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Abstract

Integrative systems biology has emerged as an exciting research approach in molecular biology and functional genomics that involves the
integration of genomics, proteomics, and metabolomics datasets. These endeavors establish a systematic paradigm by which to interrogate, model,
and iteratively refine our knowledge of the regulatory events within a cell. Here we review the latest technologies available to collect high-
throughput measurements of a cellular state as well as the most successful methods for the integration and interrogation of these measurements. In
particular we will focus on methods available to infer transcription regulatory networks in mammals.
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Introduction

The genome content of most cells in a multicellular organism
is identical. Nevertheless, in the human body over 220 different
cell types can be distinguished based on their morphological
properties, localizations, functions, and developmental stages
[1,2].

The cell's ability to acquire and maintain its identity requires
a tight control of the temporal and spatial interplay between
millions of individual components (nucleic acids, proteins, and
metabolites) encoded by the same genome [3–6]. Although
biologists commonly study cells as if they were static entities,
individual cells rarely operate in a steady state. The ability of a
cell to detect and respond to transient signals within and outside
the cell is crucial for the integrity of a multicellular organism.
When error occurs in the fine-tuned cellular regulatory system
or errors are introduced into the genome as mutations, the
cellular behaviors and identities can deviate from their normal
situations and thereby induce pathological scenarios such as
diseases [7–9]. To understand these cellular functions in detail,
we need to identify the mechanisms by which genomic
information is tightly controlled in space and time.

In eukaryotes the control of gene expression is a multilevel
process influenced by the position of each chromosome in the
nucleus (nuclear territories) [10–12], the spatial and conforma-
tional rearrangements of chromosomal regions (chromatin
remodeling), and the fine interplay between regulatory proteins
and DNA sequences [11–13] (Fig. 1). The interactions between
regulatory proteins and DNA sequences are probably the most
diverse and complex of all these regulatory mechanisms. In any
given cell all combinations of transcriptional regulators and
their specific DNA binding sequences responsible for the
correct regulation of every transcript encoded in the genome are
usually referred to as the transcriptional regulatory network
(TRN) of the cell. Yet recent findings add an additional
dimension to the regulatory control of gene expression, in that
evidence has been gathered [14] supporting the notion that
Fig. 1. Transcription regulation. Regulation of gene expression is a complex
interplay between transcription regulators, transcription regulator complexes,
and DNA cis-regulatory elements. Black line, DNA; black box, exon; black
arrow, transcription start site; gray box, DNA cis-regulatory element; green
symbol, transcriptional activator; red symbol, transcriptional repressor.
transcription is itself controlled by noncoding RNAs (ncRNAs).
The precise mechanism by which this posttranscriptional
control operates may be very complex. For example, RNA
may act directly on the induction, processing, or stability of
another transcript. Furthermore ncRNAs are a major, regulated
output of the mammalian genome [15,16]. The role of ncRNAs
in mammalian transcription regulation is beyond the scope of
this review, although they need to be considered as a part of the
regulatory network.

If we know the identity of every transcript produced by the
genome in each cell type, the way transcription changes with time
and space, and, most importantly, the control mechanisms of these
genome outputs, the stage is set to infer the regulatory network for
each cell under different conditions. This gives us the opportunity to
suggest therapeutic mechanisms to correct for the errors underlying
pathological conditions. Thus research aimed at developing
techniques for uncovering cellular networks from experimental
data is central for translating genomic discoveries into therapeutics.

During the past 5 years there has been rapid progress in the
development of a systems approach for identifying transcrip-
tional regulatory networks from high-throughput data [17,18]. A
particularly powerful paradigm is the “perturbation” approach.
Here the cellular response to a perturbation (typically of a
regulator via environmental and/or genetic means) is monitored
by high-throughput assays such as gene expression microarray,
and fitting the data to a computational model of the gene network
enables network identification provided large enough sam-
ples are available. Perturbation algorithms have been success-
fully applied to Escherichia coli and Saccharomyces cerevisiae
[19,20]. Although successful in unicellular organisms, the
perturbation approach has been difficult to apply to mammalian
cells due to the limited number of samples and the difficulties in
modulating gene activity in mammalian cells with siRNA or
gene knockout. However, a complementary approach, data
integration, promises to be a useful strategy for uncovering
mammalian networks. In this paper we will therefore review the
current advances in the construction of transcription regulatory
networks in mammals. We will first focus on the available
experimental and computational techniques to collect genome-
wide measurements and to construct static models of regulatory
networks. We will then describe some of the current approaches
to add temporal and spatial dimensions to these networks.

Graphic theoretical representation of transcriptional
regulatory networks

Agraph is useful for illustrating a network,with its components
and their interactions, of a complex system [21–26]. Here, the
graph corresponding to the network is composed of “nodes,”
which can represent any biomolecules such as proteins, DNA,
RNA, and metabolites, and “edges,” representing relationships
between nodes. An edge can denote a physical interaction, such as
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protein–protein, protein–DNA, protein–RNA, RNA–RNA, and
protein–metabolite interactions, or a functional relationship such
as coexpression or a genetic interaction such as epistasis.

In a transcriptional regulatory network the nodes generally
are transcription factors, cofactors, and chromatin regulators
(from now on in this review we will refer to these genes
collectively as transcription regulators or TRs) and the DNA
regulatory regions (promoters and enhancers, referred as
regulatory elements, REs). Edges in the network are physical
interactions between TRs (in this case, protein–protein interac-
tions) and physical interactions between TRs and REs (protein–
DNA interactions, PDIs). Fig. 2 shows a graphical representa-
tion of a simple transcription regulatory network.

Experimental technologies to obtain network data

There are two main types of information we have to collect to
be able to infer transcription regulatory networks in a cell. First,
we need to identify all the nodes (including the TRs), which
means that we have to define all the expressed transcripts under
any developmental and growth conditions. Second, we need to
identify all possible physical interactions between nodes, i.e.,
between TRs and between TRs and REs.

The completion of a large number of eukaryotic genome
sequences, the rapid progress toward complete catalogs of
genomic transcriptional output (the transcriptome), the capacity
to analyze the complete transcriptome of a cell, and the advent
Fig. 2. Transcription regulatory networks. Regulatory events at the gene level (lef
regulatory events inside a cell (right). Protein–protein (black edges) and protein–D
(usually represented as the regulated genes, squared nodes) are shown. Note that pr
repression (red).
of technologies that allow us to capture protein–protein and
protein–DNA interactions within any cellular content offer us
the tools to identify all the nodes and edges in the network.

Capturing the cellular transcriptome

Gene expression profiling using microarray chips is by far the
most successful genome-wide technology to capture the genome
output of a cell [27,28]. Expression microarray is an RNA-based
method that allows the simultaneous measurement of virtually all
the transcripts in a cell. This has been and still is a very powerful
technique thanks to its relative technical simplicity, low cost, and
short turnover time, which make expression microarrays a
standard molecular biology technique available to any laboratory.
Moreover, different array-based technologies have now become
comparable across different platforms [29]. In recent years the
advent of high-density microarray chips has allowed us to define
the entire transcriptome of more complex organisms such as
human. Computational methods used for the analysis of these
large collections of data have also been improved and
standardized, making the interpretation of microarray data more
accessible to those without a strong computational background
[30,31]. For these reasons and also thanks to the efforts of
consortia aiming to standardize microarray datasets [32], we now
have access to more then 160,000 expression profiles for various
organisms and cell types (estimate fromNCBI's Gene Expression
Omnibus, July 2007; http://www.ncbi.nlm.nih.gov/geo).
t) are mapped into a network view (broken arrows) aiming to capture all the
NA interactions (green and red edges) involving TRs (circular nodes) and REs
otein–DNA interactions are directional and can represent activation (green) or

http://www.ncbi.nlm.nih.gov/geo


222 K. Tan et al. / Genomics 91 (2008) 219–231
Although transcript profiling using microarrays is the most
widespread functional genomics technique, it is not the only
one. Other approaches have been developed as alternatives to
microarray, including serial analysis of gene expression (SAGE)
[33,34] and most recently the cap analysis of gene expression
(CAGE) [35–37]. More sensitive techniques such as the polony
multiplex analysis of gene expression (PMAGE) allow the mea-
surements of mRNAs as rare as one transcript per three cells [38].
Since SAGE and CAGE are RNA library based they require
sequencing of millions of cDNA tags from each library and
consequently they are not accessible to many laboratories. Unlike
SAGE, CAGE also enables systematic and genome-wide
mapping of transcription starting sites (TSSs) for every transcript
expressed in a cell (more about the properties of CAGE is given
in the following paragraphs).

Although with less throughput than array-based technolo-
gies, quantitative real-time PCR (qRT-PCR) is becoming an
increasingly important complementary tool for the construction
of TRNs [39,40], due to its quantitative nature and higher
sensitivity, which allow more accurate measurements of low-
abundance transcripts such as those encoding transcription
factors [41] (Table 1).

Acquiring physical interaction data of the network

In a transcriptional regulatory network there are two types of
physical interactions represented by edges, namely those be-
tween the regulatory proteins and their DNA binding sequences
(PDIs) and those between regulatory proteins (PPIs).

Protein–protein interaction networks

In eukaryotes the regulation of gene expression often
requires more than one TR to ensure the correct expression of
a gene. TRs interact to form protein complexes and in many
cases this is a requirement to be able to bind DNA regulatory
elements [42–48]. For example, this is the case for homodimers
binding palindromic transcription factor binding sites (TFBS)
[49]. Furthermore, TFBSs tend to cluster together in specific
and conserved regions in the genome and TRs targeting these
Table 1
Experimental techniques commonly used to collect high-throughputmeasurements
of gene expression and physical interactions

Technique References

Expression measurement
DNA microarray [27,28]
SAGE [33,34]
CAGE [35–37]
PMAGE [38]
qRT-PCR [39,40]

Protein–DNA measurement
ChIP-chip [74,75]
ChIP-PET [76]

Protein–protein measurement
Two-hybrid systems [59,61,62]
Co-IP and mass spectrometry [63–65]
DNA regions also interact at the protein level to form protein
complexes [50–53]. A dramatic example is the transcriptional
initiation complex, which is composed of more than 30 proteins
and binds specific regulatory elements via a few core com-
ponents such as the TATA box binding protein [54–58].

The interplay between TRs is often referred to as the com-
binatorial regulation of gene expression. Therefore capturing all
possible combinatorial interactions between TRs is an essential
step toward the construction of mammalian transcription regu-
latory networks. For this purpose complete maps of PPIs are
of utmost value as a first step in mapping putative pairwise
interactions.

PPIs are usually generated by two-hybrid technologies
(Y2H) [59], in which two proteins, a bait fused with a specific
DNA binding domain able to bind the yeast GAL4 gene and a
prey fused with the GAL4 activator domain, are overexpressed
in the same yeast cell. If the two proteins of interest are able to
interact, then the GAL4 activator is reformed and thus able to
activate the expression of a reporter gene that is under the
control of the GAL4 gene promoter [60]. A similar approach
has been developed, using a mammalian system, by Suzuki and
colleagues [61,62]. Their technique is at least in principle more
amenable to a systematic screening of binary mammalian PPIs
because the overexpressed proteins are folded and modified in a
more natural environment.

PPI maps can also be constructed using coimmunoprecipita-
tion followed by mass spectrometry [63–69]. This technology is
more specific than Y2H (lower false positive rate) and therefore
less scalable. Since the technology relies on coimmunopreci-
pitation it is more suitable for identifying protein complexes
with indirect interactions, in contrast to Y2H, which measures
direct pairwise interactions.

In recent years the number of binary nonredundant human
PPIs has increased dramatically thanks to extensive literature
mining (36,617 in the HPRD database [70]) and also to large-
scale experimentally determined PPIs such as the work from
Rual and colleagues and Ewing and colleagues [63,71].
However, one of the limitations with the current human PPI
map is the low coverage of TR interactions because the exper-
imental techniques generally are biased toward large macro-
molecular complexes (i.e., ribosome, spliceosome, membrane
channels, etc.) and because of the low abundance of TRs
compared to cytosolic proteins. Suzuki and colleagues of the
RIKEN Genome Science Center in Japan have generated for
the first time a nuclear-specific PPI map for mouse [62] and
now they are focusing on the human nuclear PPI map (personal
communication). Such maps will be very useful resources
for the construction of mammalian transcriptional regulatory
networks.

Another limitation of current PPI networks is the extremely
high false discovery rate, which has been estimated to be from
40 to 70% for the Rual human PPI network [71,72]. Such high
error rates can be readily reduced with the integration of other
types of data, for example, gene expression information, so that
all those interacting proteins that are never coexpressed could be
removed from the network. We will discuss more details about
the integrated approach in the following sections (Table 1).
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Protein–DNA interaction networks

To regulate gene expression, either individual TRs or
complexes of TRs need first to bind specifically to cis-
regulatory DNA sequences. Traditionally, the most common
methods to infer TR–DNA binding events on a large scale are
computational ones (discussed in detail later).

New technologies have emerged that enable in vivo genome-
wide experimental mapping of TR–DNA binding events. The
most widespread of these techniques is the genome-wide
location analysis (GWLA), also known as chromatin immuno-
precipitation coupled with microarray chip (ChIP–chip) or
chromatin immunoprecipitation coupled with paired-end ditag
sequencing (ChIP–PET) [73–76]. In GWLA, TR–DNAbinding
events are captured and frozen in a specific cellular state by in
vivo crosslinking. Then the genomic DNA is fragmented and the
TR of interest is isolated with a specific antibody, along with
those genomic fragments bounded by the TR. After crosslinking
reversal and protein digestion, the pulled-down DNA is labeled
in a manner analogous to a cDNA microarray experiment, but
hybridized to an oligo microarray chip whose content is directed
toward regulatory regions rather than exons. These chips are
composed of 20- to 70-mer probes tiling the entire genome or
more likely, in the case of mammalian genomes, tiling promoters
and intergenic regions. In the case of two-colored array
platforms, the immunoprecipitated DNA can be compared to
the total DNA input (the same genomic DNA but divided before
the immunoprecipitation step) and this facilitates the normal-
ization of the fluorescent signals [75].

In the case of ChIP–PET, the immunoprecipitated DNA is
cloned into a DNA library and then converted into paired-end
ditags (PETs). The PETs are concatenated and cloned into a
ChIP–PET library for sequencing, and the number of ditags
should be proportional to the original amount of immunopre-
cipitated DNA fragment and therefore enriched for those
fragment bounded by the TR [76].

GWLAs are powerful techniques since they capture in vivo
binding events in a high-throughput fashion and thus TF binding
events can be compared across several cellular conditions, drug
stimulation, developmental stage, etc. GWLAs also facilitate
computational prediction of TFBSs since the experimentally
identified TR binding regions drastically reduce the search
space.

The general limitation of GWLAs is the high noise level (and
so high false discovery rate) in the data due to several technical
challenges in the experimental protocol. The amplification step
required for the DNA labeling tends to reduce the enrichment of
the immunoprecipitated DNA, and, most importantly, the
quality and specificity of the antibody can change the efficiency
of the immunoprecipitation. The antibody also introduces a
limitation in the horizontal throughput of these techniques,
meaning it is difficult, particularly in mammalian systems, to
map the binding events of several TRs in parallel so the
selection of the TRs is strongly biased toward the availability of
a high-quality antibody. This problem is less accentuated in
model organisms such as yeast in which all the TRs have been
epitope-tagged using the tandem affinity purification (TAP) tag
[77] and therefore the same anti-TAP antibody can be use to
immunoprecipitate virtually all the TRs in an array of different
conditions [78,79] (Table 1).

Computational modeling and inference of
regulatory networks

Before the advent of high-throughput assays such as GWLA
and CAGE, the most common methods to infer TR–DNA
binding events were computational ones. In a network view we
can draw inferred edges from a TR to a gene that bears a
putative binding site(s) for the respective TR in its regulatory
region. All these approaches have several intrinsic limitations,
especially when applied to complex organisms such as humans,
as the genome size correlates directly with the amount of noise
in binding-site predictions. In addition, mammalian promoters
are not well or easily defined because a promoter regulating a
gene can reside a long distance away from the gene start and
multiple promoter regions can contribute to the regulation of the
same gene [80–83]. Taken together these factors make TFBS
prediction a very difficult task and it may therefore suffer from
problems of false positives and false negatives; yet there are
several tricks (discussed below) that have been used success-
fully to reduce the noise in TR binding-site predictions. The
advantage of TFBS prediction in the construction of TR–DNA
edge libraries is that it can be done for virtually all the TRs for
which a DNA binding motif has been defined.

Identification of regulatory DNA elements

Cross-species sequence comparisons, which rely upon the
slow substitution rate of many categories of functional DNA
relative to neutral sequence, have emerged as the preeminent
means of identifying candidate cis-regulatory elements in
mammalian genomes [84–89]. These studies involve sequence
comparisons of human (or other mammal) genomic intervals to
orthologous regions from organisms separated by varying evo-
lutionary distances, ranging from primates to fish. The most
important issue of comparative analysis is the choice of species,
which depends on the goal being pursued. Previous theoretical
studies [90,91] have shown that higher-resolution functional
prediction at the level of a transcription-factor binding site (6–
12 bp) is likely to require sequence from more than 10 mammals
spread across the clade. In practice, Xie et al. performed a
comparative analysis of the human, mouse, rat, and dog ge-
nomes to create a systematic catalog of common regulatory
motifs in promoters and 3′ untranslated regions (3′ UTRs). The
promoter analysis yielded 174 candidate motifs, including most
previously known transcription factor binding sites and 105 new
motifs. The 3′-UTR analysis yielded 106 motifs likely to be
involved in posttranscriptional regulation. On the other hand,
Pennachio made use of extreme evolutionary sequence con-
servation as a filter to identify putative enhancer activity of a
large group of noncoding elements in the human genome that are
conserved in human–pufferfish (Takifugu (Fugu) rubripes) or
ultraconserved in human–mouse–rat. They tested 167 of these
extremely conserved sequences in a transgenic mouse enhancer



Table 2
Databases of transcription regulatory and biomolecular physical interactions in
metazoan

Type of interaction Web address

Transcription regulatory
TRANSFAC www.gene-regulation.com/pub/databases.html#transfac
TRED http://rulai.cshl.edu/cgi-bin/TRED/tred.cgi?process=

home
VISTA Enhancer http://genome.lbl.gov/vista/index.shtml
PReMod http://genomequebec.mcgill.ca/PReMod

Biomolecular physical
DIP http://dip.doe-mbi.ucla.edu
BIND www.binddb.org
HPRD www.hprd.org
REACTOME www.reactome.org
MINT http://mint.bio.uniroma2.it/mint/Welcome.do
PDZBase http://icb.med.cornell.edu/services/pdz/start
AfCS www.signaling-gateway.org
IntAct www.ebi.ac.uk/intact/site/index.jsf

224 K. Tan et al. / Genomics 91 (2008) 219–231
assay and found that 45% of these sequences functioned
reproducibly as tissue-specific enhancers of gene expression.
By extrapolation, the authors estimated that there were at least an
additional 5500 human–fish conserved noncoding sequences in
the human genome with similar levels of constraint that are
strong candidates for acting as gene enhancers. Sequencing of
additional mammalian genomes [92] will incrementally facil-
itate the identification of large regulatory modules in the human
genome. The advantage of the comparative genomic approach
over current high-throughput technologies is that it can identify
conserved regulatory modules.

With the advent of high-throughput technologies such as
GWLA and CAGE, many types of functional DNA elements
(TFBSs, basal promoters, enhancers, insulators, etc.) are now
being experimentally mapped on the genome scale with a typical
resolution of a few hundred nucleotides. Carninci, Nilsson, and
Tegner, for example, have recently used CAGE-based TSS
mapping to restrict the cis-regulatory elements search space and
also to focus the analysis on only active (expressed) REs,
thereby reducing the number of false positives.

Raw data from these high-throughput assays are noisy and
typically do not have resolution at the single binding site level.
Thus several new computational methods for DNA motif
finding have been developed to take advantage of genome-wide
location data. ChIP–chip binding p values were first used to
rank and select high-confidence promoter sequences as inputs to
existing motif discovery algorithms [93,94]. Recently, two
groups introduced boosting strategies that take into account
both binding and nonbinding sequences from ChIP–chip data
during motif search [95,96].

In addition to narrowing the search space, GWLA data also
provide quantitative information about the binding free energy
of TR–DNA interaction. Two groups [97,98] have fitted a
statistical–mechanical model of TR–DNA interactions to
binding ratios of oligonucleotide probes on the microarray
used in ChIP–chip, to infer DNA motif models for the TRs.

GWLA technologies have also been used to map chromatin
modification states, such as histone modifications. In a recent
study, Heintzman et al. [74] demonstrated that these epigenetic
signatures could be used to identify promoters and enhancers in
the human genome.

Identification of regulatory DNA modules

For genes in higher eukaryotes the binding of an individual
TR is not sufficient to drive context-specific transcription.
Rather, interaction and cooperation of several TRs are needed to
affect gene expression at specific times and locations [99]. The
DNA regions targeted by a group of TRs are usually clustered
together and form so-called cis-regulatory modules. Compared
to TR binding-site predictions, module predictions are more
reliable, and methods have been developed along several lines.
In the first category the promoters of a set of coregulated genes
obtained from prior experiments are analyzed to identify
overrepresented motif combinations likely to be responsible
for the genes' coregulation [100–105]. Other approaches
assume that the user provides a small set of TF–DNA binding
motifs that are expected to co-occur in modules and identify
genomic regions densely populated in putative sites for these
TRs [106–110]. A third type of approach is based on the
detection of statistically significant clusters of phylogenetically
conserved TR binding sites [86,111,112].

Current databases for regulatory interactions

Large regulatory interaction datasets are now available for a
variety of metazoan species (Table 2), including Drosophila
melanogaster, Caenorhabditis elegans, and Homo sapiens. In
light of these vast scientific resources made available through
experimental and computational analyses, several databases
storing interaction data are now in wide usage (Table 2). Most of
these databases contain interaction data derived from both high-
throughput analyses and small-scale experiments. In addition to
being data warehouses, some of these databases have developed
new methods for data exchange and visualization to facilitate
the study of molecular interaction networks.

Integrating gene expression profiles with molecular
interaction data to construct regulatory networks

Gene expression profiles describe the steady-state mRNA
levels in the cell—the outcome of the regulatory network.
Although network structure could in principle be inferred from
only expression data, it would be a very challenging task
because of the small sample sizes (number of genes greatly
exceeds number of measurements per gene) and large amount of
noise in expression profiles. However, the integration of large-
scale physical interaction datasets with expression data provides
a more direct route for reconstructing gene regulatory networks.

Different data sources have their own limitations. Currently,
both gene expression and GWLA data are noisy. Differentially
expressed genes from replicate microarray experiments typi-
cally overlap by 70–75% [113], whereas the overlap between
replicate ChIP–chip experiments is even lower, usually less
than 50%. Because gene expression and TR location data

http://www.gene-regulation.com/pub/databases.html%23transfac
http://rulai.cshl.edu/cgi-bin/TRED/tred.cgi%3Fprocess%3Dhome
http://rulai.cshl.edu/cgi-bin/TRED/tred.cgi%3Fprocess%3Dhome
http://genome.lbl.gov/vista/index.shtml
http%3A//genomequebec.mcgill.ca/PReMod
http://dip.doe-mbi.ucla.edu
http://www.binddb.org
http://www.hprd.org
http://www.reactome.org
http://mint.bio.uniroma2.it/mint/Welcome.do
http://icb.med.cornell.edu/services/pdz/start
http://www.signaling-gateway.org
http://www.ebi.ac.uk/intact/site/index.jsf
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provide complementary information, integration of the two data
sources can emphasize the functional part of the network and
thus make the inferred network more biologically relevant. This
observation provides the rationale for several recently devel-
oped integrative approaches. Bar-Joseph and colleagues devel-
oped an iterative method in which coherent gene expression
profile is used to include low-confidence but true ChIP–chip
targets in regulatory modules [114]. Gao et al. [115] used
multiple linear regressions to model gene expression ratios and
TF binding to gene promoters, as measured with ChIP–chip.
Similarly, Liao et al. [116] used two sets of linear equations to
model simultaneously the regulatory strength of TFs on their
DNA targets and the activity levels of the TF themselves. This is
an improvement over the linear regression approach of Gao and
colleagues, which could model only TF activity levels.

Most cellular functions are carried out by protein complexes,
such as ribosome, spliceosome, and proteasome. So far little is
known about how protein complexes are regulated. Protein
Fig. 3. An integrated approach to uncovering transcription regulatory networks. Repre
in which physical interactions (protein–protein, protein–DNA, etc.) and expression
integrated network model. Predictions of regulatory mechanisms, obtained from the n
and TSRA [39,120,121], are first experimentally validated and then used to refine t
interaction data could also be integrated with gene expression
profiles to discover regulated protein complexes [117,118] and
to study the regulatory dynamics of protein complexes [119].

Finally, gene expression data could also be integrated simul-
taneously with both protein–DNA (GWLA) and protein–
protein interaction data (Fig. 3). Examples in this category
include the jActiveModule [120] and the physical network
[121] approach. jActiveModule, as the name suggests, identifies
a set of genes that are differentially expressed under certain
conditions and whose protein products physically interact. The
physical network approach by Yeang et al. identifies causal
physical pathways leading to differentially expressed genes.

Using integrated networks

A regulatory network, defined from several different data
sources as outlined above, is useful in different ways. Clearly
the network structure suggests novel mechanistic hypotheses
sentation of an integrated approach similar to the one used by Nilsson et al. [39],
measurements (microarray, qPCR, CAGE, etc.) are combined to generate an
etwork interrogation using bioinformatics tools such as jActiveModules, PNM,
he original network model.
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that must be experimentally tested as a final validation step.
However, before this step is taken it is mandatory to consider
that networks are condition-and state-dependent, that is,
different parts of the network will be active under different
conditions. For example, a cell that is exposed to a particular
compound or a physiological condition such as stress will
produce two different activity patterns. Therefore a static net-
work defined from different data sources has to be evaluated
and projected onto the specific condition of interest. Such a
network projection can be performed in space (over different
organs/tissues) and/or in time (in response to a stimulation for
example).

Integrated approaches to studying tissue-and disease-specific
networks

The tissue-specific mRNA expression patterns of a gene can
offer important clues to its physiological function. Previously,
Su et al. have generated a large compendium of gene expression
profiles of 79 human and 61 mouse tissues [122]. Apart from
normal tissues, a large number of disease-specific expression
profiles (cancer, immune disorders, neurological diseases, etc.)
Fig. 4. Transcription regulatory network dynamics in macrophage activation by lipop
approach developed by Nilsson and colleagues [39]. (A) The integrated network is p
(B) Network model inferred using the TSR algorithm. Nodes represent TFs and are co
24 h poststimulation). Arrowed edges indicate TF–DNA binding events inferred as de
have also been generated over the past decades. These expres-
sion datasets, which in essence constitute an activity-defined
“fingerprint” of a disease state, provide unprecedented oppor-
tunities to study transcriptional regulatory networks in mam-
mals. The key to success is to adopt a system to integrate these
expression profiles with the static (interactome) network and
phenotypic data. Recently, as a proof-of-concept, several groups
have adopted this strategy to study regulatory networks in
human diseases, including cancer [123,124], innate immunity
[39,125], and inflammation [126]. For example Segal and
coworkers used a large compendium of gene expression profiles
to defined shared and cancer-subtype-specific modules [124].
Similarly, Paulsson and coworkers have defined metabolic
interaction networks and used these static networks together
with expression data sampled from different conditions to define
disease states of relevance for diabetes and cardiovascular
diseases [127].

Network dynamics

In addition to spatial, tissue, and disease-dependent activity, it
is equally important to investigate system dynamics over a period
olysaccharide (LPS), a bacterial endotoxin, obtained by applying the integrated
arsed for time-shifted regulatory events involving TFs and their regulated genes.
lored based on the time of maximum expression during the LPS time course (0 to
scribed by Nilsson and colleagues. Dotted edges are protein–protein interactions.
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of time. This approach has a long tradition based on computa-
tional modeling of cellular processes [128]. Those purely
computational attempts are severely limited by the current lack
of information about kinetic parameters describing the network
dynamics. In contrast, using a topological structure defined by
integration of different data types offers a much simpler temporal
analysis without the need for detailed information and the precise
kinetics. Here the relevant parts of a static network can instead
be extracted when the system (cell/populations/tissues/organs)
produces a time-dependent response. For example, a human cell
or a cell line can be stimulated to mimic a physiological response
of interest. Calvano and coworkers [126] used manual curation to
assemble different sources of data that defined a static inflam-
matory network in human. Next, they studied the blood leukocyte
gene expression patterns at different time points (2, 4, 6, 9, 24 h) in
human subjects receiving an inflammatory stimulus (bacterial
endotoxin). The infusion of endotoxin essentially activated an
innate immune response of brief duration. By extracting different
parts of their inflammatory network at each time point the authors
revealed an initial proinflammatory network and a subsequent
counterregulatory network. A similar analysis of allergic disease
has been presented by Benson and colleagues [129]. Nilsson and
colleagues [39] used a promoter-based network as a backbone to
study the LPS-induced response in bone-marrow-derived macro-
phages (Fig. 4). Again, by extracting the active part of the network
at different time points, using an algorithm that searches the
network for time-shifted regulatory events involving TFs and
their regulated genes, the authors uncovered central pathways
involved in the inflammatory response and new critical roles for
TRs during the inflammatory response (Fig. 4). These particular
examples demonstrate how integrative networks can be used to
uncover time-dependent and disease-relevant responses, which
provides a wealth ofmechanistic hypotheses that can be subjected
to subsequent experimental analysis.

Future challenges

A major emerging challenge of network biology is to
compare and contrast biological networks systematically over
different species, conditions, cell types, disease states, or points
in time. For this purpose, methods are being developed to
compare and contrast protein interaction networks to predict
regulatory interactions [118,130] and to identify conserved
interaction complexes and pathways [118]. Althoughmost of the
previous research has focused on protein interaction networks,
many methods can be extended to compare transcriptional reg-
ulatory networks. An intriguing future application of these
integrated networks may be to probe the functional role of single
nucleotide polymorphisms, which are now rapidly being as-
sembled for a range of diseases [131,132].

Finally, it is clear that data-integration methods need to be
formulated in a proper statistical framework. For example, for
each data type it is essential to develop statistical measures that
indicate the reliability of the data, thus setting the stage for a
weighted integrative method in which each data source con-
tributes in proportion to its internal quality and relevance to the
question at hand.
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