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a b s t r a c t

Autoimmune rheumatic diseases are complex disorders, whose etiopathology is attributed to a crosstalk
between genetic predisposition and environmental factors. Both variants of autoimmune susceptibility
genes and environment are involved in the generation of aberrant epigenetic profiles in a cell-specific
manner, which ultimately result in dysregulation of expression. Furthermore, changes in miRNA
expression profiles also cause gene dysregulation associated with aberrant phenotypes. In rheumatoid
arthritis, several cell types are involved in the destruction of the joints, synovial fibroblasts being among
the most important. In this study we performed DNA methylation and miRNA expression screening of
a set of rheumatoid arthritis synovial fibroblasts and compared the results with those obtained from
osteoarthritis patients with a normal phenotype. DNA methylation screening allowed us to identify
changes in novel key target genes like IL6R, CAPN8 and DPP4, as well as several HOX genes. A significant
proportion of genes undergoing DNA methylation changes were inversely correlated with expression.
miRNA screening revealed the existence of subsets of miRNAs that underwent changes in expression.
Integrated analysis highlighted sets of miRNAs that are controlled by DNA methylation, and genes that
are regulated by DNA methylation and are targeted by miRNAs with a potential use as clinical markers.
Our study enabled the identification of novel dysregulated targets in rheumatoid arthritis synovial
fibroblasts and generated a new workflow for the integrated analysis of miRNA and epigenetic control.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Rheumatoid arthritis (RA) is a chronic autoimmune inflamma-
tory disease characterized by the progressive destruction of the
joints. RA pathogenesis involves a variety of cell types, including
several lymphocyte subsets, dendritic cells, osteoclasts and syno-
vial fibroblasts (SFs). In healthy individuals, SFs are essential to
keep the joints in shape, doing so by providing nutrients, facili-
tating matrix remodeling and contributing to tissue repair [1]. In
contrast to normal SFs or those isolated from patients with osteo-
arthritis (osteoarthritis synovial fibroblasts, OASFs), rheumatoid
þ34 932607219.
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arthritis synovial fibroblasts (RASFs) show activities associated
with an aggressive phenotype, like upregulated expression of
protooncogenes, specific matrix-degrading enzymes, adhesion
molecules, and cytokines [2]. Differences in phenotype and gene
expression between RASFs and their normal counterparts reflect
a profound change in processes involved in gene regulation at the
transcriptional and post-transcriptional levels. The first group
comprises epigenetic mechanisms, like DNA methylation, whilst
miRNA control constitutes one of the best studied mechanisms of
the second.

DNA methylation takes place in cytosine bases followed by
guanines. In relation with transcription, the repressive role of
methylation at CpG sites located at or near the transcription start
sites of genes, especially when those CpGs are clustered as CpG
islands, is well established [3]. Methylation of CpGs located in other
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regions like gene bodies is also involved in gene regulation [4,5]. At
the other side of gene regulation lie microRNAs (miRNAs), a class of
endogenous, small, non-coding regulatory RNA molecules that
modulate the expression of multiple target genes at the post-
transcriptional level and that are implicated in a wide variety of
cellular processes and disease pathogenesis [6].

The study of epigenetic- and miRNA-mediated alterations in
association with disease is becoming increasingly important as
these processes directly participate in the generation of aberrant
profiles of gene expression ultimately determining cell function
and are pharmacologically reversible. Epigenetics is particularly
relevant in autoimmune rheumatic diseases as it is highly depen-
dent on environmental effects. As indicated above, both genetics
and environmental factors contribute to ethiopathology of auto-
immune rheumatic disorders. This double contribution is typically
exemplified by the partial concordance in monozygotic twins (MZ)
[7,8]. It is of inherent interest to identify autoimmune disease
phenotypes for which the environment plays a critical role [9].
Many environmental factors, including exposure to chemicals,
tobacco smoke, radiation, ultraviolet (UV) light and infectious
agents among other external factors, are associated with the
development of autoimmune rheumatic disorders [10]. Most of
these environmental factors are now known to directly or indirectly
induce epigenetic changes, which modulate gene expression and
therefore associate with changes in cell function. For this reason,
epigenetics provides a source of molecular mechanisms that can
explain the environmental effects on the development of autoim-
mune disorders [11]. The close relationship between environment
and epigenetic status and autoimmune rheumatic disease is also
exemplified by using animal models [12]. This type of studies is also
essential for the identification of novel clinical markers for disease
onset, progression and response to treatments.

In this line, initial reports demonstrated hypomethylation-
associated reactivation of endogenous retroviral element L1 in
the RA synovial lining at joints [13]. Additional sequences have
since been found to undergo hypomethylation in RASFs, like IL-6
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[14] and CXCL12 [15]. Candidate gene analysis has also enabled
genes to be identified that are hypermethylated in RASFs [16]. More
recently, DNA methylation profiling of RASFs versus OASFs has led
to the identification of a number of hypomethylated and hyper-
methylated genes [17]. With respect to miRNAs, reduced miR-34a
levels have been linked with increased resistance of RASFs to
apoptosis [18], and lower miR-124a levels in RASFs impact its
targets, CDK-2 and MCP-1 [19]. Conversely, miR-203 shows
increased expression in RASFs [20]. Interestingly, overexpression of
this miR-203 is demethylation-dependent, highlighting the
importance of investigating multiple levels of regulation and the
need to use integrated strategies that consider interconnected
mechanisms.

In this study, we have performed the first integrated comparison
of DNA methylation and miRNA expression data, together with
mRNA expression data from RASFs versus OASFs (Fig. 1) in order to
investigate the relevance of these changes in these cells and to
overcome the limitations of using a small number of samples. Our
analysis identifies novel targets of DNA methylation- and miRNA-
associated dysregulation in RA. Integration of the analysis of
these two datasets suggests the existence of several genes for
which the two mechanisms could act in the same or in opposite
directions.

2. Material and methods

2.1. Subjects and sample preparation

Fibroblast-like synoviocytes (FLSs) were isolated from synovial
tissues extracted from RA and OA patients at the time of joint
replacement in the Department of Rheumatology of Leiden
University Medical Center. All RA patients met the 1987 criteria of
the American College of Rheumatology. Before tissue collection,
permission consistent with the protocol of the Helsinki Interna-
tional Conference on Harmonisation Good Clinical Practice was
obtained. All individuals gave informed consent. Synovial tissues
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were collected during the arthroscopy, frozen in Tissue-Tek OCT
compound (Sakura Finetek, Zoeterwoude, Netherlands) and cut
into 5-mm slices using a cryotome (Leica CM 1900). Fibroblast
cultures were maintained in Dulbecco’s modified Eagle’s medium
supplemented with 10% fetal calf serum.

2.2. DNA methylation profiling using universal bead arrays

Infinium HumanMethylation450 BeadChips (Illumina, Inc.)
were used to analyze DNA methylation. With this analysis it is
possible to cover >485,000 methylation sites per sample at single-
nucleotide resolution. This panel covers 99% of RefSeq genes, with
an average of 17 CpG sites per gene region distributed across the
promoter, 50UTR, first exon, gene body, and 30UTR. It covers 96% of
CpG islands, with additional coverage in island shores and the
regions flanking them. Bisulfite conversion of DNA samples was
done using the EZ DNA methylation kit (Zymo Research, Orange,
CA). After bisulfite treatment, the remaining assay steps were
identical to those of the InfiniumMethylation Assay, using reagents
and conditions supplied and recommended by the manufacturer.
Two technical replicates of each bisulfite-converted sample were
run. The results were all in close agreement and were averaged for
subsequent analysis. The array hybridization was conducted under
a temperature gradient program, and arrays were imaged using
a BeadArray Reader (Illumina Inc.). The image processing and
intensity data extraction software and procedures were those
described by Bibikova and colleagues [21]. Each methylation datum
point was represented as a combination of the Cy3 and Cy5 fluo-
rescent intensities from the M (methylated) and U (unmethylated)
alleles. Background intensity, computed from a set of negative
controls, was subtracted from each datum point.

2.3. Detection of differentially methylated CpGs

Differentially methylated CpGs were selected using an algo-
rithm in the statistical computing language R [22], version 2.14.0. In
order to process Illumina Infinium HumanMethylation450 meth-
ylation data, we used the methods available in the LIMMA and
LUMI packages [23] from the Bioconductor repository [24]. Before
statistical analysis, a pre-process stage was applied, whose main
steps were: 1) Adjusting color balance, i.e., normalizing between
two color channels; 2) Quantile normalizing based on color
balance-adjusted data; 3) Removing probes with a detection p-
value > 0.01; 4) Filtering probes located in sex chromosomes; 5)
Filtering probes considered to be SNPs (single nucleotide poly-
morphisms). Specifically, the probes were filtered out using Illu-
mina identifiers for SNPs, i.e. those probes with an “rs” prefix in
their name; 6) Non-specific filtering based on the IQR (interquartile
range) [25], using 0.20 as the threshold value.

Subsequently, a Bayes-moderated t-test was carried out using
LIMMA [26]. Several criteria have been proposed to identify
significant differences in methylated CpGs. In this study, we
adopted themedian-difference beta-value between the two sample
groups for each CpG [27,28]. Specifically we considered a probe as
differentially methylated if (1) the absolute value of the median-
difference between b-values is higher than 0.1 and the statistical
test was significant (p-value < 0.05).

2.4. Identification of genomic clusters of differentially methylated
CpGs

A clustering method available in Charm package [29] was
applied to the differentially methylated CpGs. Although Charm is
a package specific for analyzing DNA methylation data from two-
color Nimblegen microarrays, we reimplemented the code to
invoke the main clustering function using genomic CpG localiza-
tion. By using this approach, we identified Differentially Methyl-
ated Regions (DMR) by grouping differentially methylated probes
closer than 500 pbs. In this analysis, the considered lists of CpGs
were those associated with a value of p < 0.01.

2.5. Bisulfite pyrosequencing

CpGs were selected for technical validation of Infinium Meth-
ylation 450K by the bisulfite pyrosequencing technique in the RASF
and OASF samples. CpG island DNA methylation status was deter-
mined by sequencing bisulfite-modified genomic DNA. Bisulfite
modification of genomic DNA was carried out as described by
Herman and colleagues [30]. 2 ml of the converted DNA (corre-
sponding to approximately 20e30 ng) were then used as
a template in each subsequent PCR. Primers for PCR amplification
and sequencing were designed with the PyroMark� Assay Design
2.0 software (Qiagen). PCRs were performed with the HotStart
Taq DNA polymerase PCR kit (Qiagen) and the success of
amplification was assessed by agarose gel electrophoresis.
Pyrosequencing of the PCR products was performed with the
Pyromark� Q24 system (Qiagen). All primer sequences are listed
in Supplementary Table 1.

2.6. Gene expression data analysis and comparison of DNA
expression and DNA methylation data

To compare expression andmethylation data, we used RASF and
OASF expression data from the Gene Expression Omnibus (GEO)
under the accession number (GSE29746) [31]. Agilent one-color
expression data were examined using LIMMA [24]. The pre-
process stage consisted of background correction, followed by
normalization. Thus, the applied background correction is
a convolution of normal and exponential distributions that are
fitted to the foreground intensities using the background intensities
as a covariate, as explained in the LIMMA manual. Next, a well-
known quantile method was performed to normalize the green
channel between the arrays and then the green channel intensity
values were log2-transformed. Values of average replicate spots
were analyzed with a Bayes-moderated t-test. Expression genes
matching methylated genes were then studied. Genes differentially
expressed between RASF and OASF groups were selected if they
met the criteria of having values of p and FDR (False Discovery Rate)
lower than 0.05 as calculated by Benjamini-Hochberg and a greater
than two-fold or less than 0.5-fold change in expression. Expres-
sion data were validated by quantitative RT-PCR. Primer sequences
are listed in Supplementary Table 1.

2.7. microRNA expression screening, target prediction and
integration with DNA methylation data

Total RNA was extracted with TriPure (Roche, Switzerland)
following the manufacturer’s instructions. Ready-to-use microRNA
PCR Human Panel I and II V2.R from Exiqon (Reference 203608)
were used according to the instruction manual (Exiqon). For each
RT-PCR reaction 30 ng of total RNA was used. Samples from OASF
and RASF patients were pooled and two replicates of each group
were analyzed on a Roche LightCycler� 480 real-time PCR system.
Results were converted to relative values using the inter-plate
calibrators included in the panels (log 2 ratios). RASF and OASF
average expression values were normalized with respect to refer-
ence gene miR-103. Differentially expressed microRNAs (FC > 2
or < 0.5) were selected.

To predict the potential targets of the dysregulated microRNAs,
we used the algorithms of several databases, specifically TargetScan
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[32], PicTar [33], PITA [34], miRBase [35], microRNA.org [36],
miRDB/MirTarget2 [37], TarBase [38], andmiRecords [39], StarBase/
CLIPseq [40]. Only targets predicted in at least four of these data-
bases and differentially expressed between RASFs and OASFs were
included in the heatmaps.

To compare the DNA methylation bead array data with the
miRNA expression levels, miRNAs were mapped to Illumina 450k
probes. For each differentially expressed miRNA we studied the
CpGs within a 5000 bp window around the transcription start site.
Using the GRCh37 assembly annotation for Illumina, the genomic
localization of probes was extracted in order to match them with
miRNA loci. Genomic features of miRNAs were taken from the
miRBase [41] and Illumina annotation was obtained from Illumi-
naHumanMethylation450K.db Bioconductor Package [41].

2.8. Gene ontology analysis

Gene Ontology analysis was done with the FatiGO tool [42],
which uses Fisher’s exact test to detect significant over-
representation of GO terms in one of the sets (list of selected
genes) with respect to the other one (the rest of the genome).
Multiple test correction to account for the multiple hypothesis
tested (one for each GO term) is applied to reduce false positives.
GO terms with adjusted P-value < 0.05 are considered significant.

2.9. Graphics and heatmaps

All graphs were created using Prism5 Graphpad. Heatmapswere
generated from the expression or methylation data using the
Genesis program from Graz University of Technology [43].

3. Results

3.1. Comparison of DNA methylation patterns between RASF and
OASF reveals both hypomethylation and hypermethylation of key
genes

We performed high-throughput DNA methylation screening to
compare SF samples from six RA and six OA patients. To this end,
we used a methylation bead array that allows the interrogation of
>450,000 CpG sites across the entire genome covering 99% of
RefSeq genes. Statistical analysis of the combined data from the 12
samples showed that 2571 CpG sites, associatedwith 1240 different
genes, had significant differences in DNA methylation between
RASFs and OASFs (median b differences > 0.10, p < 0.05) (Fig. 2A
and Supplementary Table 2). Specifically, we found 1091 hypo-
methylated CpG sites (in 575 genes) and 1479 hypermethylated
CpG sites (in 714 genes).

The list of genes differentially methylated between RASFs and
OASFs includes a number with known implications for RA patho-
genesis and some potentially interesting novel genes (Table 1). One
of the best examples is IL6R. Our results indicated that IL6R is
hypomethylated in RASFs with respect to OASFs, and that hypo-
methylation is probably associated with IL6R overexpression in
RASFs. IL6 and IL6R are factors well known to be associated with RA
pathogenesis and progression. IL6R overexpression plays a key role
in acute and chronic inflammation and increases the risk of joint
destruction in RA. Also, IL6R antibodies have recently been
approved for the treatment of RA [44]. Another interesting example
in the hypomethylated gene list is TNFAIP8, or TIPE2, a negative
mediator of apoptosis that plays a role in inflammation [45]. We
also identified CAPN8 as the gene with the greatest difference
between RASFs and OASFs. This gene has not previously been
associated with RA, although it is involved in other inflammatory
processes such as irritable bowel syndrome [46]. Conversely,
hypermethylated genes include factors like DPP4 and CCR6. DPP4
encodes a serine protease, which cleaves a number of regulatory
factors, including chemokines and growth factors. DPP4 inhibitors
have recently emerged as novel pharmacological agents for
inflammatory disease [47]. Several lines of evidence have also
shown a role for CCR6 in RA [48].

We then set out to determine whether our differentially
methylated genes could be involved in biological functions rele-
vant to RA pathogenesis. We therefore performed Gene Ontology
analysis to test whether some molecular functions or biological
processes were significantly associated with the genes with the
greatest difference in DNA methylation status between RASFs and
OASFs. The analysis was performed independently for gene lists
in the hypomethylated and hypermethylated group. We observed
significantly enriched functional processes that are potentially
relevant in the biology of SFs (Fig. 2B), including the following
categories: focal adhesion assembly (GO:0048041), cartilage
development (GO:0051216) and regulation of cell growth
(GO:0001558) for hypomethylated genes. For hypermethylated
genes, we observed enrichment in categories such as response to
wounding (GO:0009611), cell migration (GO:0016477) and cell
adhesion (GO:0007155). Hypermethylated and hypomethylated
genes shared several functional categories, such as cell differen-
tiation (GO:0030154), cell adhesion (GO:0007155) and skeletal
system development (GO:0001501) characteristic of this cell
type.

We also compared our data with those reported in a recent
study by Nakano and colleagues [17]. We found a significant
overlap of genes that were hypomethylated and hypermethylated
in both sets of samples (Supp. Fig. 1). These included genes like
MMP20, RASGRF2 and TRAF2 from the list of hypomethylated
genes, and ADAMTS2, EGF and TIMP2 from among the hyper-
methylated genes (see Supp. Fig. 1 and Table 2 in [17]). The use of
a limited set of samples in the identification of genes introduces
a bias associated with each particular sample cohort, which would
explain the partial overlap between different experiments.
However in this case, we observed an excellent overlap between
both experiments.

We also performed an analysis to identify genomic clusters of
differentially methylated CpGs, which highlighted several regions
of consecutive CpGs that are hypomethylated or hypermethylated
in RASFs compared with OASFs. Among hypermethylated CpG
clusters in RASFs we identified TMEM51 and PTPRN2. With respect
to hypomethylated genes, up to nine clustered CpGs were hypo-
methylated around the transcription start sites of HOXA11 (Fig. 2C,
left) and nine in CD74, the major histocompatibility complex, class
II invariant chain-encoding gene. CD74 levels have been reported to
be higher in synovial tissue samples from patients with RA than in
tissue from patients with osteoarthritis [49]. HOXA11 was consid-
ered another interesting gene, as HOX genes are a direct target of
EZH2, a Polycomb group protein involved in differentiation and in
establishing repressive marks, including histone H3K27me3 and
DNA methylation, under normal and pathological conditions. In
fact, additional HOXA genes were identified as being differentially
methylated between RASFs and OASFs (Table 1), suggesting that the
Polycomb group differentiation pathway may be responsible for
these differences.

To validate our analysis, we used bisulfite pyrosequencing of
selected genes (Supp. Fig. 2). In all cases, pyrosequencing of indi-
vidual genes confirmed the results of the analysis. In fact,
comparison of the bead array and pyrosequencingmethylation data
(Fig. 2C, center and right) showed an excellent correlation, sup-
porting the validity of our analysis. Additional genes that were
subjected to pyrosequencing analysis included CAPN8 and IL6R,
both of which were hypomethylated in RASFs, and DPP4 and HOXC4

http://microRNA.org
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in the hypermethylated group (Fig. 2D and E). In all cases, the
analysis was validated by pyrosequencing in a larger cohort of
samples.

3.2. Integration of DNA methylation data with expression data from
RASFs and OASFs

DNA methylation is generally associated with gene repression,
particularly when it occurs at promoter CpG islands. However, DNA
methylation changes at promoters with low CpG density can also
regulate transcription, and changes in gene bodies also affect
transcriptional activity [4], although they do not necessarily repress
it. We therefore integrated our DNA methylation data with a high-
throughput expression analysis of RASFs and OASFs from a recent
study (GSE29746) [31]. To integrate expression data with our
methylation results, we first reanalyzed the expression data as
described in the Materials and Methods. Applying the threshold
criterion of a value of p < 0.01, we identified 3470 probes differ-
entially expressed between RASFs and OASFs (for which FC > 2 or
<0.6) (Fig. 3A). We then compared the results from the analysis of
the expression arrays with the DNA methylation data. Our analysis
showed that 208 annotated CpGs displayed an inverse correlation
between expression and methylation levels (Fig. 3B and
Supplementary Table 3).



Table 1
Selection of genes differentially methylated and/or expressed in RASF vs. OASF, and previously described implications in RA.

Gene name Dmeth
CpG

Region Description D beta
(RA-OA)

FC express
(RA/OA)

Previously reported RA implication (ref)

CAPN8 1 Body Calpain 8 �0.52 N/A
SERPINA5 1 TSS1500 Serpin peptidase inhibitor,

clade A member 5
�0.40 N/A

FCGBP 1 Body Fc fragment of IgG binding protein �0.35 0.34 Detected in plasma sera related with
autoimmunity [56]

HOXA11 13 TSS1500 Homeobox A11 �0.30 0.40
IL6R 1 Body Interleukin 6 receptor �0.29 N/A Its ligand (IL6) is overexpressed in RA [57]
S100A14 3 TSS1500 S100 calcium binding protein A14 �0.27 N/A Involved in invasion through MMP2

(elevated in RA plasma) [50]
TMEM51 2 50UTR Transmembrane protein 51 �0.27 4.21
CSGALNACT1 3 TSS200 Chondroitin sulfate

N-acetylgalactosaminyltransferase 1
�0.22 0.48 Involved in cartilage development and

endocondral ossification [58] and [59]
COL14A1 2 Body Collagen, type XIV, alpha 1 �0.22 3.76
CD74 8 TSS1500 CD74 molecule �0.22 N/A Initiates MIF signal transduction (levels

related with RA course) [60]
TNFAIP8 3 Body Tumor necrosis factor,

alpha-induced protein 8
�0.20 3.75 Negative regulator of innate and adaptative

immunity [45]
TNFRSF8 1 BodyjTSS 1500 Tumor necrosis factor receptor

superfamily, member 8
�0.19 2.93 Its overexpression contributes to

proinflammatory immune responses [61]
KCNJ15 2 50UTRjTSS 200 Potassium inwardly-rectifying

channel, subfamily J, member 15
�0.15 5.51

CCR6 1 TSS1500 Chemokine (C-C motif) receptor 6 0.23 0.67 Migration, proliferation, and MMPs
production [62]

DPP4 1 TSS200 Dipeptidyl-peptidase 4 0.23 N/A Its inhibition increases cartilage invasion
by RASF [63]

PRKCZ 17 BodyjTSS 1500 Protein kinase C, zeta 0.25 N/A Inactivates syndecan-4 (integrin co-receptor),
reducing DC motility [64]

HLA-DRB5 3 Body Major histocompatibility complex,
class II, DR beta 5

0.26 3.16 SNP associated with cutaneous manifestations
rheumatoid vasculitis [65]

ALOX5AP 1 TSS1500 Arachidonate 5-lipoxygenase-activating
protein

0.29 N/A Deficit of this molecule ameliorates
symptoms in CIA [66]

BCL6 2 Body B-cell CLL/lymphoma 6 0.30 N/A RA synovial T cells express BCL6, potent B
cell regulator [67]

SPTBN1 2 TSS1500 Spectrin, beta, non-erythrocytic 1 0.27 0.23 Associated with CD43 abrogates T cell
activation [68]

HOXC4 13 50UTRjTSS 1500 Homeobox C4 0.4 N/A
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To examine the relationship between methylation and gene
expression further, we also performed an analysis focusing on the
relative position of the CpG site that undergoes a significant
change in methylation. We found that genes with a methylation
change at the TSS or the 50UTR generally exhibited an inverse
correlation between DNA methylation and gene expression
(Fig. 3C), whereby an increase in methylation tended to be
accompanied by a decrease in expression. Curiously, this rela-
tionship is positive when looking at CpGs containing probes
located at gene bodies with a significant methylation change
(Fig. 3C). Fig. 3D shows two examples of an inverse correlation
between DNA methylation and expression data.

We performed quantitative RT-PCR to investigate the expres-
sion status of several of the genes displaying a change in DNA
methylation in the set of samples used in this study. This analysis
included several of the genes mentioned above, as well as others,
like MMP2, for which increased expression in RASFs has been
described [50]. Our analysis confirmed the elevated levels for this
gene in our collection of RASFs (Fig. 3E). We also observed an
inverse correlation between DNA methylation and expression for
genes like HOXC4, HOXA11, CAPN8 and IL6R (Fig. 3F), although
genes like DPP4 did show a direct relationship. Specifically, we
found that hypermethylated DPP4 had higher levels of expression
in RASFs than in OASFs (Fig. 3F). Elevated levels for DPP4 are
compatible with the data obtained by other researchers [51].
However, it also indicates that for some genes, other mechanisms
contribute more to their expression levels than do DNA methyla-
tion changes.
3.3. miRNA screening in RASF and OASF

Changes in expression levels can certainly be due to transcriptional
control, like that determined by epigenetic changes at gene promoters,
DNAmethylation, or differences in transcription factor binding. At the
post-transcriptional level, miRNAs are recognized as being major
players in gene expression regulation. We compared the expression
levels ofmiRNAs inpooled RASFandOASF RNA samples. The screening
led to the identification of a number ofmiRNAs that are overexpressed
in RASFs with respect to OASFs, as well as downregulated miRNAs
(Fig. 4A).AmongthemostupregulatedanddownregulatedmiRNAs,we
identified several that havebeenpreviouslyassociatedwith relevant or
related events like miR-203 [20], which is upregulated in RASFs with
respect to OASFs, and miR-124, which is downregulated in RASFs [52]
(Fig. 4B). Other additional miRNAs identified in previous work in rela-
tion to RA includemiR-146a andmiR-34a (Fig. 4A). As indicated above,
the overlap with other studies highlights the robustness of our data.
However, it is likely that the analysis of a limited number of samples
introduces a bias associatedwith specific characteristics of the samples
in the studied cohort. Integrated analysis can help to identify relevant
targets. We then performed quantitative PCR to validate a selection of
themiRNAs in theentire cohort. ExamplesofmiR-625*, downregulated
in RASF, and miR-551b, upregulated in RASF, are shown in Fig. 4C.

As explained, miRNA-dependent control is associated with the
expression control of a number of targets either by inducing direct
mRNA degradation or through translational inhibition [53]. Accumu-
lated evidence has shown that most miRNA targets are affected at the
mRNA levels, and therefore comparison ofmRNAexpression array and
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miRNA expression data is useful for identifying and evaluating the
impact of miRNAmisregulation at the mRNA levels.

To explore this aspect, we investigated the relationship
between miRNA expression differences between RASFs and
OASFs and their involvement in gene control by looking at levels
of their potential targets. To this end, we obtained a matrix with
the potential targets for each of the five miRNAs most strongly
upregulated and downregulated in RASFs relative to OASFs. We
considered bona fide putative targets those predicted by at least
four databases. As before, we used the expression microarrays
data for RASFs and OASFs generated in another study
(GSE29746) [31].

When looking at the expression levels of putative targets of
selected miRNAs we found more genes with potential effects on
the RASF phenotype. These included genes like CTSC, KLF8 or
EBF3, which are upregulated in RASFs concomitant with down-
regulation of miR625* and ITGBL1, which is downregulated in
RASF concomitant with upregulation of miR551b. Additional
putative targets included TLR4 for miR-203 and NFAT5 for miR-
124 (Fig. 4D). TLR4 is upregulated in RA and plays a key role in
the disease, whereas NFAT5 is a critical regulator of inflamma-
tory arthritis.

3.4. Integrated analysis of both miRNAs and DNA methylation
reveals multiple layers of regulation in genes relevant to RA
pathogenesis

We performed two separate analyses to explore the potential
connection betweenmiRNA and DNAmethylation control for genes
associated with the RASF phenotype.
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The first analysis focused on the potential regulation of miRNAs
by DNA methylation. DNA methylation can also repress the
expression of miRNAs, since miRNA-associated promoters are
subjected to similar mechanisms of transcriptional control as
protein-coding genes. We compared the data from the bead array
analysis with miRNA expression data. Our analysis showed 11
downregulated miRNAs, like miR-124, that were located near CpG
sites and were hypermethylated in RASFs. Only four upregulated
miRNAs were located near a CpG site hypomethylated in RASFs
(Fig. 4E).
The second analysis investigated the potential influence of DNA
methylation and miRNA control on specific targets. As explained
above, differences in expression patterns between RASFs and OASFs
could be due to altered mechanisms of control at the epigenetic
level, like DNA methylation, or at the post-transcriptional level. We
generated a list of selected genes whose expression patterns
differed significantly between RASFs and OASFs. Then we matched
the expression data with our DNA methylation data from bead
arrays andwith a selection of miRNAs that might target those genes
(as predicted at least by four databases) and that have significant
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differences in expression between RASFs and OASFs. This yielded
a list of genes potentially regulated by DNA methylation, at the
transcriptional level, and targeted by miRNAs, at the post-
transcriptional level. The list of genes comprises six groups
(Supplementary Table 4): i) downregulated genes in which hyper-
methylation concurs with overexpression of a miRNA that targets
them. Methylation and miRNA regulate in the same repressive
direction in this group; ii) downregulated genes in which hypo-
methylation is potentially overcome by co-occurrence of upregu-
lation of a miRNA that targets them. In this group, miRNA control is
potentially the predominant mechanism; iii) downregulated genes
in which hypermethylation predominates over downregulation of
miRNAs that potentially target them; iv) upregulated genes in
which hypomethylation concurs with downregulation of a miRNA
that targets them; v) upregulated genes inwhich hypermethylation
is overcome by downregulation of a miRNA that targets them, and,
vi) upregulated genes in which hypermethylation predominates
over upregulation of a miRNA that targets them. Integrated analysis
would require further validation to provide bona fide targets
determined by both regulatory mechanisms. However, this novel
approach to integrating miRNA and DNA methylation analysis
provides a new workflow for exploring the multiple layers of gene
dysregulation in RA in greater depth.

4. Discussion

In this study we have identified novel dysregulated targets in
rheumatoid arthritis (RA) synovial fibroblasts at the DNA methyl-
ation andmiRNA expression levels. By using a double approach and
integrated analysis of the DNA methylation, miRNA expression and
mRNA expression data we have established a new pipeline for
investigating the complexity of gene dysregulation in the context of
this disease when using primary samples. As indicated above,
dysregulation of gene expression arises from a combination of
factors, including genetic polymorphisms in genes associated with
regulatory roles and miRNAs, environmental factors and their
combined effect on transcription factor function and epigenetic
profiles, like DNA methylation and histone modification profiles.
Understanding the relationship between different elements of
regulation is key not only for understanding their intricate
connections within the disease but also in the higher propensity to
associated disorders [54]. DNA methylation-associated regulation
and miRNA control are major regulatory elements and provide
useful targets and markers of gene dysregulation in disease. In the
context of RASFs, a few studies have previously shown the exis-
tence of genes with DNA methylation alterations in RASFs. Most of
these have involved examining candidate genes. Examples include
the identification of the TNFRSF25 gene (encoding DDR9), which is
hypermethylated at its CpG island in synovial cells of RA patients
[16], and CXCL12 upregulated and hypomethylated in RASFs [15].
More recently, Firestein and colleagues [17] took an array-based
approach to identify hypomethylated and hypermethylated genes
in RASFs. Regarding miRNA profiling in RASFs, several studies have
demonstrated specific roles for miRNAs that are dysregulated in RA
synovial tissues [18e20,55]. However, there were no previous
systematic efforts to combine analyses of these two types of
mechanisms in the context of RA.

To the best of our knowledge, our study constitutes the first
attempt to integrate high-throughput omics data from primary
samples in the context of RA. The need of integrating several levels
of regulation is relevant for several reasons: first, from a biological
point of view, it is essential to understand the molecular mecha-
nisms underlying aberrant changes in gene expression associated
with the acquisition of the aggressive phenotype of RASFs; second,
from a more translational point of view, understanding multiple
levels of regulation of target genes that undergo dysregulation in
RA, could potentially allow to predict their behavior following the
use of specific therapeutic compounds. It can also serve to make
a better use of them as clinical markers of disease onset, progres-
sion or response to therapy.

Our analysis of individual datasets not only has allowed us to
confirm changes described by others but also to determine novel
genes with altered DNA methylation patterns, including MMP20,
RASGRF2, EGF, TIMP2 and others. Most importantly we have iden-
tified new genes that are relevant to the RA phenotype. This
includes IL6R, which is well known as an overexpressed gene in
RASFs and a target for antibody-based therapy [44]. Additional
targets include CAPN8, TNFAIP8, CD74 and CCR6. Methylation
alterations in RASFs occur at promoter CpG islands in genes like
DPP4 orHOXC4, and downstream of the TSS in genes like CAPN8 and
IL6R. This last observation is in agreement with recent reports
showing that gene expression can be also affected by methylation
changes at gene bodies [4,5]. In any case, we have found a canonical
inverse relationship between DNA methylation and expression
status for a subset of more than 200 genes. At the miRNA level,
analysis of the expression dataset has allowed us to validate
previously described miRNAs, like miR-203 and miR-124, as well as
identifying novel miRNAs, like miR-503, miR-625*, miR-551b, and
miR-550, that are potentially associated with dysregulated targets
in RASFs.

Integrative analysis has been carried out at different levels.
Firstly, the combined analysis of DNA methylation and expression
data generated a list of genes in which methylation changes were
inversely correlated with expression changes. This list of genes
potentially contains those regulated through DNA methylation in
a canonical manner, where DNA methylation associates with gene
repression (Supplementary Table 3). Secondly, we also studied the
potential relationship between expression changes and miRNA
expression changes that potentially target them (as defined by the
cumulative use of miRNA target prediction databases). In this case,
we identified a number of genes undergoing expression changes in
RASFs that are potentially targeted by concomitantly dysregulated
miRNAs.

Another level of integration is achieved by looking at genes that
may be targeted or regulated by the combined action of miRNA and
DNA methylation. Thus, we explored the potential combined effect
of miRNAs and DNA methylation in genes undergoing expression
changes in RASFs (Supplementary Table 2). Our analysis revealed
gene targets in which methylation and miRNA control possibly
concur in direction or have antagonistic effects. This classification
of genes in different groups is important because pharmacological
compounds or other experimental approaches influencing one of
the mechanism (DNA methylation) but not the other (miRNA
expression) or viceversa, would have to consider the existence of
multiple levels of regulation for interpreting the outcome of such
treatment. Finally, by looking at the potential control of miRNA
expression by DNA methylation, we identified a further regulatory
mechanism for several miRNAs, including miR-124. In this case,
hypermethylation of a specific miRNA promoter, would have
a positive effect on the expression levels of its targets, and, for
instance, pharmacological demethylation of that miRNA would
result in overexpression of the miRNA and downregulation of its
targets.

As indicated above, epigenetic profiles and miRNA expression
patterns are cell type-specific. The need to use primary samples for
the target tissue or cell type of a particular disease is usually
a limitation to performing epigenetic or miRNA analysis, given the
access to small amounts of tissue or cells that can be obtained in
most cases. The reduced number of laboratories with access to
RASFs, OASFs or SF from normal individuals is a good reflection of
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such limitation. Genetic analysis of genetically complex diseases
does not have such a limitation, since in most cases can be done
with peripheral blood. In this sense, the use of integrative
approaches to investigate epigenetic and miRNA-mediated control
of a limited set of samples overcomes partially this obstacle by
providing extra sets of data for internal validation within a small
cohort of samples and an increase of the robustness of the analysis.

In conclusion, our study highlights the need of investigating the
multiple layers of regulation at the transcriptional and post-
transcriptional levels as well as integrating the datasets during
the analysis. As targets for therapy, it is important to understand
the intricate connections between the various control mechanisms
and to consider the existence of both processes that operate in the
same direction or have antagonistic effects. The use of integrative
approaches will also be necessary for the rational design of targeted
therapies as well as for the use of different clinical markers for the
classification. In this sense, the workflow designed in this study has
allowed us to identify novel targets and their regulatory mecha-
nism in RASF and opens up a number of possibilities for future
research on epigenetics aspects on RA.
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