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Abstract
Despite advancements in genetic studies, it is difficult to understand and characterize the functional relevance of disease-
associated genetic variants, especially in the context of a complex multifactorial disease such as multiple sclerosis (MS). As a large
proportion of expression quantitative trait loci (eQTLs) are context-specific, we performed RNA-Seq in peripheral blood mononu-
clear cells from MS patients (n¼145) to identify eQTLs in regions centered on 109 MS risk single nucleotide polymorphisms and
7 associated human leukocyte antigen variants. We identified 77 statistically significant eQTL associations, including pseudogenes
and non-coding RNAs. Thirty-eight out of 40 testable eQTL effects were colocalized with the disease association signal. As many
eQTLs are tissue specific, we aimed to detail their significance in different cell types. Approximately 70% of the eQTLs were repli-
cated and characterized in at least one major peripheral blood mononuclear cell-derived cell type. Furthermore, 40% of eQTLs were
found to be more pronounced in MS patients compared with non-inflammatory neurological diseases patients. In addition, we
found two single nucleotide polymorphisms to be significantly associated with the proportions of three different cell types.
Mapping to enhancer histone marks and predicted transcription factor binding sites added additional functional evidence for eight
eQTL regions. As an example, we found that rs71624119, shared with three other autoimmune diseases and located in a primed
enhancer (H3K4me1) with potential binding for STAT transcription factors, significantly associates with ANKRD55 expression. This
study provides many novel and validated targets for future functional characterization of MS and other diseases.
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Introduction
Multiple sclerosis (MS) is a chronic inflammatory disease of the
central nervous system (CNS), which leads to demyelination
and neuronal loss. Genetics play a significant role in this dis-
ease, the heritability being 0.64 (1). Large efforts have been
made to identify genetic features that contribute to the patho-
genesis of MS, resulting in a growing list of established disease-
associated loci, including human leukocyte antigen (HLA)
variants and single nucleotide polymorphisms (SNPs) across the
genome (2–4). In addition, some lifestyle exposures affect the
susceptibility of MS such as smoking, body mass index, sun-
exposure and viral infections (5). Several genetic regions previ-
ously known to be associated with MS and other autoimmune
or chronic inflammatory diseases, have been fine-mapped with
a dense set of SNPs and tested for association with MS within
the ImmunoChip Project (3). More than 100 non-HLA SNPs are
currently established as MS susceptibility SNPs. Many of these
may be causal variants, because fine-mapping compared to con-
ventional genome-wide association studies (GWAS) increases
the probability of pinpointing disease-causing variants rather
than variants in linkage disequilibrium (LD). Interestingly, there
is an overlap of MS-associated variants with other autoimmune
diseases ranging from 0.9% for psoriasis to 9.1% for inflamma-
tory bowel disease, Crohn’s disease and primary biliary cirrho-
sis (3).

Given the non-coding nature of the majority of non-HLA MS
SNPs (6), the widespread presence of expression quantitative
trait loci (eQTLs) in the genome (7), and the potential impact of
gene expression on biological pathways involved in disease, it is
likely that a number of MS-associated loci would be involved in
regulation of gene expression, acting as eQTLs. A large propor-
tion of the eQTLs present in the human genome seem to be
context-specific, i.e. they are active in specific cell types and/or
as a response to molecular signaling induced by intrinsic or
extrinsic stimuli (6,8,9). Most eQTL studies performed to date,
including those focusing on MS variants (10), have used cells
from healthy individuals, while studies in the disease context,
using patient samples, are still limited. Importantly, in MS
chronic inflammation is found in the CNS, with increased num-
bers of inflammatory cytokines and immune cells in the cere-
brospinal fluid, but the inflammatory state is also reflected in
the peripheral blood (11) which is more easily accessible.

Therefore, in order to study MS susceptibility variants as
eQTLs in their disease and cell-type specific context, we per-
formed whole transcriptome RNA sequencing (RNA-Seq) in
peripheral blood mononuclear cells (PBMCs) from 145 patients
with MS or clinically isolated syndrome (CIS) that had previ-
ously been genotyped on the ImmunoChip SNP microarray (3).
Additionally, we included 36 non-inflammatory neurological
disease (NINDs) controls, i.e. patients with other neurological
diseases in the analysis in order to compare and to identify
potential MS-specific effects. Following the eQTL analysis, we
characterized the significance of the identified MS eQTLs in
lymphoblastic cell lines (LCLs) and primary immune cells (CD4þ,
CD8þ, B cells and monocytes) sorted from PBMCs obtained from
different cohorts of healthy individuals or MS patients. And
finally, we added functional evidence for most relevant eQTLs
by mapping to enhancer histone marks and predicted transcrip-
tion factor binding sites. The schematic overview of the
approach followed in this study and key results are shown in
Figure 1.

This is, to our knowledge, the first study where the estab-
lished MS susceptibility variants have been tested for cis-eQTL

effects in the disease-specific context by using PBMCs from
patients.

Results
Non-HLA and HLA eQTL effects in MS patients

We sequenced the transcriptome of PBMCs from 145 patients
with MS or CIS (Cohort 1, Supplementary Material, Table S1),
previously genotyped on the ImmunoChip (3), and quantified
gene expression using RNA-Seq. Then, we identified pairs of
MS SNP–genes by selecting expressed genes within a window
of 400 kb on each side of 109 MS-associated non-HLA SNPs
(Supplementary Material, Table S2) and 7 MS-associated HLA
variants (presence of HLA-DRB1*03: 01, HLA-DRB1*15: 01 and
HLA-DRB1*14: 01/14: 02 and absence of HLA-A*02: 01, HLA-B*44
and or 45, HLA-DRB1*07 and HLA-DRB1*01). The window size was
selected based on the increased probability of finding cis-regu-
lated genes at closer distances (12,13) and to limit the number
of comparisons (Supplementary Material, Tables S3 and S4).
For each MS SNP–gene pair identified, we conducted an eQTL
analysis. We first regressed out the effects of the relevant con-
founders [identified in a principal component analysis (PCs),
Supplementary Material, Table S5] of gene expression and next,
we computed the non-parametric correlation between residuals
and the genotype using an additive model. The total number of
MS SNP–gene pairs tested was 2223.

We defined eQTL significance using a permutation-based
False Discovery Rate (FDR) threshold of 0.01. Table 1 (column A)
lists 49 significant non-HLA eQTLs identified in Cohort 1. Table 2
(column A) lists the 28 significant HLA-associated eQTLs from 7
HLA MS risk alleles (Supplementary Material, Table S4 shows
the full HLA eQTL analysis results for Cohort 1).

Filtering eQTL candidate SNPs based on cell proportions

Because the genetic variants themselves may regulate the com-
position of immune cells within PBMCs (14), the differences in
cell-type proportions may explain an observed eQTL effect. To
account for that possibility, we first estimated the proportion of
different cell types in each sample from the RNA-Seq data using
the described method (15). Next, we tested the association of
SNPs involved in significant eQTLs (Tables 1 and 2) with the cell
proportions (monocytes, NK cells, CD4þ and CD8þ T cells,
and B cells) using Spearman correlation. We identified signifi-
cant associations to cell proportions (P-value< 0.05) for seven
non-HLA SNPs and one HLA variant (Supplementary Material,
Table S6). Subsequently, we re-ran the eQTL analysis for these
SNPs, while regressing out the cell proportion effects. As a
result, two eQTLs were significant associated with cell propor-
tions (Supplementary Material, Table S7); rs2726518 (associated
with TET2) was associated with the proportions of monocytes,
and rs6881706 (associated with SPEF2) was correlated with the
proportions of B cells, CD8þ cells and monocytes.

Thus, 47 non-HLA MS SNP–gene pairs and 28 HLA MS SNPs–
genes pairs remained significant eQTLs after correcting for cell
proportions. Out of these, some eQTL-associated genes, e.g.
CPTIB, MANBA, PLEK, METTL21B, AHI1, TNFRSF14, MERTK, IQCB1
and CLECL1, have been reported previously in studies from
healthy individuals (8,10,16). Importantly, we also identified
eQTLs associated with, to our knowledge, novel genes (mostly
non-coding RNAs, antisense transcripts and pseudogenes).
Thirty-one out of 47 non-HLA MS-eQTLs (66%) are located
within 100 kb of the gene transcription start site from the SNP,
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although 70.2% of the total eQTLs did not affect the gene closest
to the SNP (Supplementary Material, Table S8).

MS eQTLs and linkage disequilibrium

Observed eQTL effects could potentially be caused by SNPs in
linkage disequilibrium (LD) with the established MS-associated
SNPs. Using fine-mapped genotypic information from the
ImmunoChip study, we investigated all SNPs with r2>0.5
(referred to as LD SNPs) in relation to the established top-
associated MS SNPs showing eQTL effects in our data. Many of
the LD SNPs showed similar or more significant eQTL effects on
the same genes as the established MS SNPs (Supplementary
Material, Table S9). About 49 out of 71 SNP–gene (including HLA)
loci were found to have at least one SNP with better eQTL
P-value compared to that of MS SNP–gene. To identify an appro-
priate candidate eQTL SNP in each locus, we first performed a
conditional analysis where, for each MS SNP and for each asso-
ciated LD SNP, the effect of each associated LD SNP was first
regressed out and then residuals were correlated with the MS
SNP. None of the MS SNP eQTL effects remained significant

when conditioned on any of the SNPs with r2>0.5.
Subsequently, we conducted the reverse analysis for each eQTL.
For each MS SNP and for each associated LD SNP, we first
regressed out the eQTL effect of the MS SNP and then residuals
were correlated with the LD SNP as described previously.

Five regions contained LD SNPs with significantly associated
(P< 0.05) eQTL effects (Fig. 2 and Supplementary Material,
Figs S2–S5). These LD SNPs were associated with the expression
of ORMDL3/GSDMB, TNFRSF14, METTL21B/XRCC6BP1, FCRL3 and
HOTAIRM1 suggesting additional independent eQTL effects.
With the exception of FCRL3, all these genes were located in
regions that had been fine-mapped on the ImmunoChip.

For the remaining 21 LD regions included in the conditional
analysis, none of the LD SNP eQTL effects remained significant
when conditioned on the MS SNP (Supplementary Material,
Table S9). We conclude that with few exceptions our results are
consistent with ImmunoChip top-associated MS SNPs affecting
MS risk by controlling expression levels. However, with an
expression cohort with moderate sample size, we cannot
exclude the possibility that the eQTL effect we observed for the
MS-associated SNPs is due to SNPs in LD.

Figure 1. Schematic overview of the study and key results. (A) Immunochip study resulted in 110 non-HLA and 7 HLA markers associated to MS (Supplementary

Material, Table S2). (B) We deterimind expression levels in PBMC from 181 patients with RNAseq (Supplementary Material, Table S1) (C) MS-CIS patients eQTL analysis

were performed for 109 non-HLA and 5 HLA markers and resulted in 77 significant eQTLs (29 eQTLs associated to HLA markers) (Tables 1 and 2 and Supplementary

Material, Tables S3 and S4). (D) Two eQTLs associated to cell propotions were identified: rs2726518 (associated with TET2) was associated with the proportions of mono-

cytes, and rs6881706 (associated with SPEF2) was correlated with the proportions of B cells, CD8þ cells and monocytes (Supplementary Material, Table S6). (E)

Colocalization tests performed in 22 MS susceptibility loci. In total, 38 SNP–gene eQTLs were colocalized with the MS locus signal and two SNP–gene eQTLs—

rs201202118-XRCC6BP1 and rs533646-AP002954.4.1, were not colocalized (Fig. 2 and Supplementary Material, Figs S2–S5 and Tables S9 and S10). (F) Validation of MS

eQTLs in cell-type specific datasets—CD4, CD8 cells (RNA-Seq) and B cells and monocytes (microarray). Of the non-HLA SNP–gene eQTLs found in PBMCs, 40% were sig-

nificant in at least three additional cell types and 74% were significant in at least one cell type (Figs 3 and 4 and Supplementary Material, Tables S11 and S12). (G) MS

eQTL effect changes in monocytes obtained from healthy individuals activated by different stimuli (LPS, 2 and 24 h; IFN-c, 24 h) compared to unstimulated. eQTL pairs

such as rs8042861-IQGAP1 and rs941816-ETV7 showed increased effects in monocytes stimulated with IFN-c and LPS (2 h), rs2288904-SLC44A2 displayed an increased

effect for IFN-c, and rs2523822 (HLA-A*02)-HLA-H for each of the three stimuli, while rs11052877-CLECL1 showed a decreased eQTL effects after the three stimulations

(Fig. 5 and Supplementary Material, Table S13). (H) Disease specificity of eQTL effects—32 out of 73 of the eQTL effects had a slope change <5%, with HLA- B*44 or 45-

HCP5 showing the largest (41%) eQTL effect increase. FCRL3 (eQTL gene), FCRL2 and FCRL5 genes in the MS defined locus of rs706015 were significantly downregulated

in MS cohort compared to NINDs (Supplementary Material, Fig. S1 and Table S19). (I) Epigenomic mapping of MS-associated variants—Out of the 26 non-HLA eQTLsof

MS patients eight overlapped either with an H3K27ac or H3K4me1 active enhancer histone marks or with a DNaseI peak in monocytes, B, CD4þ T and CD8þ T cells

(Fig. 2 and Supplementary Material, Figs S2–S5 and Table S20).
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Table 1. List of MS-associated non-HLA SNPs showing significant eQTL effects

SNP Chr Gene A B

Cohort 1 Pooled cohort

Rho Bootstrap Rho mean
(5%, 95% range)

FDR Rho Bootstrap Rho mean
(5%, 95% range)

FDR

rs2050568a 1 FCRL3b �0.29 �0.28 (�0.52, �0.02) 5.6�10�4 �0.26 �0.26 (�0.49, 0.01) 5.2�10�4

rs3748817a 1 FAM213B 0.23 0.23 (�0.04, 0.48) 6.5�10�4 0.22 0.22 (�0.05, 0.47) 3.5�10�3

1 MMEL1 0.36 0.36 (0.12, 0.57) 8.3�10�6 0.32 0.32 (0.08, 0.53) 1.5�10�5

1 TNFRSF14 �0.22 �0.22 (�0.46, 0.03) 8.2�10�3 �0.21 �0.21 (�0.45, 0.04) 4.1�10�3

rs17174870 2 MERTK 0.22 0.22 (�0.04, 0.47) 8.6�10�3 0.26 0.25 (0, 0.51) 5.3�10�4

rs7595717a 2 PLEK 0.22 0.22 (�0.04, 0.45) 7.8�10�3 0.27 0.27 (0.02, 0.5) 3.4�10�4

rs842639 2 AHSA2 �0.26 �0.26 (�0.51, 0) 1.7�10�3 �0.30 �0.29 (�0.52, �0.04) 6.4�10�5

rs1920296 3 IQCB1 0.46 0.46 (0.23, 0.67) <3.6�10�8 0.40 0.39 (0.14, 0.61) <3.6�10�8

rs2726518 4 TET2c �0.26 �0.26 (�0.49, �0.01) 1.5�10�3 �0.18 �0.18 (�0.41, 0.08) 0.02
rs7665090a 4 KRT8P46 �0.24 �0.24 (�0.46, 0) 3.3�10�3 �0.28 �0.27 (�0.49, �0.03) 1.9�10�4

4 MANBAd �0.24 �0.23 (�0.45, 0.02)e 4.6�10�3 �0.2 �0.2 (�0.43, 0.05) 7.5�10�3

4 RP11-10L12.6.1d �0.36 �0.36 (�0.56, �0.13) 8.4�10�6 �0.36 �0.36 (�0.56, �0.12) 1.1�10�6

rs6881706a 5 SPEF2f �0.22 �0.22 (�0.45, 0.05) 8.8�10�3 �0.22 �0.22 (�0.47, 0.03) 2.6�10�3

rs71624119a 5 ANKRD55 0.30 0.3 (0.05, 0.52) 2.7�10�4 0.30 0.3 (0.06, 0.52) 3.7�10�5

rs11154801 6 AHI1 �0.65 �0.64 (�0.8, �0.43) <3.6�10�8 �0.64 �0.64 (�0.8, �0.42) <3.6�10�8

6 RP3-388E23.2.1d �0.29 �0.29 (�0.51, �0.05) 4.3�10�4 �0.31 �0.31 (�0.52, �0.07) 2.5�10�5

rs17066096 6 PEX7 �0.25 �0.25 (�0.49, 0) 2.2�10�3 �0.22 �0.22 (�0.47, 0.03) 2.7�10�3

rs941816 6 ETV7 �0.41 �0.41 (�0.61, �0.18) 2.1�10�7 �0.38 �0.38 (�0.59, �0.14) 2.9�10�7

rs706015 7 HOTAIRM1 0.24 0.24 (�0.04, 0.48)e 3.7�10�3 0.20 0.2 (�0.08, 0.45) 7.8�10�3

7 HOXA3 �0.22 �0.22 (�0.46, 0.02)e 7.6�10�3 �0.17 �0.17 (�0.41, 0.1) 0.03
rs1021156 8 FAM164A �0.59 �0.58 (�0.74, �0.39) <3.6�10�8 �0.54 �0.54 (�0.7, �0.32) <3.6�10�8

8 IL7d �0.26 �0.26 (�0.49, �0.01) 1.8�10�3 �0.23 �0.22 (�0.46, 0.04) 2.5�10�3

8 RP11-578O24.2.1d �0.51 �0.51 (�0.69, �0.3) <3.6�10�8 �0.49 �0.49 (�0.67, �0.27) <3.6�10�8

rs523604 11 PHLDB1 �0.25 �0.25 (�0.49, 0.02) 2.4�10�3 �0.26 �0.26 (�0.49, 0) 5.1�10�4

rs533646 11 AP002954.4.1d,g 0.53 0.53 (0.31, 0.7) <3.6�10�8 0.52 0.52 (0.31, 0.7) <3.6�10�8

rs694739a 11 AP003774.1.1d �0.57 �0.57 (�0.73, �0.37) <3.6�10�8 �0.58 �0.57 (�0.73, �0.37) <3.6�10�8

rs11052877 12 CLECL1 �0.26 �0.26 (�0.49, 0) 1.5�10�3 �0.30 �0.3 (�0.53, �0.04) 5.3�10�5

12 RP11-726G1.1.1d 0.32 0.32 (0.08, 0.53) 9.6�10�5 0.33 0.32 (0.1, 0.53) 8.9�10�6

rs201202118 12 METTL21B �0.66 �0.66 (�0.79, �0.48) <3.6�10�8 �0.69 �0.69 (�0.82, �0.52) <3.6�10�8

12 XRCC6BP1g 0.3 0.3 (0.05, 0.52) 2.9�10�4 0.31 0.31 (0.07, 0.53) 2.3�10�5

rs4772201 13 CLYBL 0.28 0.28 (0.04, 0.5)e 6.1�10�4 0.22 0.22 (�0.02, 0.45) 2.8�10�3

rs12148050a 14 TRAF3d 0.28 0.28 (0.04, 0.5) 7.9�10�4 0.24 0.24 (�0.01, 0.48) 1.4�10�3

rs8042861 15 IQGAP1 0.24 0.23 (�0.02, 0.48)e 4.2�10�3 0.19 0.18 (�0.08, 0.44) 0.01
rs1886700 16 CDH1 �0.31 �0.31 (�0.52, �0.07) 1.8�10�4 �0.29 �0.29 (�0.51, �0.03) 7.6�10�5

rs7204270 16 MAPK3 �0.35 �0.35 (�0.57, �0.11) 1.6�10�5 �0.34 �0.34 (�0.55, �0.1) 4.3�10�6

16 RP11-347C12.1.1d 0.33 0.32 (0.07, 0.55) 7.2�10�5 0.33 0.33 (0.08, 0.55) 8.1�10�6

16 TBX6 0.28 0.28 (0.02, 0.51) 7.1�10�4 0.29 0.29 (0.03, 0.52) 7.3�10�5

16 YPEL3 0.25 0.25 (�0.02, 0.49) 2.7�10�3 0.25 0.25 (0, 0.49) 7.2�10�4

rs12946510a 17 GSDMB �0.48 �0.48 (�0.68, �0.24) <3.6�10�8 �0.48 �0.48 (�0.69, �0.23) <3.6�10�8

17 ORMDL3 �0.55 �0.55 (�0.72, �0.34) <3.6�10�8 �0.54 �0.54 (�0.71, �0.32) <3.6�10�8

rs4794058 17 AC040934.1d �0.25 �0.24 (�0.47, 0) 3.1�10�3 �0.3 �0.29 (�0.52, �0.05) 6.0�10�5

17 NPEPPS 0.23 0.23 (�0.02, 0.47) 5.0�10�3 0.23 0.23 (�0.02, 0.46) 1.9�10�3

17 TBKBP1 0.53 0.53 (0.3, 0.72) <3.6�10�8 0.54 0.53 (0.32, 0.71) <3.6�10�8

rs8070345a 17 RNFT1 �0.24 �0.24 (�0.46, 0.01) 3.3�10�3 �0.24 �0.24 (�0.47, 0.02) 1.4�10�3

rs2288904 19 PDE4A �0.22 �0.22 (�0.46, 0.03) 7.0�10�3 �0.22 �0.22 (�0.45, 0.04) 3.6�10�3

19 SLC44A2 0.31 0.31 (0.04, 0.53) 1.9�10�4 0.29 0.28 (0.01, 0.53) 1.0�10�4

rs2283792 22 PPIL2 �0.31 �0.31 (�0.53, �0.07) 1.9�10�4 �0.28 �0.28 (�0.5, �0.03) 1.4�10�4

22 TOP3B �0.44 �0.44 (�0.62, �0.24) 3.6�10�8 �0.38 �0.38 (�0.58, �0.15) 2.1�10�7

rs470119 22 CPT1B �0.31 �0.3 (�0.52, �0.07) 2.1�10�4 �0.28 �0.28 (�0.51, �0.02) 1.6�10�4

Cohort 1, MS specific cohort; Pooled Cohort, Have both MS specific cohort and non-Inflammatory disease (NINDs) cohort.
aSNP in region implicated to be associated with other autoimmune diseases.
bDifferentially expressed gene, downregulated in MS patients compared to NINDs.
cAfter correction for cell-type proportions rs2726518 was found to associate with increased levels of monocytes, but not the TET2 gene.
dNovel eQTL genes found in PBMC.
eeQTL genes which are enriched in MS specific cohort.
fAfter correction for cell-type proportions rs6881706 was found to associate with increased levels of B cells, CD8þ T cells and monocytes, respectively.
gNot colocalized to disease association signal in the region.
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MS eQTLs and colocalization with MS risk

For the refinement of causal variants based on disease-
associated genetic variants and gene expression, we performed
colocalization tests in 22 MS susceptibility loci including HLA loci
(the number was obtained after applying the criteria described in
Materials and Methods), corresponding to 40 eQTL-gene pairs.
The colocalization method ‘COLOC’ provides an approximate
Bayes factor to estimate a posterior probabilities that a SNP is
causal in both immunochip disease association and eQTL analy-
sis. Thirty-eight SNP–gene eQTLs were colocalized with the MS
locus signal and two SNP–gene eQTLs—rs201202118-XRCC6BP1
(Fig. 2) and rs533646-AP002954.4.1, were not colocalized with dis-
ease association signal from ImmunoChip study (Supplementary
Material, Table S10).

Validation and exploration of MS eQTLs in cell-type spe-
cific datasets

Considering (a) the context-specific nature of eQTLs, and (b)
that most eQTLs are expected to be significant in healthy indi-
viduals as well, we aimed to characterize significant eQTLs
activity in different cell types using published and novel data-
sets. We characterized the identified eQTLs in lymphoblastic
cell lines (LCLs), naı̈ve B cells, naı̈ve monocytes, as well as

monocytes stimulated with LPS (2 and 24 h) or IFN-c (24 h)
sampled from healthy volunteers for which we obtained geno-
types and expression data from public datasets (7,8,16)
(Supplementary Material, Table S11). We also used a new small
cohort consisting of sorted CD4þ and CD8þ T cells from MS
patients and healthy controls (Table 3).

We performed eQTL analyses with the same methodology
described earlier. Gene expression in the LCLs and primary T cells
had been analyzed using RNA-Seq, which allowed us to detect
and validate several of the non-coding RNA transcripts or tran-
scribed pseudogenes found in our initial analysis in the PBMCs.
The gene expression data from sorted primary immune cells
from healthy individuals had been obtained through microarray
analyses, where probes were either lacking or expressed below
detection limit for some of the eQTL-affected genes. For confir-
mation of an eQTL effect on a given gene-locus pair, we accepted
a nominal P-value of<0.05 if the effect shows the same direction
as observed in Cohort 1. More than 40% of the non-HLA SNP–
gene eQTLs found in PBMCs was identified significant in at least
three additional cell types. Furthermore, 74% were identified
significant in at least one cell type (P-value 3.55�10�7). Some
eQTLs were general for all cell types, while most of them
were specific for one or a few cell types or conditions (Figs 3 and 4
and Supplementary Material, Tables S12–S16). Importantly, we

Table 2. List of MS-associated HLA variants showing significant eQTL effects

HLA allele Gene A B

Cohort 1 Pooled cohort

Rho Bootstrap Rho mean
(5%, 95% range)

FDR Rho Bootstrap Rho mean
(5%, 95% range)

FDR

HLA-A*02:01 (absence) IFITM4P �0.50 �0.5 (�0.68, �0.29) <1.87�10�7 �0.46 �0.45 (�0.65, �0.23) <1.87�10�7

HLA-F-AS1 �0.33 �0.33 (�0.55, �0.09) 4.1�10�6 �0.32 �0.32 (�0.54, �0.07) 8.1�10�6

HLA-H �0.27 �0.27 (�0.48, �0.03) 1.8�10�4 �0.24 �0.24 (�0.47, 0.01) 9.0�10�4

MICD �0.25 �0.25 (�0.47, �0.02) 4.8�10�4 �0.27 �0.26 (�0.49, �0.02) 2.3�10�4

HLA-K �0.25 �0.24 (�0.48, 0) 7.0�10�4 �0.25 �0.25 (�0.48, 0) 4.8�10�4

HCG4a �0.24 �0.24 (�0.47, 0.01) 1.0�10�3 �0.25 �0.25 (�0.48, 0) 5.2�10�4

HLA-T �0.22 �0.22 (�0.47, 0.05) 2.0�10�3 �0.24 �0.23 (�0.47, 0.03) 1.2�10�3

ZDHHC20P1 �0.25 �0.25 (�0.49, 0)b 5.8�10�4 �0.2 �0.2 (�0.43, 0.05) 6.3�10�3

HLA-DRB1*03:01 (presence) HLA-DQA1 �0.44 �0.44 (�0.61, �0.24) <1.87�10�7 �0.47 �0.47 (�0.64, �0.26) <1.87�10�7

HLA-DQB1 �0.41 �0.41 (�0.58, �0.2) <1.87�10�7 �0.43 �0.43 (�0.61, �0.21) <1.87�10�7

PPP1R2P1a 0.26 0.25 (�0.01, 0.49)b 4.0�10�4 0.19 0.18 (�0.1, 0.44) 0.01
HLA-DRB5 �0.25 �0.25 (�0.47, �0.01) 5.1�10�4 �0.26 �0.26 (�0.48, �0.01) 2.6�10�4

HLA-DQB1-AS1 �0.37 �0.36 (�0.56, �0.14) 3.7�10�7 �0.4 �0.39 (�0.58, �0.17) 1.9�10�7

HLA-DQB2 0.36 0.35 (0.12, 0.55) 9.4�10�7 0.33 0.33 (0.11, 0.53) 3.7�10�6

PSMB9 0.22 0.21 (�0.03, 0.44)b 3.1�10�3 0.15 0.15 (�0.11, 0.38) 0.05
HLA-DRB1*15:01 (presence) HLA-DRB5 0.78 0.78 (0.64, 0.87) <1.87�10�7 0.77 0.77 (0.62, 0.86) <1.87�10�7

HLA-DRB1 0.68 0.68 (0.53, 0.79) <1.87�10�7 0.66 0.65 (0.49, 0.78) <1.87�10�7

HLA-DQB1 0.61 0.61 (0.41, 0.76) <1.87�10�7 0.56 0.55 (0.34, 0.72) <1.87�10�7

HLA-DQB2 �0.51 �0.51 (�0.69, �0.28) <1.87�10�7 �0.46 �0.45 (�0.65, �0.23) <1.87�10�7

HLA-DRB6 �0.48 �0.48 (�0.67, �0.25) <1.87�10�7 �0.48 �0.47 (�0.67, �0.24) <1.87�10�7

HLA-DQB1-AS1 0.46 0.46 (0.24, 0.65) <1.87�10�7 0.42 0.41 (0.19, 0.61) <1.87�10�7

HLA-DQA1 0.39 0.38 (0.14, 0.59) 1.9�10�7 0.34 0.34 (0.1, 0.56) 2.1�10�6

HLA-DQA2 �0.36 �0.35 (�0.56, �0.11) 9.4�10�7 �0.36 �0.36 (�0.57, �0.13) 5.6�10�7

TAP2 0.29 0.29 (0.05, 0.52)b 5.0�10�5 0.21 0.2 (�0.04, 0.43) 5.1�10�3

BTNL2a 0.21 0.21 (�0.05, 0.46) 3.5�10�3 0.19 0.19 (�0.08, 0.44) 8.9�10�3

NOTCH4 0.22 0.22 (�0.04, 0.45) 2.7�10�3 0.2 0.19 (�0.07, 0.44) 7.8�10�3

HLA- B*44 and or 45 (absence) HLA-B 0.23 0.23 (�0.02, 0.46) 1.34�10�3 0.26 0.26 (0.01, 0.47) 2.45�10�4

HCP5a 0.22 0.22 (�0.04, 0.44)b 2.44�10�3 0.13 0.13 (�0.12, 0.38) 0.07

Cohort 1, MS specific cohort; Pooled Cohort, Both MS specific cohort and non-Inflammatory neurological disease (NINDs) cohort.
aNovel eQTL genes found in PBMC.
beQTL genes which are enriched in MS specific cohort.
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Figure 2. MS associations, LD and mapping to DNaseI peaks, active enhancer chromatin marks and TFBS of ImmunoChip SNPs in the METTL21B/XRCC6BP1 region. The

ImmunoChip association analysis results (red dots) are shown for each of the SNPs. SNPs labelled in red have transcription factor binding site based on RegulomeDB—

STAT1 (rs10783848), NTAF (rs1875124), BCL6B (rs11172344), SRF (rs11172343), IRF3 (rs923829), HELIOSA (rs10877015), FOXP (rs12423195), SOX4 (rs12423195), FOXL1

(rs10877012) and E2F2 (rs4646536). The top panel shows regions with H3K4me1 and H3K27ac chromatin mark peaks (red) and DNaseI peaks (black) in the different cell

types analyzed in this study (PBMCs, Monocytes, CD8þ and CD4þ T cells and B cells). SNP–gene correlation P-value for two genes—METTL21B and XRCC6BP are marked

as solid lines. XRCC6BP eQTL association signal is not colocalized with the SNP disease association signals.
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acknowledge that the analysis using the T cell cohort had low
statistical power due to its size; however, the number of repli-
cated eQTLs (P-value< 0.05) is higher or equal to the expected
numbers from a power analysis.

In the analysis of eQTL effects in the HLA region, we found
that the HLA-DRB1*15:01 allele or its tag SNP, rs3135388,
significantly influenced expression of the DRB1, DRB5 and DQB1
genes throughout the tested datasets except T cells (Fig. 4 and
Supplementary Material, Table S12).

Influence of LPS and IFN-c stimulation on MS eQTLs in
monocytes

To further characterize the context-specific nature of the eQTLs
in monocytes, which are thought to be involved in MS patho-
genesis (17), we analyzed the behavior of the MS eQTLs in
monocytes obtained from healthy individuals (8) activated by
different stimuli (LPS, 2 and 24 h; IFN-c, 24 h) compared to
unstimulated, by comparing the changes in effects, measured
as rho-values (Fig. 5 and Supplementary Material, Table S13).
Most increases in MS eQTL effects (rho) were observed upon
IFN-c stimulation, while a certain predominance of decreased
eQTL effects was seen upon stimulations with LPS as compared
with unstimulated cells. In accordance with the pattern
observed in PBMCs from MS patients, eQTL pairs such as
rs8042861-IQGAP1 and rs941816-ETV7 showed increased effects
in monocytes stimulated with IFN-c and LPS (2 h), rs2288904-
SLC44A2 displayed an increased effect for IFN-c, and rs2523822
(HLA-A*02)-HLA-H for each of the three stimuli, while
rs11052877-CLECL1 showed a decreased eQTL effects after the
three stimulations.

Disease-specific genes in MS, CIS and NINDs

To understand the role of MS-SNP regulated genes in the dis-
ease, gene expression levels of MS were compared to those of
NINDs and CIS (Supplementary Material, Table S14). Thirty-nine
out of 45 differentially expressed genes were downregulated in
MS compared to NINDs (adjusted P-value< 0.05) and no genes
were significantly differentially expressed between MS and CIS
samples (Supplementary Material, Table S14). FCRL3 (eQTL gene),
FCRL2 and FCRL5 genes in the MS defined locus of rs706015 were
significantly downregulated in MS cohort compared to NINDs
(Supplementary Material, Fig. S5).

Disease specificity of eQTL effects

While we only observe one eQTL gene, FCRL3, to be differentially
expressed, we aimed to investigate if the eQTL effects are dis-
ease specific by displaying an increased association in MS, or
rather general and independent of the disease status.

To this end, we pooled RNA-Seq and genotyping data from
36 NINDs (Cohort 2) and MS (Cohort 1) and regressed out the
effect of disease type (MS/NINDs) in the gene expression
profiles. Then, we compared results from this Pooled cohort
with those from Cohort 1 [Tables 1 and 2 (panel B); the
complete analysis results for the Pooled Cohort are found in
Supplementary Material, Tables S15 and S16]. All non-HLA and
HLA eQTLs except two (HLA-DRB1*03:01-PSMB9 and HLA-B*44/
45–HCP5) remained significant in the Pooled Cohort. We calcu-
lated the percentage of relative increase or decrease of eQTL
effects in the MS group (Cohort 1) as compared to when patients
with all diagnoses are included (Pooled Cohort) (Supplementary
Material, Fig. S1A and B and Tables S17 and S18). The results

Table 3. Summary of different datasets used for genotying and screening phase (PBMC) and validation phase (PBMC-derived immune cell types)

Cohort Tissue MS NINDs HC Expression type (source) Analysis results and data

Pooled Cohort [Cohort 1
(MS)þCohort 2 (NINDs)]

PBMC 145 36a 0 RNA-Seq Tables 1 and 2 and Supplementary
Material, Tables S1, S3, S4 and S15–S18

Cell-type specific CD4a 19 0 8 RNA-Seq Figures 3 and 4 and Supplementary
Material, Tables S12, S13 and S23

Cell-type specific CD8a 17 0 7 RNA-Seq Figures 3 and 4 and Supplementary
Material, Tables S12, S13 and S23

Cell-type specific B-cells 0 0 233 Microarray (16) Figures 3 and 4 and Supplementary
Material, Tables S12 and 13

Cell-type specific Monocytes 0 0 414 Microarray (8) Figures 3–5 and Supplementary
Material, Tables S12–16

Cell-type specific
(stimulation)

Monocytes
(IFN gamma)

0 0 367 Microarray (8) Figures 3–5 and Supplementary
Material, Tables S11–S13

Cell-type specific
(stimulation-time
point)

Monocytes
(LPS—2 h)

0 0 261 Microarray (8) Figures 3–5 and Supplementary
Material, Tables S11–S13

Cell-type specific
(stimulation-time
point)

Monocytes
(LPS—24 h)

0 0 322 Microarray (8) Figures 3–5 and Supplementary
Material, Tables S11–S13

Cell-type specific
(1000 genome project)

EBV-transformed
LCLs (B cells)

0 0 234 RNA-Seq (7) Figures 3 and 4 and Supplementary
Material, Tables S11 and S12

Additional PBMC dataset
(MS and NINDs)

PBMC 23 7 0 Human Genome U133
plus 2.0 arrays (18)

Supplementary Material, Table S19

Global Cohort Association
study (Cases and Controls)

Blood (DNA) 17465 30385 ImmunoChip custom
genotyping array (3)

Supplementary Material, Table S10

Joint Analysis cohort
(Cases and Controls)

Blood (DNA) 29300 50794 ImmunoChip custom
genotyping array (3)

Supplementary Material, Table S10

LCLs, lymphoblastoid cell lines.
aSample size estimation and power analysis done for these cohorts.
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indicated that 32 out of 73 of the eQTL effects had a slope
change <5%, with HLA- B*44 or 45-HCP5 (Supplementary
Material, Fig. S1B) showing the largest (41%) eQTL effect
increase. We lack power to quantify accurately the change of
the slope per eQTL, however, we observed that for a set of HLA
eQTLs the association strength (absolute value of rho) is reduced
when adding non-MS individuals (Supplementary Material,
Table S17) despite the increase of the number of individuals
(P-value< 0.05). In non-HLA eQTLs, we also observed for many

eQTLs a reduction of association strength, but it was not statis-
tically significant. However, to further test the validity of
increase or decrease of eQTL effects in MS compared to other
patients, we computed eQTLs in a small previously analyzed
cohort with MS and NINDs (OND) patient samples taken from
the same study population as the Pooled Cohort (18) and we
found that the change of the effect between MS and NINDs was
in the same direction for a significant set of eQTLs (P-val-
ue<0.05) (Supplementary Material, Table S19).

Figure 3. Graphical overview of MS-associated non-HLA eQTLs in immune cell types. Validation and exploration of MS non-HLA eQTLs in LCLs, primary B cells, pri-

mary monocytes [unstimulated, stimulated with IFN-c (24 h), LPS (2 h), LPS (24 h)], from healthy individuals, as well as CD4þ and CD8þ T cells from MS patients and

healthy controls. A nominal P-value of <0.05 was accepted as validation of a significant eQTL in PBMCs. *A proxy SNP was used in the analysis of primary B cells and

monocytes (listed in Supplementary Material, Table S24). eQTL SNPs (rs2050568, rs2726518 rs12946510 and rs201202118) were excluded as original snps or tag snps

were not obtained for the corresponding studies. þ/� indicates the gene expression increase/decrease with respect to the risk allele.
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In order to address if our results were affected by realapse–
remission status, we investigated the eQTLs reported in
Tables 1 and 2, stratifing the MS and CIS patients based on real-
apse–remission status. Among patients in remission (n¼ 101)
three of the eQTLs (HLA-DRB1*03:01-PSMB9, rs11154801- RP3–

388E23.2.1 and rs8070345- RNFT1) were not significant while all
the others remained significant. However, these three eQTLs
were all significant among patients in remission (n¼ 29), indi-
cating that they may be specific to situation of active inflamma-
tory response (data not shown).

Chromatin marks

To functionally characterize the MS eQTLs identified, we per-
formed a bioinformatics screening of non-HLA MS eQTL loci
using chromatin marks and DNaseI peaks, as well as analysis of
predicted TFBS mapping from ENCODE data (19) and Roadmap

Epigenomics data (20) from healthy individuals. Out of the 26
non-HLA eQTLs in PBMCs of MS patients eight overlapped either
with an H3K27ac or H3K4me1 active enhancer histone marks or
with a DNaseI peak in monocytes, B, CD4þ T and CD8þ T cells.
Two non-HLA eQTLs also overlapped with a predicted TFBS for
PIT-1 and STAT1, while NKX2–3, NKX2–8, Irx5, Irx3 and GRHL1
were predicted to bind SNPs without any other overlapping
marks (Supplementary Material, Table S20).

Discussion
We have performed an eQTL analysis of the top-associated MS
risk loci (3) by studying cis-eQTL effects in 800-kb windows in
PBMCs from patients with MS. We found 35 MS loci that dis-
played eQTL effects influencing one or more genes within the
analyzed regions. A majority of the eQTL effects remained sig-
nificant when adding data from non-MS patients, however,

Figure 4. Graphical overview of MS-associated HLA eQTLs in immune cell types. Validation and exploration of MS HLA eQTLs in LCLs, primary B cells, primary mono-

cytes [unstimulated, stimulated with IFN-c (24 h), LPS (2 h), LPS (24 h)], from healthy individuals, as well as CD4þand CD8þT cells from MS patients and healthy con-

trols. *rsids used as tag SNPs for the HLA alleles in LCLs, B cells and monocytes. þ/� indicates the gene expression increase/decrease with respect to the risk allele.
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>70% of the effect sizes changed when analyzed in only MS/CIS
patients, with a predominance of increased effects in MS cohort
for HLA-related eQTLs (Supplementary Material, Fig. S1).

We replicated the eQTLs identified from PBMCs in datasets
from LCLs, primary B cells and monocytes from healthy individ-
uals, including monocytes activated by LPS and IFN-c as well as
in CD4þ and CD8þ T cells from MS patients and healthy controls.
In total, 74% of the non-HLA eQTLs were replicated in at least
one cell type. We replicated known observations from healthy
individuals (8,10,16) as well as reported previously unidentified
eQTLs, especially for HLA genes, long non-coding or anti-sense
RNA genes and pseudogenes. Interpretation of comparisons
with previously published eQTL studies should however be
made with caution, considering the differences in the SNPs or
proxy SNPs, expression platforms and number of study subjects
included. Importantly, considering the overlap in risk genes
between autoimmune diseases, we consider that the results
presented here are relevant for other autoimmune diseases
(Table 1).

Roles of MS eQTLs in different immune cell types

B cells and monocytes are found in MS lesions and their roles in
the disease process are being investigated (21–24), however,
there are plenty of studies pointing toward an important role of
T cells in the disease (2,3). Therefore, we presented RNA-Seq

based eQTL data from a small cohort of CD4þ and CD8þ T cells,
which allowed us to validate a few of the eQTL findings from
PBMCs. Despite the small sample size, two of the eQTL effects
found in CD4þ and CD8þ T cells (rs7204270-YPEL3, rs8070345-
RNFT1) could not be replicated in any other cell type, thus sug-
gesting T cell specificity (Fig. 3 and Supplementary Material,
Table S11). Larger sample sizes will be needed for a more robust
exploration of MS SNPs as eQTLs in different T cell subsets.

After integrating chromatin marks and TFBS data, and tak-
ing the different validation strategies together, we found that
the AHSA2 eQTL, rs842639, had perfectly matching results for
DNase I and histone marks throughout all tested datasets, con-
firming its eQTL effect. For the remaining MS eQTLs histone
marks, DNaseI and TFBS data overlapped with eQTL results in
the different tissues to a varying extent.

To describe some examples, rs3748817 was found as an
eQTL for FAM213B and MMEL1 in PBMCs from MS patients.
However, the behavior of this eQTL effect under different stimu-
latory conditions of monocytes varied (no eQTL for FAM213B in
24-h stimulation with LPS), and it also changed in different
PBMC-derived cell types (MMEL1 has no eQTL effect in B cells,
and no eQTL effect for any of the genes in T cells). An active
enhancer histone mark was also found for this SNP in mono-
cytes (Supplementary Material, Table S20 and Fig. 4). rs523604,
an eQTL for PHLDB1 in MS PBMCs, was found in healthy mono-
cytes, however not supported by any other data for this cell

Figure 5. Heat map of changes in MS eQTL effects upon stimulation of monocytes. The changes are measured as rho values and are depicted in percentage relative to

the unstimulated (naı̈ve) condition. Only SNP–gene pairs with nominally significant (P<0.05) effects in the naı̈ve state are included in the heatmap. Graphs are llustrat-

ing eQTL effect size (beta-value) changes for the different stimuli in monocytes, showing examples of expression of four genes: ETV7, SLC44A2, IQGAP1 and FAM164A.
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type, while it mapped to active enhancer in healthy PBMCs, B
cells and CD8þ T cells. We confirmed the eQTL for CLYBL,
rs4772201, in healthy B cells, while active enhancer histone
marks and DNase I peaks were found throughout the analyzed
cell types (Supplementary Material, Fig. S2 and Table S20). Most
of the TFs with predicted binding to eQTL SNPs have described
functions during development (mainly neuronal) and cell cycle.
Only STAT1 (predicted to bind to rs71624119, eQTL for
ANKRD55) and NKX2–3 (predicted to bind rs11154801, eQTL for
AHI1 and RP3–388E23.2.1) have known functions in immunity.

Detection of shared causal variants

A question of importance is whether the disease-associated
SNP in a region is the one driving an observed eQTL effect and
therefore possibly responsible for disease risk. We show that for
at least 6 of the 24 testable MS SNPs there are other SNPs in the
region with stronger eQTL effect in PBMCs from MS patients
(Supplementary Material, Table S9). The most significant
disease-associated SNPs in the global analyses in these regions
may simply have other functional effects than eQTLs in PBMCs,
or alternatively, previous association analysis and fine mapping
has failed to pinpoint the correct SNP for MS susceptibility
(Fig. 2 and Supplementary Material, Figs S2–S5). Additionally,
for every gene–SNP pair, we conducted a colocalization analysis
in a window span of 800 kb around risk SNP, to test whether the
eQTL variants colocalizes with the disease association variant.
Our study suggest that 95% of the testable disease loci were
colocalized to the eQTL gene signal (Supplementary Material,
Table S10). Larger cohorts that enable a more thorough dissec-
tion of the LD structure and regions with even coverage of SNPs
will be needed in order to conclude exactly which SNPs are nec-
essary for the effect, although it is likely that haplotypes, rather
than single SNPs are the drivers (25).

Modification of eQTL effects by context

Current data from eQTL analyses in different immune cell types
show that a large proportion of eQTL effects are highly context-
specific, i.e. they vary depending on the signaling pathways
activated by different kinds of stimuli, such as cytokines affect-
ing the particular cell type (6,9,10). MS is an inflammatory dis-
ease and patients present with perturbed peripheral blood
cytokine levels (26). It is thus likely that the differences in eQTL
effect sizes in MS patients as compared to the full cohort with
NINDs included (Supplementary Material, Fig. S1) are at least in
part due to the exposure of PBMCs to inflammatory cytokines in
MS patients. One of the gene with the highest eQTL effect
increase in MS/CIS patients, was PSMB9, a proteasome subunit
involved in processing of class I MHC peptides (27) and TAP2
which help in antigen transport and function as a molecular
scaffold for the final stage of MHC class I folding (28).

We analyzed the MS eQTLs in monocytes from healthy indi-
viduals stimulated with LPS and IFN-c, which may to a degree
mimic an inflammatory context similar to MS (29). Both are
potent stimuli that boost cytokine production at 24 hours, thus
activating additional signaling pathways in the monocytes. We
have used the stimulation-specific eQTL data as a potential
approximation of the context of chronic inflammation in MS
patients, and for some of the genes with increased eQTL effects
in MS, such as IQGAP1 or CLECL1, we could indeed observe a
similar pattern upon stimulation of monocytes with LPS and/or
IFN-c.

Gene functions and potential relevance in MS disease
process

The non-HLA MS genes eQTLs in PBMCs represent a wide vari-
ety of functions and processes. Several are involved in the
immune system, such as the well-established IL7, TRAF3 (30,31),
MERTK (32), CLECL1 (33) and TBKBP1 (34,35). A large proportion
have unknown or poorly studied functions (e.g. FAM164A,
FAM213B) and another group of genes are the non-translated
ones, such as anti-sense RNA genes (RP3–388E23.2.1,
AP002954.4.1, CTD-2320O4.2.1, AP003774.1.1) and pseudogenes
(RP11–578O24.2.1, RP11–726G1.1.1, AC040934.1, KRT8P46, RP11–
10L12.6.1). Even though pseudogenes do not produce functional
proteins, there is increasing evidence for regulatory roles for
transcribed pseudogenes (36–38). In this study, we have
observed significant downregulation of FCRL3 in MS compared
to NINDs. SNPs in the FCRL3 locus have been identified as risk
SNPs for MS and other autoimmune diseases such as autoim-
mune thyroid disease (Supplementary Material, Table S2). We
also identify FCRL3 as one of the eQTL genes in this study.
Furthermore, there is an experimentally validated interaction
between FCRL3 and PTPN22 (risk gene for rheumatoid arthritis)
identified by the Protein–protein interaction (PPI) network pro-
vided in STRING database (39). Therefore, as it is differentially
expressed it is a relevant candidate to be further characterized
at the protein level. Recently, the possible role of ANKRD55 in
neuroinflammation was studied at protein expression level in
neuron and microglia cultures based on an animal model of
experimental autoimmune encephalomyelitis (EAE) (40). In
our study, the eQTL SNP for ANKRD55 is found to be located
in an active regulatory region (H3K4me1) in PBMC and four
PBMC-derived immune cell types with a predicted score for
binding of STAT1 transcription factor and is also found to be
associated to other autoimmune diseases such as Crohn’s dis-
ease, Rheumatoid Arthritis ad Juvenile Idiopathic Arthritis
(3,41). Finally, AHI1 (42,43), MANBA and MMEL1 (44,45) have
potential roles in the CNS, but could also be important in other
cell types. Some genetic variants regulate the expression of sev-
eral genes, however, the effects observed for the different genes
may vary largely depending on the cell type that is being
studied, and therefore it is not clear which gene drives the dis-
ease association.

eQTL effects in the HLA-DRB1*15:01-containing haplotypes
have been investigated previously (46–49). We replicated the dif-
ferences in expression of HLA-DRB1, DRB5, DQB1 (46,48) and
DQA1 (46) in relation to HLA-DRB1*15:01, but we also find novel
associations (e.g. HCP5 and HLA-B association to HLA-B*44 or 45).
As HLA-DRB5 is present exclusively on HLA-DRB1*15 and HLA-
DRB1*16-containing haplotypes, its expression has served as a
positive control for the HLA-DRB1*15 allele throughout all the
tested cell types (Fig. 4). Presence of HLA-DRB1*15:01 was signifi-
cantly correlated with increased expression of DRB1 in PBMCs, B
cells and monocytes. Importantly, we also found genes affected
by the presence of the DRB1*03:01 risk allele (HLA-DQA1, HLA-
DQB1, PPP1R2P1, HLA-DRB5, HLA-DQB1-AS1, HLA-DQB2, PSMB9)
and the A*02:01 protective allele (IFITM4P, HLA-F-AS1, HLA-H,
MICD, HLA-K, HCG4, HLA-T, ZDHHC20P1), which to our knowl-
edge, have not been reported before (Fig. 4).

Extensive efforts are presently being made to map eQTLs in
different healthy immune cell subsets and stimulatory con-
texts. Disease-associated eQTLs in a disease-specific context is
an important additional aspect that should be considered in
light of our results on increased strength effect (absolute rho) in
HLA-related eQTLs. By using MS patient samples, we provide an
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initial step of insight into potential SNP–gene relationships that
lay a basis for a more extensive mapping in the context of MS.
We present a detailed overview through which we provide a list
of putative MS genes, confirm that these genes are not necessa-
rily those located closest to the SNPs, vary in their response
depending on the cell subset examined, and are influenced
by disease or stimulatory conditions. This study serves as a
resource of information for further functional exploration of
genes and signaling pathways that are affected by MS-
associated polymorphisms.

Materials and Methods
We have tested correlation between genotype and expression
levels in several different cohorts which are briefly described in
Table 3.

Patient selection in screening phase for PBMCs

For the screening-phase of the project, we obtained RNA and
DNA from PBMC of 181 subjects collected between 2001 and
2010, at the Neurology Clinic of the Karolinska University
Hospital, Solna, Sweden. The cohort consisted of 117 MS
patients fulfilling the 2001 McDonald criteria (for consistency
later revisions to these guidelines were not considered) (50), 28
patients with clinically isolated syndrome (CIS) and 36 patients
were NINDs, i.e. patients suffering from neurological diseases
without an inflammatory state, such as neuralgia, paresthesia,
sensory symptoms, vertigo, tension headache (Supplementary
Material, Table S1). About 24 out of 28 CIS patients were later
diagnosed to have MS.

Preparation of PBMCs, CD4þ and CD8þ T cells

We isolated PBMCs immediately from blood samples taken
with sodium citrate-containing cell preparation tubes (BD
VacutainerTM CPTTM Tube, Becton-Dickinson, Franklin Lakes,
NJ), in the screening phase, or using a standard Ficoll (GE
Healthcare, Little Chalfont, UK) procedure, in the validation
phase. We separated the cells with density gradient centrifuga-
tion, collected them from the interphase, washed twice in
Dubelcco’s phosphate buffered saline (PBS) and either froze as a
pellet at �80� C for subsequent RNA extraction, or prepared the
cells for sorting. Sorting of the CD4þ and CD8þ T cell population
was performed by adding fluorochrome conjugated antibodies
against human CD4 (clone SK3, APC-conjugated, Becton
Dickinson), CD8 (clone SK1, FITC-conjugated, Becton Dickinson)
and CD3 (clone UCHT1, PE-conjugated, BD Bioscience) to the
negative fraction obtained after manual sorting for CD14þ

monocytes and using a MoFlo high speed cell sorter.

RNA isolation from PBMCs, CD4þ and CD8þ T cells

We performed extractions of PBMC RNA to be used for sequenc-
ing using the RNeasy Mini Kit (Qiagen, Hilden, Germany), and
included DNase digestion, following the manufacturer’s instruc-
tions. We eluted the RNA in 10 mM Tris–HCl, 1 mM EDTA buffer,
pH 7.0 (Ambion, Austin, TX) and stored it in �80� C. We
measured the RNA concentration on a NanoDrop ND-1000
Spectrophotometer (NanoDrop Technologies, Wilmington, DE),
RNA was extracted from CD4þ and CD8þ T cells with Trizol
(Invitrogen) using the miRNeasy Kit (Quiagen) according to
manufacture�rs recommendations, and analyzed the RNA

integrity with Bioanalyzer (Agilent Technologies, Santa Clara,
CA). All samples had an RNA integrity number (RIN) >8.

DNA extraction and genotyping

For DNA extraction, we collected blood in EDTA tubes (Becton-
Dickinson), which were stored at �20� C for subsequent proce-
dures. We extracted DNA from whole blood samples using
QIAamp DNA Blood Maxi Kit (Qiagen, Hilden, Germany), accord-
ing to the manufacturer’s protocol, and stored it at �20� C. An
Illumina Infinium custom array, designed specifically to fine-
map regions with established autoimmune-associated risk loci,
as well as to test overlap in association between different auto-
immune diseases, was used for genotyping. Genotyping of DNA
samples in the screening phase (as a part of the ImmunoChip
Project) was performed at the Wellcome Trust Sanger Institute
and at the University of Miami (UM), Miller School of Medicine
(described in detail in 3). Of relevance for the study described in
this paper, we included the 109 established non-MHC risk loci
typed on the ImmunoChip and showing the strongest inde-
pendent association to MS in each region (3) (Supplementary
Material, Table S2), in the subsequent eQTL analysis.

Samples used for validation and exploration of MS eQTLs in
CD4þ and CD8þ T cells were genotyped with the Illumina cus-
tom array called MS replication chip at Miller School of
Medicine, UM as part of an IMSGC project (51).

Imputed HLA types

For the samples from PBMC, we imputed HLA types with
HLA*IMP:02 (52), using genotypes obtained as described earlier
(ImmunoChip for cohort 1 and 2 and MS replication chip for
CD4þ and CD8þ T cells). Alignment and phasing was done
against the HapMap CEU panel. All samples included in subse-
quent analyses had an imputation quality score>0.7 for the
HLA alleles of interest. Both the ImmunoChip and MS replica-
tion chip has extensive coverage of SNPs in the MHC region.

Transcriptome analysis in PBMC

cDNA libraries for PBMC samples (Cohort 1 and Cohort 2) were
prepared using Illumina TruSeq kit (Illumina, San Diego) and
sequenced on an Illumina HiSeq 2000 machine. A total of 100
base long paired-end sequence reads were generated on an
average sequence depth of 36 million reads per sample for 181
samples (Table 3). The reads were mapped to the H. sapiens
reference genome (NCBI v37, hg19) using STAR aligner (53) and
then HTSeq tool (54) was used to quantify counts per gene,
applying the default parameters in each case. Conditional
Quantile Normalization (CQN) method (55) was used to normal-
ize the gene count datasets accounting for the GC content and
length biases.

Transcriptome analysis in CD4þ and CD8þ T cells

Of total RNA, 500 ng with RIN >8.0 was subjected to the
Illumina TruSeq Stranded mRNA Library Preparation Protocol
with Dual Indexes (Cat. No: RS-122–2013). Libraries were quanti-
fied using the Kapa Library Quantification Kit (Cat. No: KK4824).
Sequencing was carried out on the Illumina Hiseq 2500 to gener-
ate 75 bp paired-end data with an average of 10M reads above
Q30. The sequence reads were mapped to hg19 reference with
Tophat and HTseq was use to quantify counts-per-gene. The
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expression data from CD4þ cells (23 samples) and CD8þ cells
(26 samples) was normalized with CQN method as described in
PBMC analysis. Sample size estimation and power analysis was
done for both the expression dataset using ‘pwr.r.test’ function
implemented in ‘pwr’ R package.

Expression and genotype data from LCLs

We downloaded genotypes from the 1000 Genomes Phase 1
dataset from http://www.1000genomes.org. A detailed descrip-
tion of the dataset is provided in the study (56) (Table 3). We
used tagging SNPs for the three HLA variants to be validated in
our analysis (all were estimated in Swedish population; 979
individuals with HLA*IMP: 01 imputed genotypes): rs2970533 A
tagging HLA-A*02:01 (r2¼ 0.83), rs2596551 C tagging HLA-B*44
and/or 45 (r2¼0.89), rs9271366 G tagging HLA-DRB1*15:01
(r2¼0.98) and rs2187668 T tagging HLA-DRB1*03:01 (r2¼0.96).
rs201202118 was not present in the 1000 Genomes dataset and
rs10431552 (r2¼1) was used as a proxy.

We downloaded RNA-Seq files in FASTQ format for EBV
transformed LCLs from individuals included in the 1000
Genomes Phase 1 dataset http://www.ebi.ac.uk/arrayexpress/
experiments/E-GEUV-1/samples/. More details about this public
RNA-Seq dataset are found in (7). The reads were mapped to the
H. sapiens reference genome (NCBI v37, hg19) using STAR aligner
(53) and normalized using the CQN method. In total, 234 indi-
viduals (105 females and 129 males) with genotype and expres-
sion data were included in this study.

Expression and genotype data from B cells and
monocytes

Both microarray-based mRNA expression and genotype data
were obtained from the Fairfax et al. studies (8,16) for B cells (233
samples), unstimulated monocytes (414 samples) and stimu-
lated monocytes—IFN-Ç (367 samples), LPS 2 h (261 samples)
and LPS 24 h (322 samples). All the samples collected in this
study were obtained from healthy individuals (Table 3). The
microarray expression data was obtained as log-2 transformed
normalized data. For the missing MS-associated SNPs in the
Fairfax datasets, proxy SNPs with high LD (r2>0.8) were identi-
fied using the SNAP proxy search tool (57) and were used for the
eQTL analysis (Supplementary Material, Tables S12 and S13).
rs22837922, rs7665090 and rs4701192 were not present on the
genotyping chip used in the study, and no appropriate proxy
SNPs were available.

Expression and genotype data from PBMC array

Expression data for PBMC was obtained from the study (18) and
30 samples were genotyped as part of an IMSGC project (51).
The expression data was reanalyzed using the latest array
annotation data for HGU133Plus2 and expressed probes (after
background correction) were reported in RMA measures after
quantile normalization.

eQTL analysis of MS-associated SNPs

Different approaches implemented toward the transcriptome
analysis for various cohorts used in this study (Table 3) are
described in Supplementary Material. For each gene–SNP asso-
ciation, we did a two-level step analysis to compute the
strength and significance of the association. First, we regressed

out the effects of a selected set of variables based on the result
of component-based analysis and, depending on the dataset,
available meta-information (Supplementary Material, Table S5).
Secondly, residuals were correlated (non-parametric Spearman
correlation) with genotype information considering a genetic
additive model. For each SNP analyzed, we studied gene–SNP
associations for the genes that were located 400-kb upstream
and downstream of the SNP. The size of the genomic window
was chosen based on the increased probability of finding cis-
regulated genes at closer distances up to 400 kb (12,13) and with
the aim to limit the number of comparisons. Only genes that
were expressed in at least 85% of all the samples were included
in the analysis.

To estimate the significance of each gene–SNP association,
we computed a permutation-based P-value, where 15 000 per-
mutations were done over the residuals of the regress-out
model in the CQN transformed expression dataset. False discov-
ery rate (FDR) was computed using a non-parametric method
described elsewhere (58); in all cases monotonicity was
enforced and FDR was capped at 1.

Gene–SNP associations with FDR< 0.01 were considered sig-
nificant. Importantly, we selected a conservative selection crite-
ria aiming for high specificity and low sensitivity in order to
minimize false positives. In this study, the eQTL analysis was
done separately for HLA region and non-HLA region. For a given
SNP or allele, the minimum number of samples carrying homo-
zygous minor allele to implement the eQTL analysis was limited
to three. HLA alleles which were reported as risk for MS in
immunochip study, such as absence of HLA-B*44:02, absence of
HLA-B*38: 01 and absence of HLA-B*55:01 were removed from
the analysis due to low number of samples in one particular
allele group.

For the regression model in the MS datasets (PBMC, CD4þ

and CD8þ samples), we selected the variables based on Principal
Component Analysis (PCA) from the meta-information available
for each dataset (batch of RNA-Seq library preparation, age of
patient, gender, disease-type, clinical course of MS and CIS and
Interferon treatment). In the MS PBMC dataset (Cohort 1) and
NINDs dataset (Cohort 2), we selected batch of RNA-Seq library
preparation as covariate (Supplementary Material, Table S5). For
the PBMC dataset with both MS and NINDs (Pooled Cohort) we
selected batch of RNA-Seq library preparation and Disease-type
(NINDs and MS with CIS) as covariates in the regression model.
In the CD4þ and CD8þ datasets, we regressed out gender and
disease type (MS and healthy) to compute the residuals (batch
of RNA-Seq library preparation was corrected for in a previous
step using the ComBat package) (59). For the datasets obtained
from other studies of naı̈ve B-cell, monocytes and stimulated
monocytes and LCLs (Table 3), we used gender as a covariate in
the regression model to compute the residuals. For the Fairfax
dataset, residuals were calculated from log-transformed micro-
array gene expression.

Conditional analysis on LD SNPs

In the PBMC dataset for every significant SNP–gene pair associa-
tion, we identified the SNPs in LD (r2>0.5) and computed the cis-
eQTL beta-value and P-value for the association as described
earlier in the eQTL methods. For each new significant eQTL SNP
(eQTL FDR< 0.01), a stepwise association model was applied
where we regressed out the effect of most-significant LD SNPs
along with other covariates (batch and/or disease-type depend-
ing availability) from the expression levels (CQN values). The
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eQTL analysis was re-run on the remaining significant LD SNPs
using the resulting residuals. In this stepwise association
model, only the LD SNPs with a beta-value greater than the orig-
inal MS SNP were included. To further characterize the cis-regu-
latory signals, we tested significant LD SNPs for the remaining
eQTL effect after regressing it out with MS-associated SNP.

eQTL SNPs correlations to PBMC cell-type profile

The cell-type deconvolution method CIBERSORT (15) was
applied to predict the proportion of different cell types in PBMC
expression data from MS patients (Cohort 1). To understand the
effect of different RNA-Seq normalization methods in predicting
cell-type proportions, the CIBERSORT algorithm was first tested
in RNA-Seq data obtained from CD4þ and CD8þ cells sorted
from PBMCs, using the LM22 signature geneset (1000 iterations).

Subsequently, we applied the CIBERSORT to CQN-
transformed expression values in the PBMC samples (Cohort 1),
with the similar setting applied in sorted cell expression data.
We selected only the cell types with a proportion >5% of the
total PBMC mixture and aggregated them into five possible
categories: CD4þ cell type (‘T cells CD4þnaı̈ve’, ‘T cells
CD4þmemory activated’ and ‘T cells CD4þmemory resting’),
CD8þ cell type (‘T cells CD8þ’), monocytes, B cells (‘B cells naı̈ve’
and ‘B cells memory’) and NK cells (‘NK cells resting’ and ‘NK
cells activated’). Aggregated cell-type data was corrected for
batch effects using a linear model and the residual values
obtained after correction were used to correlate to the 31
non-HLA SNPs and 3 HLA variants associated with significant
eQTL effects in the analysis of MS PBMCs. We considered signifi-
cant cell type-SNP association those with P-value <0.05 for
Spearman correlation.

For SNPs that were significantly correlated to one cell type,
an association model was applied, where we regressed out the
effect of the corresponding cell type along with the RNA-Seq
batch covariate from the expression levels (CQN values). In case
of SNPs that were associated to more than one cell type a step-
wise association model was implemented where corresponding
cell-type proportions were added as covariates in the order of
cell type-SNP association strength. The eQTL analysis was re-
ran on these selected SNPs using the resulting residuals to test
the independence of the SNP–gene associations from the cell
type-specific effects. A potential limitation of this analysis is
that the power of the dataset is not large enough to correct for
any non-MS associated variants in those regions that are corre-
lated with cell proportions.

Colocalization analysis

Bayesian-based statistical method for colocalization analysis
implemented in R, ‘coloc’ package was used to test the hypothe-
sis that independent casual variants does not exist and eQTL
genes can be attributed to the MS genetic association. The
method calculates the posterior probabilities for shared causal
signal (H4) and independent signals (H3) from both eQTL associ-
ation and disease association in a given locus (60). The test was
done in loci where a minimum of 10 independent SNPs were
available after LD pruning (LD r2< 0.8), within 6400-kb windows
of MS-associated SNP and the prior probabilities (p1/p2 and p12)
were set to the default values (1�10�4 and 1�10�5, respectively).
The MS disease association P-values were obtained from
Immunochip study (3) and spearman correlated P-values for
eQTL genes were obtained for all the SNPs in the locus using the

method described under eQTL analysis of MS-associated SNPs.
For each SNP–gene the approximate bayes factor (abf) was cal-
culated for H3 and H4 using ‘coloc.abf’ function. Then SNP–gene
pairs with H3.abf greater than H4.abf were considerd as not
colocalized (Supplementary Material, Table S10).

Differential expression analysis

We conducted differential gene expression analysis using
DESeq2 tool (61) implemented in R. Batch effect from the RNA-
Seq library preparation is added as a covariate in the design
(model) and an adjusted P-value cutoff of 0.05 is used to identify
significant differentially expressed genes (Supplementary
Material, Table S14).

Comparison of eQTL effect sizes

To study the disease specificity, we calculated the bootstrapping
derived mean of rho values of the significant eQTLs identified in
Cohort 1. Then we compared estimated rho from Cohort 1 and
Pooled Cohort by computing the relative change (Tables 1 and 2
and Supplementary Material, Fig. S1). For comparisons, we
considered only the eQTLs with sample distribution of
minimum five samples in at least two genotype-distribution
(Supplementary Material, Tables S21 and S22). Calculations
for Supplementary Material, Figure S1 can be found in
Supplementary Material, Tables S17 and S18. To test the change
in direction of the eQTL effect, we computed the mean rho val-
ues (bootstrapping derived) in a small test array dataset
(Table 3) from the study (18) and relative change (ratios) were
estimated from MS cohort and pooled cohort (23 MS and 7
NIND). Increase or decrease of disease enrichment (direction of
change) observed in the PBMC RNA-Seq cohort was compared
with the one obtained in this small test cohort and the signifi-
cance of deviations from original observation (PBMC RNA-Seq
cohort) was reported using binomial exact test.

To study the modification of the eQTL effect by context in
sorted cells, we compared the effect ratios between stimulated
and unstimulated monocytes (Fig. 5). Only effects that were sig-
nificant in the reference group (unstimulated monocytes) were
included in the ratio calculations. Ratios showing an effect dif-
ference of less than 65% were depicted with white color in the
corresponding heatmaps, while larger effect differences were
depicted according to the color scale. Calculations for Figure 5
are found in Supplementary Material, Table S13.

Epigenomic mapping of MS-associated variants

Narrow contiguous regions of enrichment (peaks) for DNAse I
hypersensitivity and Enhancer specific marks (H3K27ac and
H3k4me1) based on ChromImpute (62) were obtained for PBMC
and PBMC-derived immune cells (CD4þ, CD8þ, B cells and mono-
cytes) from NIH Roadmap Epigenomics Mapping Consortium
database (http://egg2.wustl.edu/roadmap/web_portal/index.html).
Transcription factors that potentially bind to SNPs were obtained
from the RegulomeDB database (63) and all these epigenetic
marks were mapped to the MS-associated region.

Multiple disease association

ImmunoBase web-based tool (www.immunobase.org) was used
to map other autoimmune diseases to the MS-associated SNPs.

925Human Molecular Genetics, 2018, Vol. 27, No. 5 |

Downloaded from https://academic.oup.com/hmg/article-abstract/27/5/912/4792999
by King Abdullah University of Science and Technology user
on 16 May 2018

Deleted Text:  
Deleted Text:  
Deleted Text: eQTL SNPs correlations to PBMC cell type profile
Deleted Text:  
Deleted Text:  
Deleted Text: greater than 
Deleted Text: (``
Deleted Text: '', 
Deleted Text: ``
Deleted Text: '' 
Deleted Text: ``
Deleted Text: ''), 
Deleted Text: (``
Deleted Text: &plus;''), 
Deleted Text: (``
Deleted Text: '' 
Deleted Text: ``
Deleted Text: '') 
Deleted Text: (``
Deleted Text: '' 
Deleted Text: ``
Deleted Text: ''). 
Deleted Text:  
Deleted Text: less than 
Deleted Text:  
Deleted Text: -
Deleted Text:  
Deleted Text: S
Deleted Text: Colocalisation analysis
Deleted Text:  
Deleted Text: s
Deleted Text: &thinsp;
Deleted Text: &plus;/- 
Deleted Text:  
Deleted Text:  
Deleted Text: &ast;
Deleted Text: &ast;
Deleted Text:  
Deleted Text: -
Deleted Text: -
Deleted Text: s
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddy001#supplementary-data
Deleted Text: Differential Expression Analysis
Deleted Text: .
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddy001#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddy001#supplementary-data
Deleted Text: Comparison of eQTL effect sizes
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddy001#supplementary-data
Deleted Text: 5
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddy001#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddy001#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddy001#supplementary-data
Deleted Text:  
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddy001#supplementary-data
Deleted Text:  
Deleted Text: Epigenomic mapping of MS associated variants
Deleted Text:  
http://egg2.wustl.edu/roadmap/web_portal/index.html
Deleted Text:  
Deleted Text: s
Deleted Text: Multiple diseases association
Deleted Text:  
http://www.immunobase.org
Deleted Text:  


Supplementary Material
Supplementary Material is available at HMG online.

Acknowledgements

We thank all patients who have been willing to contribute with
their blood samples and make this study possible. We acknowl-
edge International Multiple Sclerosis Genetics consortium
(IMSGC) for supplying genotypes from ImmunoChip and MS
replication chip used in this study. We acknowledge the Science
for Life Laboratory in Stockholm for bioinformatic support in
the form of a collaborative project. The computations were per-
formed on resources provided by SNIC through Uppsala
Multidisciplinary Center for Advanced Computational Science
(UPPMAX) under project b2011139. We thank the Julian Knight
group for sharing genotype and expression data from primary B
cells and monocytes. We are grateful to Shahin Aeinehband for
performing a part of the cell sorting, and to Izaura Lima Bomfim
and Jenny Link for HLA imputation.

Conflict of Interest statement. T.O. has received unrestricted MS
research grant, and/or honoraria for lectures and advisory
boards from Biogen, Genzyme, Novartis, Merck, TEVA and
Roche. All other authors declare that they have no competing
interests.

Funding
This work was supported by grants from the Knut and Alice
Wallenberg Foundation and the Swedish Association of Persons
with Neurological Disabilities (Neuroförbundet), and Astra
Zenica (AstraZeneca-Science for Life Laboratory collaboration)
grant.

References
1. Westerlind, H., Ramanujam, R., Uvehag, D., Kuja-Halkola, R.,

Boman, M., Bottai, M., Lichtenstein, P. and Hillert, J. (2014)
Modest familial risks for multiple sclerosis: a registry-based
study of the population of Sweden. Brain, 137, 770–778.

2. Sawcer, S., Hellenthal, G., Pirinen, M., Spencer, CC. a.,
Patsopoulos, N. a., Moutsianas, L., Dilthey, A., Su, Z.,
Freeman, C. and Hunt, S.E. (2011) Genetic risk and a primary
role for cell-mediated immune mechanisms in multiple
sclerosis. Nature, 476, 214–219.

3. Beecham, A.H., Patsopoulos, N.A., Xifara, D.K., Davis, M.F.,
Kemppinen, A., Cotsapas, C., Shah, T.S., Spencer, C., Booth,
D., Goris, A. et al. (2013) Analysis of immune-related loci
identifies 48 new susceptibility variants for multiple sclero-
sis. Nat. Genet., 45, 1353–1360.

4. Moutsianas, L., Jostins, L., Beecham, A.H., Dilthey, A.T.,
Xifara, D.K., Ban, M., Shah, T.S., Patsopoulos, N. a.,
Alfredsson, L., Anderson, C.A. et al. (2015) Class II HLA inter-
actions modulate genetic risk for multiple sclerosis. Nat.
Genet., 47, 1107–1113.

5. Kockum, I., Alferdsson, L. and Olsson, T. (2014) Genetic and
environmental risk factors for multiple sclerosis—a role for
interaction analysis. In Padyukov L. (ed.), In between the Lines
of Genetic Code, Genetic Interactions in Understanding Disease and
Complex Phenotypes, Academic Press, San Diego, CA, USA,
London, UK and Waltham, MA, USA, pp. 124–133.

6. Farh, K.K.-H., Marson, A., Zhu, J., Kleinewietfeld, M., Housley,
W.J., Beik, S., Shoresh, N., Whitton, H., Ryan, R.J.H., Shishkin,

A.A. et al. (2015) Genetic and epigenetic fine mapping of
causal autoimmune disease variants. Nature, 518, 337–343.

7. Lappalainen, T., Sammeth, M., Friedländer, M.R., ’t Hoen, P.
A., Monlong, J., Rivas, M. A., Gonzàlez-Porta, M., Kurbatova,
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