2.5 million
parameters have been determined, showed that the proposed method would turn
in a satisfactory performance if sufficient data were provided, and that noise-
robust difference schemes play an important role in improving the method’s
performance. In this test, the schemes identified as having better noise to ro-
bustness ratios in the theoretical analysis yielded better performances as the
noise level increased.

We showed that the noise analysis can give us prior knowledge that can
be used in choosing a finite difference scheme before actually conducting the
numerical experiment. The constrained solution with filtration to introduce
sparsity was evaluated in the DREAM4 In Silico 100-gene Network Challenge.
The filtration process demonstrated a powerful ability to reduce the number of
parameters in the ODE system from about 10 000 to about 500. With the data
supplied, the performance topped that of all other participants in the DREAM
challenge. While filtration is able to reduce the dimension of the required data
remarkably, it produces errors and the significance level controls the effectiveness
of filtration. A lower significance level filters out more parameters while it
has a higher risk of falsely filtering out nonzero parameters. With more data,
the unconstrained solution without filtration improved even further the overall
scores of the proposed method. This indicates a trade-off that we explored
between filtration and data availability.

Even while demonstrating the advantages of HiDi in tackling the challenge of
network reconstruction, we did not find any clear connection between accuracy
and the topological properties of the networks being reconstructed. This lack
of correspondence between a network feature and the power of our algorithm is
compatible with previous findings in [15] for robust gene network inference in the
same context of the DREAM Challenge, findings that establish that no method
can outperform all others and that the best approach is an heuristic incremental
joint effort among the best algorithms. We think that HiDi contributes to this
effort.
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