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Abstract

We propose a method to identify all the nodes
that are relevant to compute all the conditio-
nal probability distributions for a given set
of nodes. Our method is simple, efficient,
consistent, and does not require learning a
Bayesian network first. Therefore, our me-
thod can be applied to high-dimensional da-
tabases, e.g. gene expression databases.

1 INTRODUCTION

As part of our project on atherosclerosis gene expres-
sion data analysis, we want to learn a Bayesian net-
work (BN) to answer any query about the state of
certain atherosclerosis genes given the state of any
other set of genes. If U denotes all the nodes (genes)
and T ⊆ U denotes the target nodes (atherosclero-
sis genes), then we want to learn a BN to answer any
query of the form p(T|Z = z) with Z ⊆ U \T. Unfor-
tunately, learning a BN for U is impossible with our
resources because U contains thousands of nodes. Ho-
wever, we do not really need to learn a BN for U to
be able to answer any query about T: It suffices to
learn a BN for U \ I where I, the irrelevant nodes, is
a maximal subset of U \ T such that I⊥⊥T|Z for all
Z ⊆ U \ T \ I. We prove that I is unique and, thus,
that U \ I is the optimal domain to learn the BN, be-
cause R = U \T \ I is the (unique) minimal subset of
U \T that contains all the nodes that are relevant to
answer all the queries about T.

We propose the following method to identify R: R ∈ R
iff there exists a sequence of nodes starting with R and
ending with some T ∈ T such that every two consecu-
tive nodes in the sequence are marginally dependent.
We prove that the method is consistent under the as-
sumptions of strict positivity, composition and weak
transitivity. We argue that these assumptions are not
too restrictive. It is worth noting that our method is

efficient in terms of both runtime and data require-
ments and, thus, can be applied to high-dimensional
domains. We believe that our method can be helpful
to those working with such domains, where identifying
the optimal domain before learning the BN can reduce
costs drastically.

Although, to our knowledge, the problem addressed in
this paper has not been studied before, there do exist
papers that address closely related problems. Geiger et
al. (1990) and Shachter (1988, 1990, 1998) show how
to identify in a BN structure all the nodes whose BN
parameters are needed to answer a particular query.
Lin and Druzdzel (1997) show how to identify some
nodes that can be removed from a BN without affec-
ting the answer to a particular query. Mahoney and
Laskey (1998) propose an algorithm based on the work
by Lin and Druzdzel (1997) to construct, from a set of
BN fragments, a minimal BN to answer a particular
query. Madsen and Jensen (1998) show how to iden-
tify some operations in the junction tree of a BN that
can be skipped without affecting the answer to a par-
ticular query. Two are the main differences between
these works and our contribution. First, they focus
on a single query while we focus on all the queries
about the target nodes. Second, they require learning
a BN structure first while we do not. Before going
into the details of our contribution, we review some
key concepts in the following section.

2 PRELIMINARIES

The following definitions and results can be found in
most books on Bayesian networks, e.g. Pearl (1988)
and Studený (2005). Let U denote a non-empty fi-
nite set of random variables. A Bayesian network
(BN) for U is a pair (G, θ) where G, the structure,
is a directed and acyclic graph (DAG) whose nodes
correspond to the random variables in U and θ, the
parameters, are parameters specifying a probability
distribution for each X ∈ U given its parents in G,



p(X|Pa(X)). A BN (G, θ) represents a probability
distribution for U, p(U), through the factorization
p(U) =

∏
X∈U p(X|Pa(X)). Therefore, it is clear that

a BN for U can answer any query p(T|Z = z) with
T ⊆ U and Z ⊆ U \ T. Hereinafter, all the probabi-
lity distributions and DAGs are defined over U, unless
otherwise stated.

Let X, Y and Z denote three mutually disjoint sub-
sets of U. Let X⊥⊥Y|Z denote that X is independent
of Y given Z in a probability distribution p. Let
sep(X,Y|Z) denote that X is separated from Y by
Z in a graph G. If G is a DAG, then sep(X,Y|Z) is
true when for every undirected path in G between a
node in X and a node in Y there exists a node Z in
the path such that either (i) Z does not have two pa-
rents in the path and Z ∈ Z, or (ii) Z has two parents
in the path and neither Z nor any of its descendants
in G is in Z. On the other hand, if G is an undirec-
ted graph (UG), then sep(X,Y|Z) is true when for
every path in G between a node in X and a node in
Y there exists some Z ∈ Z in the path. A probabi-
lity distribution p is faithful to a DAG or UG G when
X⊥⊥Y|Z iff sep(X,Y|Z). G is an independence map
of p when X ⊥⊥Y|Z if sep(X,Y|Z). G is a minimal
independence map of p when removing any edge from
G makes it cease to be an independence map of p. If
p is strictly positive, then it has a unique minimal un-
directed independence map G, and it can be built via
the edge exclusion algorithm: Two nodes X and Y are
adjacent in G iff X 6⊥⊥Y |U \ {X,Y }. Alternatively, G
can be built via the Markov boundary algorithm: Two
nodes X and Y are adjacent in G iff Y belongs to the
Markov boundary of X. The Markov boundary of X is
the set X ⊆ U\{X} such that (i) X⊥⊥U\X\{X}|X,
and (ii) no proper subset of X satisfies (i).

Let X, Y, Z and W denote four mutually disjoint sub-
sets of U. Any probability distribution p satisfies the
following four properties: Symmetry X⊥⊥Y|Z ⇒ Y⊥⊥
X|Z, decomposition X⊥⊥Y ∪W|Z ⇒ X⊥⊥Y|Z, weak
union X⊥⊥Y∪W|Z ⇒ X⊥⊥Y|Z∪W, and contraction
X⊥⊥Y|Z ∪W ∧X⊥⊥W|Z ⇒ X⊥⊥Y ∪W|Z. If p is
strictly positive, then it satisfies the intersection pro-
perty X⊥⊥Y|Z∪W∧X⊥⊥W|Z∪Y ⇒ X⊥⊥Y∪W|Z.
If p is DAG-faithful or UG-faithful, then it satisfies
the following two properties: Composition X⊥⊥Y|Z∧
X ⊥⊥ W|Z ⇒ X ⊥⊥ Y ∪ W|Z, and weak transitivity
X⊥⊥Y|Z∧X⊥⊥Y|Z∪{W} ⇒ X⊥⊥{W}|Z∨{W}⊥⊥Y|Z
with W ∈ U \X \Y \ Z.

3 IDENTIFYING THE RELEVANT
NODES

We say that X ⊆ U \ T is irrelevant to answer any
query about T ⊆ U when X⊥⊥T|Z for all Z ⊆ U\T\

X, because p(T|Z,Z′) = p(T|Z) for all Z ⊆ U \T \X
and Z′ ⊆ X due to decomposition. Therefore, we do
not really need to learn a BN for U to be able to
answer any query about T: It suffices to learn a BN
for U \X. The following theorem characterizes all the
sets of nodes that are irrelevant.

Theorem 1 Let I = {X1, . . . , Xn} denote all the
nodes in U \ T such that, for all i, Xi ⊥⊥T|Z for all
Z ⊆ U \ T \ {Xi}. Then, I is the (unique) maximal
subset of U\T such that I⊥⊥T|Z for all Z ⊆ U\T\I.

Proof: Let Z ⊆ U \ T \ I. Since X1 ⊥⊥ T|Z and
X2⊥⊥T|Z∪{X1}, then {X1, X2}⊥⊥T|Z due to contrac-
tion. This together with X3⊥⊥T|Z∪ {X1, X2} implies
{X1, X2, X3}⊥⊥T|Z due to contraction again. Conti-
nuing this process for the rest of the nodes in I proves
that I⊥⊥T|Z.

Let us assume that there exists some I′ ⊆ U such that
I′ \ I 6= ∅ and I′ ⊥⊥ T|Z for all Z ⊆ U \ T \ I′. Let
X ∈ I′ \ I. Then, X ⊥⊥ T|Z for all Z ⊆ U \ T \
{X} due to decomposition and weak union. This is a
contradiction because X /∈ I. Consequently, I is the
(unique) maximal subset of U such that I⊥⊥T|Z for
all Z ⊆ U \T \ I.

It follows from the theorem above that a set of nodes
is irrelevant iff it is a subset of I due to decomposition
and weak union. Therefore, U\I is the optimal domain
to learn the BN, because R = U\T\ I is the (unique)
minimal subset of U\T that contains all the nodes that
are relevant to answer all the queries about T. The
theorem above characterizes R as X ∈ R iff X 6⊥⊥T|Z
for some Z ⊆ U\T\{X}. Unfortunately, this is not a
practical characterization due to the potentially huge
number of conditioning sets to consider. The following
theorem gives a more practical characterization of R.

Theorem 2 Let p be a strictly positive probability dis-
tribution satisfying weak transitivity. Then, X ∈ R iff
there exists a path between X and some T ∈ T in the
minimal undirected independence map G of p.

Proof: If there exists no path for X like the one des-
cribed in the theorem, then X ⊥⊥ T|Z for all Z ⊆
U \T \ {X} because G is an undirected independence
map of p. Consequently, X /∈ R by Theorem 1.

Let X1, . . . , Xn with Xi ∈ U \ T for all i < n and
Xn ∈ T denote the sequence of nodes in the shortest
path in G between X1 and a node in T. Since G is the
minimal undirected independence map of p, then

Xi 6⊥⊥Xj |U \ {Xi, Xj} (1)

iff Xi and Xj are consecutive in the sequence. We
prove that X1 6⊥⊥Xn|U \ {X1, . . . , Xn}, which implies



that X1 6⊥⊥T|U\T\{X1, . . . , Xn−1} due to weak union
and, thus, that X1 ∈ R by Theorem 1. If n = 2, then
this is true by equation (1). We now prove it for n > 2.
We start by proving that Xi 6⊥⊥Xj |U\{Xi, Xj , Xk} for
all Xi and Xj that are consecutive in the sequence. Let
us assume that i < j < k. The proof is analogous for
k < i < j. By equation (1),

Xi 6⊥⊥Xj |U \ {Xi, Xj} (2)

and
Xi⊥⊥Xk|U \ {Xi, Xk}. (3)

Let us assume that

Xi⊥⊥Xj |U \ {Xi, Xj , Xk}. (4)

Then, Xi⊥⊥{Xj , Xk}|U\{Xi, Xj , Xk} due to contrac-
tion on equations (3) and (4) and, thus, Xi⊥⊥Xj |U \
{Xi, Xj} due to weak union. This contradicts equa-
tion (2) and, thus,

Xi 6⊥⊥Xj |U \ {Xi, Xj , Xk}. (5)

We now prove that Xi 6⊥⊥ Xk|U \ {Xi, Xj , Xk} for
all Xi, Xj and Xk that are consecutive in the se-
quence. By equation (5), Xi 6⊥⊥ Xj |U \ {Xi, Xj , Xk}
and Xj 6⊥⊥ Xk|U \ {Xi, Xj , Xk} and, thus, Xi 6⊥⊥
Xk|U \ {Xi, Xj , Xk} or Xi 6⊥⊥Xk|U \ {Xi, Xk} due to
weak transitivity. Since the latter contradicts equation
(1), we conclude that

Xi 6⊥⊥Xk|U \ {Xi, Xj , Xk}. (6)

Finally, we prove that Xi⊥⊥Xj |U\{Xi, Xj , Xk} for all
Xi, Xj and Xk such that neither the first two nor the
last two are consecutive in the sequence. By equation
(1), Xi⊥⊥Xj |U \ {Xi, Xj} and Xj⊥⊥Xk|U \ {Xj , Xk}.
Then,

Xi⊥⊥Xj |U \ {Xi, Xj , Xk} (7)

due to intersection and decomposition.

It can be seen from equations (5), (6) and (7) that
the sequence X1, X3, . . . , Xn satisfies equation (1) re-
placing U by U \ {X2}: Equations (5) and (6) ensure
that every two consecutive nodes are dependent, while
equation (7) ensures that every two non-consecutive
nodes are independent. Therefore, we can repeat the
calculations above for the sequence X1, X3, . . . , Xn re-
placing U by U \ {X2}. This allows us to successi-
vely remove the nodes X2, . . . , Xn−1 from the sequence
X1, . . . , Xn and conclude that the sequence X1, Xn sa-
tisfies equation (1) replacing U by U\{X2, . . . , Xn−1}.
Then, X1 6⊥⊥Xn|U \ {X1, . . . , Xn}.
In the theorem above, we do not really need to learn G:
It suffices to identify the nodes in the connected com-
ponents of G that include some T ∈ T. These nodes

can be identified as follows. First, initialize R with T.
Second, repeat the following step while possible: For
each node in R that has not been considered before,
find all the nodes in U\R that are adjacent to it in G
and add them to R. Finally, remove T from R. The
second step can be solved with the help of the edge ex-
clusion algorithm or the Markov boundary algorithm.
The conditioning set in every independence test that
the edge exclusion algorithm performs is of size |U|−2.
On the other hand, the largest conditioning set in the
tests that the Markov boundary algorithm performs
is at least of the size of the largest Markov boundary
in the connected components.1 Therefore, both algo-
rithms can require a large learning database to return
the true adjacent nodes with high probability, because
the conditioning sets in some of the tests can be quite
large. This is a problem if only a small learning da-
tabase is available as, for instance, in gene expression
data analysis where collecting data is expensive. The
following theorem gives a characterization of R that
only tests for marginal independence and, thus, the
method to identify R it gives rise to requires minimal
learning data.

Theorem 3 Let p be a strictly positive probability dis-
tribution satisfying composition and weak transitivity.
Then, X1 ∈ R iff there exists a sequence X1, . . . , Xn

with Xi ∈ U \ T for all i < n, Xn ∈ T, and
Xi 6⊥⊥Xi+1|∅ for all i.

Proof: Let X denote all the nodes in U \T for which
there exists a sequence like the one described in the
theorem. Let Y = U \ T \X. Let W denote all the
nodes in U\T from which there exists a path to some
T ∈ T in the minimal undirected independence map
of p. If X ∈ X then all the nodes in its sequence
except the last one must be in W, otherwise there
is a contradiction because two adjacent nodes in the
sequence are marginally independent in p. Then, X ⊆
W and, thus, X ⊆ R because R = W by Theorem 2.

Moreover, X⊥⊥Y |∅ and Y ⊥⊥T |∅ for all X ∈ X, Y ∈ Y
and T ∈ T, otherwise there is a contradiction because
there exists a sequence for Y like the one described in
the theorem. Then, Y⊥⊥X ∪T|∅ due to composition
and, thus, Y ⊥⊥ T|Z for all Z ⊆ U \ T \ Y due to
decomposition and weak union. Consequently, Y ⊆ I
by Theorem 1 and, thus, R ⊆ X.

In the method to identify R that follows from the
theorem above, we do not really need to perform all

1We assume that the Markov boundary of a node is ob-
tained via the incremental association Markov boundary
algorithm (Tsamardinos et al. 2003) which, to our know-
ledge, is the only existing algorithm that satisfies our re-
quirements of scalability and consistency when assuming
composition (Peña et al. 2006a).



the |U|(|U| − 1)/2 marginal independence tests if we
adopt the following implementation. First, initialize
R with T. Second, repeat the following step while
possible: For each node in R that has not been consi-
dered before, find all the nodes in U\R that are mar-
ginally dependent on it and add them to R. Finally,
remove T from R. Therefore, this implementation is
efficient in terms of both runtime and data require-
ments and, thus, can be applied to high-dimensional
domains, where identifying the optimal domain before
learning the BN can reduce costs drastically. It is also
worth noting that the irrelevant nodes are not neces-
sarily mutually independent, i.e. they can have an
arbitrary dependence structure.

It goes without saying that there is no guarantee that
U \ I will not still be too large to learn a BN. If this
is the case, then one may have to reduce T. Another
solution may be to consider only the queries about T
where the conditioning set includes the context nodes
C ⊆ U \ T. In other words, the BN to be learnt
should be able to answer any query p(T|C = c,Z = z)
with Z ⊆ U \ T \C but not the rest. Repeating our
reasoning above, it suffices to learn a BN for U \ I(C)
where I(C) is a maximal subset of U\T\C such that
I(C) ⊥⊥ T|C ∪ Z for all Z ⊆ U \ T \ C \ I(C). The
following theorem shows that I(C) can be obtained by
applying Theorem 3 to p(U\C|C = c) for any c, under
the assumption that p(U \ C|C = c) has the same
independencies for all c. We discuss this assumption
in the next section.

Theorem 4 Let p be a strictly positive probability dis-
tribution satisfying composition and weak transitivity,
and such that p(U \ C|C = c) has the same inde-
pendencies for all c. Then, the result of applying
Theorem 3 to p(U \ C|C = c) for any c is R(C) =
U \ T \ C \ I(C). Equivalently, X1 ∈ R(C) iff there
exists a sequence X1, . . . , Xn with Xi ∈ U \T \C for
all i < n, Xn ∈ T, and Xi 6⊥⊥Xi+1|C for all i.

Proof: Let X, Y and Z denote three mutually dis-
joint subsets of U \C. Since p(U \C|C = c) has the
same independencies for all c then, for any c, X⊥⊥Y|Z
in p(U \ C|C = c) iff X⊥⊥Y|(Z ∪ C) in p. This has
two implications. First, Theorem 3 can be applied to
p(U \C|C = c) for any c because it satisfies the strict
positivity, composition and weak transitivity proper-
ties since p satisfies them. Second, the result of ap-
plying Theorem 3 to p(U \ C|C = c) for any c is
R(C). However, Xi 6⊥⊥Xi+1|∅ in p(U \ C|C = c) iff
Xi 6⊥⊥Xi+1|C in p for all i.

We note that the theorem above implies that I(C) is
unique. It is also worth noting that we have not clai-
med that U \ I(C) is the optimal domain to learn the
BN. The reason is that it may not be minimal, e.g. if

C includes some nodes from I. To identify the optimal
domain to learn the BN, C has to be purged as follows
before running Theorem 4: Find some X ∈ C such
that X /∈ R(C \ {X}), remove X from C, and conti-
nue purging the resulting set. We prove that purging a
node never makes an irrelevant node (including those
purged before) become relevant. It suffices to prove
that if Y /∈ R(C), X ∈ C, and X /∈ R(C \ {X}), then
Y /∈ R(C \ {X}). Let Z ⊆ U \T \ (C \ {X}) \ {Y }. If
X ∈ Z then Y ⊥⊥T|(C \ {X}) ∪ Z because Y /∈ R(C).
On the other hand, if X /∈ Z then Y ⊥⊥ T|C ∪ Z
because Y /∈ R(C) and X ⊥⊥ T|(C \ {X}) ∪ Z be-
cause X /∈ R(C \ {X}). Then, Y ⊥⊥T|(C \ {X}) ∪ Z
due to contraction and decomposition. Consequently,
Y ⊥⊥T|(C\{X})∪Z for all Z ⊆ U\T\(C\{X})\{Y }
and, thus, Y /∈ R(C \ {X}). When U \ I(C) is the
optimal domain, U \ I(C) ⊆ U \ I which proves that
context nodes can help to reduce U \ I.

Finally, it is worth mentioning that Theorems 1-4,
which prove that the corresponding methods to iden-
tify R are correct if the independence tests are cor-
rect, also prove that the methods are consistent if the
tests are consistent, since the number of tests that the
methods perform is finite. Kernel-based independence
tests that are consistent for any probability distribu-
tion exist (Gretton et al. 2005a, 2005b). For Gaussian
distributions, the most commonly used independence
test is Fisher’s z test which is consistent as well (Ka-
lish and Bühlmann 2005). Specifically, these papers
show that the probability of error for these tests de-
cays exponentially to zero when the sample size goes
to infinity.

4 DISCUSSION ON THE
ASSUMPTIONS

We now argue that the assumptions of strict positivity,
composition and weak transitivity made in Theorems
2-4 are not too restrictive. The assumption of strict
positivity is justified in most real-world applications
because they typically involve measurement noise.2

We note that Gaussian distributions are strictly po-
sitive. We recall from section 2 that DAG-faithful and
UG-faithful probability distributions satisfy composi-
tion and weak transitivity. Gaussian distributions sa-
tisfy composition and weak transitivity too (Studený
2005). These are important families of probability dis-
tributions. The following theorem, which extends Pro-
position 1 in Chickering and Meek (2002), shows that
composition and weak transitivity are conserved when

2Note that the fact that the learning data are sparse
does not imply that the assumption of strict positivity does
not hold. We cannot conclude from a finite sample that
some combinations of states are impossible.



hidden nodes and selection bias exist. For instance, the
probability distribution that results from hiding some
nodes and instantiating some others in a DAG-faithful
probability distribution may not be DAG-faithful but
satisfies composition and weak transitivity. This is an
important result for gene expression data analysis (see
section 6).

Theorem 5 Let p be a probability distribution satis-
fying composition and weak transitivity. Then, p(U \
W) satisfies composition and weak transitivity. Mo-
reover, if p(U \ W|W = w) has the same indepen-
dencies for all w, then p(U \W|W = w) for any w
satisfies composition and weak transitivity.

Proof: Let X, Y and Z denote three mutually dis-
joint subsets of U \W. Then, X⊥⊥Y|Z in p(U \W)
iff X ⊥⊥ Y|Z in p and, thus, p(U \ W) satisfies the
composition and weak transitivity properties because
p satisfies them. Moreover, if p(U \W|W = w) has
the same independencies for all w then, for any w,
X ⊥⊥ Y|Z in p(U \ W|W = w) iff X ⊥⊥ Y|(Z ∪ W)
in p. Then, p(U \W|W = w) for any w satisfies the
composition and weak transitivity properties because
p satisfies them.

If we are not interested in all the queries about T but
only in a subset of them, then it seems reasonable to
remove from U all the nodes that do not take part in
any of the queries of interest before starting the ana-
lysis of section 3. Let W denote the nodes removed.
The theorem above guarantees that p(U \ W) satis-
fies the assumptions for the analysis of section 3 if p
satisfies them.

In the theorem above, we assume that p(U \W|W =
w) has the same independencies for all w. Although
such an assumption is not made in Proposition 1 in
Chickering and Meek (2002), the authors agree that it
is necessary for the proposition to be correct (perso-
nal communication). Without the assumption, there
can exist context-specific independencies that violate
composition or weak transitivity. An example fol-
lows. Let p(X, Y, Z, W ) be the probability distribu-
tion represented by a BN with four binary nodes,
structure {Pa(X) = Pa(Y ) = Pa(W ) = ∅, Pa(Z) =
{X, Y,W}}, and parameters p(X) = p(Y ) = p(W ) =
(0.5, 0.5), p(Z|X, Y, W = 0) = XOR(X,Y ) and
p(Z|X,Y,W = 1) = OR(X, Y ). Then, p(X, Y, Z, W )
is faithful to the BN structure and, thus, satisfies com-
position while p(X, Y, Z|W = 0) does not.

We now argue that it is not too restrictive to assume,
like in Theorems 4 and 5, that p(U \W|W = w) has
the same independencies for all w. Specifically, we
show that there are important families of probability
distributions where such context-specific independen-

cies do not exist or are very rare. If p is a Gaussian
distribution, then p(U \ W|W = w) has the same
independencies for all w, because the independencies
in p(U \ W|W = w) only depend on the variance-
covariance matrix of p (Anderson 1984). Let us now
focus on all the multinomial distributions p for which a
DAG G is an independence map and denote them by
M(G). The following theorem, which is inspired by
Theorem 7 in Meek (1995), shows that the probability
of randomly drawing from M(G) a probability distri-
bution with context-specific independencies is zero.

Theorem 6 The probability distributions p in M(G)
for which there exists some W ⊆ U such that p(U \
W|W = w) does not have the same independencies
for all w have Lebesgue measure zero wrt M(G).

Proof: The proof basically proceeds in the same way
as that of Theorem 7 in Meek (1995), so we refer the
reader to that paper for more details. Let W ⊆ U. Let
X, Y and Z denote three disjoint subsets of U \W.
For a constraint such as X ⊥⊥ Y|Z to be true in
p(U \W|W = w) but false in p(U \W|W = w′), the
following equations must be satisfied: p(X = x,Y =
y,Z = z,W = w)p(Z = z,W = w) − p(X = x,Z =
z,W = w)p(Y = y,Z = z,W = w) = 0 for all
x, y and z. Each equation is a polynomial in the
BN parameters corresponding to G, because each term
p(V = v) in the equations is the summation of pro-
ducts of BN parameters (Meek 1995). Furthermore,
each polynomial is non-trivial, i.e. not all the values
of the BN parameters corresponding to G are solutions
to the polynomial. To see it, it suffices to rename w
to w′ and w′ to w because, originally, X 6⊥⊥ Y|Z in
p(U \W|W = w′). Let sol(x,y, z,w) denote the set
of solutions to the polynomial for x, y and z. Then,
sol(x,y, z,w) has Lebesgue measure zero wrt Rn,
where n is the number of linearly independent BN pa-
rameters corresponding to G, because it consists of the
solutions to a non-trivial polynomial (Okamoto 1973).
Then, sol =

⋃
X,Y,Z,W

⋃
w

⋂
x,y,z sol(x,y, z,w) has

Lebesgue measure zero wrt Rn because the finite union
and intersection of sets of Lebesgue measure zero has
Lebesgue measure zero too. Consequently, the proba-
bility distributions in M(G) with context-specific in-
dependencies have Lebesgue measure zero wrt Rn be-
cause they are contained in sol. Finally, since M(G)
has positive Lebesgue measure wrt Rn (Meek 1995),
the probability distributions in M(G) with context-
specific independencies have Lebesgue measure zero
wrt M(G).

5 AN EXAMPLE

In this section, we illustrate the method to identify R
that follows from Theorems 3 and 4 with an example
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Figure 1: (a) DAG faithful before selection bias, (b)
UG faithful after selection bias, (c, d) the only minimal
directed independence maps after selection bias.

that includes selection bias and context nodes. Let
p(C1, C2, I, S, T ) be any Gaussian distribution that is
faithful to the DAG (a) in figure 1. Such probabi-
lity distributions exist (Meek 1995). Let us consider
the selection bias S = s. Then, p(C1, C2, I, T |S = s)
is faithful to the UG (b) in figure 1 and, thus, is
not DAG-faithful (Chickering and Meek 2002). Let
us now assume that we want to learn a BN from
p(C1, C2, I, T |S = s) to answer any query about T
with context nodes {C1, C2}. Since p(C1, C2, I, T |S =
s) is a Gaussian distribution (Anderson 1984), it satis-
fies the assumptions in Theorem 4. Therefore, we can
apply the method that follows from this theorem to
identify R({C1, C2}). The result is R({C1, C2}) = ∅
and, thus, I({C1, C2}) = {I}. Moreover, {C1, C2, T}
is the optimal domain to learn the BN because C1 ∈
R({C2}) = {C1, I} and C2 ∈ R({C1}) = {C2, I}. So,
we have solved the problem correctly without learning
a BN first.

In the cases where a BN can be learnt first, it is temp-
ting to try to identify R by just studying the BN struc-
ture learnt. This can however lead to erroneous conclu-
sions. For instance, the best BN structure that can be
learnt from p(C1, C2, I, T |S = s) is a minimal directed
independence map of it because, as discussed above,
this probability distribution is not DAG-faithful. The
DAGs (c) and (d) in figure 1 are the only minimal
directed independence maps of p(C1, C2, I, T |S = s)
(Chickering and Meek 2002). Let us assume that the
BN structure learnt is the DAG (c). Then, it seems
reasonable to conclude that R({C1, C2}) = {I}, be-
cause sep(I, T |{C1, C2}) is false in the BN structure
learnt and there exist probability distributions that
are faithful to it (Meek 1995). In other words, by just
studying the BN structure learnt, it is not possible to
detect whether we are dealing with a probability dis-
tribution that is faithful to it or not and, thus, it is
safer to declare I relevant. We know that this is not
the correct solution. The same problem occurs with

C1 in the DAG (d) in figure 1 if we want to answer
any query about C2 with context nodes {I, T}. As the
authors note, the algorithms in Geiger et al. (1990)
and Shachter (1988, 1990, 1998) also suffer from this
drawback. On the other hand, our method avoids it
by studying the probability distribution instead of a
possibly inaccurate BN structure learnt from it.

6 CONCLUSIONS

We have reported a method to identify all the nodes
that are relevant to compute all the conditional pro-
bability distributions for a given set of nodes without
having to learn a BN first. We have showed that the
method is efficient and consistent under some assump-
tions. We have argued that the assumptions are not
too restrictive. For instance, composition and weak
transitivity, which are the two main assumptions, are
weaker than faithfulness. We believe that our work
can be helpful to those dealing with high-dimensional
domains. This paper builds on the fact that the mini-
mal undirected independence map of a strictly positive
probability distribution that satisfies weak transitivity
can be used to read certain dependencies (Theorem 2).
In (Peña et al. 2006b), we introduce a sound and com-
plete graphical criterion for this purpose.

We are currently studying even less restrictive assump-
tions than those in this paper. The objective is develop
a new method whose assumptions are satisfied by such
an important family of probability distributions as the
family of conditional Gaussian distributions because,
in general, this family does not satisfy composition.
An example follows. Let {X,Y, Z} be a random va-
riable such that X and Y are continuous and Z is
binary. Let p(X, Y |Z = z) be a Gaussian distribution
for all z. Let these two Gaussian distributions have
the same mean and diagonal of the variance-covariance
matrix but different off-diagonal. Then, {X, Y } 6⊥⊥Z|∅
but X ⊥⊥ Z|∅ and Y ⊥⊥ Z|∅ (Anderson 1984). We
note that there do exist conditional Gaussian distri-
butions that satisfy composition and weak transitivity,
e.g. those that are DAG-faithful.

We are also currently applying the method proposed
in this paper to our atherosclerosis gene expression
database. We believe that it is not unrealistic to as-
sume that the probability distribution underlying our
data satisfies strict positivity, composition and weak
transitivity. The cell is the functional unit of all the
organisms and includes all the information necessary
to regulate its function. This information is encoded
in the DNA of the cell, which is divided into a set
of genes, each coding for one or more proteins. Pro-
teins are required for practically all the functions in
the cell. The amount of protein produced depends



on the expression level of the coding gene which, in
turn, depends on the amount of proteins produced by
other genes. Therefore, a dynamic BN is a rather ac-
curate model of the cell (Murphy and Mian 1999): The
nodes represent the genes and proteins, and the edges
and parameters represent the causal relations between
the gene expression levels and the protein amounts. It
is important that the BN is dynamic because a gene
can regulate some of its regulators and even itself with
some time delay. Since the technology for measuring
the state of the protein nodes is not widely available
yet, the data in most projects on gene expression data
analysis are a sample of the probability distribution
represented by the dynamic Bayesian network after hi-
ding the protein nodes. The probability distribution
with no node hidden is almost surely faithful to the
dynamic Bayesian network (Meek 1995) and, thus, it
satisfies composition and weak transitivity (see section
2) and, thus, so does the probability distribution af-
ter hiding the protein nodes (see Theorem 5). The
assumption that the probability distribution sampled
is strictly positive is justified because measuring the
state of the gene nodes involves a series of complex
wet-lab and computer-assisted steps that introduces
noise in the measurements (Sebastiani et al. 2003).
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