
Chapter 1
Introduction to Data Types in Epigenomics

Francesco Marabita, Jesper Tegnér, and David Gomez-Cabrero

Abstract The epigenome is the collection of all epigenetic modifications occurring
on a genome. To properly generate, analyze, and understand epigenomic data has
become increasingly important in basic and applied research, because epigenomic
modifications have been broadly associated with differentiation, development,
and disease processes, thereby also constituting attractive drug targets. In this
chapter, we introduce the reader to the different aspects of epigenomics (e.g.,
DNA methylation and histone marks, among others), by briefly reviewing the most
relevant underlying biological concepts and by describing the different experimental
protocols and the analysis of the associated data types. Furthermore, for each type
of epigenetic modification we describe the most relevant analysis pipelines, data
repositories, and other resources. We conclude that any epigenomic investigation
needs to carefully align the selection of the experimental protocols with the
subsequent bioinformatics analysis and vice versa, as the effect sizes can be small
and thereby escape detection if an integrative design is not well considered.
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1.1 Epigenomics

In eukaryotes, the DNA is stored in the nucleus through mechanisms allowing DNA
packaging in condensed structures. This packaging allows a level of compression
such that the DNA of a human diploid cell – which would linearly span for about
2 m – can be condensed efficiently in the space of a cell nucleus, typically 2–10 �m.
The uncovering of the minimal unit of such condensation (Kornberg 1974), the
nucleosome, showed DNA is tightly packed around a protein octamer (histones),
with a left-handed superhelical turn of approximately 147 base pairs. The histone
octamer consists of two copies of four histones: H2A, H2B, H3 and H4 and
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A fifth histone (H1) binds the nucleosome and the linker DNA region and increases
the stability. Higher-order packaging structures contribute to the final level of
compression.

The nucleosome structure is inherently linked to gene expression, as it is intuitive
that nucleosomes have to be displaced to allow gene expression to occur. The
structure of the chromatin fulfills the role of condensing and protecting the DNA
but it also preserves genetic information and controls gene expression. Therefore,
this mechanism represents a process control and the accessibility of the DNA is
regulated by chemical modifications that occur at the chromatin level, both for
DNA and proteins. In this sense, nucleosomes contribute to regulatory mechanisms
because they forbid or allow access for essential processes such as gene transcription
or DNA replication (Fyodorov and Kadonaga 2001). For instance, DNA located
near entry or exit points of the nucleosome are more accessible than those located
centrally (Anderson and Widom 2000). Additionally, nucleosomes regulate DNA
breathing (or fraying), that is, the spontaneous local conformational fluctuations
within DNA of exit and entry points of nucleosome (Fei and Ha 2013), depending
on the sequence wrapped around the histones and the covalent histone modifica-
tions. On the other hand, the DNA itself may be chemically modified, without
associated changes in its sequence, generating important marks for regulation of
gene expression, including DNA methylation. The collection of covalent changes
to the DNA and histone proteins in the chromatin is called “epigenome.” Changes
in the epigenome are observed during development and differentiation and can be
mitotically stable, modulate gene expression patterns in a cell and preserve cellular
states. However, we have started to understand that also environmental factors can
contribute to reshape the epigenome, potentially providing a mechanism to alter the
gene expression program of a cell both in normal and disease conditions.

High-throughput technologies, including next-generation sequencing, offer the
unprecedented opportunity of assaying epigenetic alteration usually in a hypothesis-
free approach, by looking at multiple sites in the genome and verifying their
association with the biological phenomenon observed. Therefore, bioinformatics
and biostatistics represent key disciplines for obtaining solid results and are required
in each phase of an epigenomics project, from study design to data analysis, visual-
ization, and storage. In this chapter, we will give an overview of the two most studied
epigenetic modifications, namely, DNA methylation and histone modifications; we
will present the major steps in their respective experimental and data analysis
pipelines, briefly discussing the associated challenges and opportunities.

1.2 DNA Methylation

1.2.1 Introduction to DNA Methylation

DNA methylation results from the addition of a methyl group to cytosine residues
in the DNA to form 5-methylcytosine (5-mC) and in mammals it is predominantly
restricted to the context of CpG dinucleotides, although other sequences might
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be methylated in some tissues (Lister et al. 2009, 2013; Ziller et al. 2013). CpG
methylation has not only been observed during development or differentiation and in
association with diseases, but has also been proposed as a prerequisite to understand
disease pathogenesis in complex phenotypes (Petronis 2010). DNA methylation
was initially identified as an epigenetic mark for gene repression (Riggs 1975;
Holliday and Pugh 1975). Currently, although the silencing mechanism remains
valid, we know that methylation in CpG-rich promoter regions is associated with
gene repression, while CpG-poor regions show a less simple connection with
transcription (Jones 2012). Therefore, the relationship between DNA methylation
and transcriptional activation/repression is more complex than initially portrayed
and dependent on the genomic and cellular context.

In the human genome, 70–80 % of CpG sequences are methylated (Ziller
et al. 2013); however, both the distribution of CpG dinucleotides and the DNA
methylation mark are not evenly distributed. CpG islands (CGI) are sequences with
high CCG content that are generally unmethylated and colocalize with more than
half of the promoters of human genes (Illingworth and Bird 2009). Housekeeping
genes generally contain a CGI in the neighborhood of their TSS (Transcription Start
Site), concordantly with the notion that chromatin at promoter with CGI shows a
transcriptionally permissive state (Deaton and Bird 2011).

In addition to CGIs and TSSs, methylation at other classes of genomic elements
has gained further attention over time. For example, CpG shores are genomic
regions up to 2 kb distant from CGI, which show lower CpG density but increased
variability in DNA methylation, and are found “to be among the most variable
genomic regions” (Ziller et al. 2013). Most of tissue-specific DNA methylation
in fact, as well as methylation differences between cancer and normal tissue,
occur at CpG shores (Irizarry et al. 2009). DNA methylation at enhancers is also
highly dynamic (Ziller et al. 2013; Stadler et al. 2011), has been shown to vary in
physiological and pathological contexts (Aran and Hellman 2013; Lindholm et al.
2014; Rönnerblad et al. 2014), and methylation levels at enhancers are more closely
associated with gene expression alterations than promoter methylation in cancer
(Aran et al. 2013). Enhancers represent crucial determinants of tissue-specific gene
expression and their identification methods include the analysis of epigenomic
data (ChIP-seq, DNase-seq), since enhancer chromatin shows characteristic marks
(Calo and Wysocka 2013). Moreover, DNA methylation at enhancer elements can
influence the binding of Transcription Factors (TFs) (Stadler et al. 2011; Wiench
et al. 2011), providing a direct link between CpG hypomethylation and target gene
expression. However, it remains unsolved how this complex interplay is regulated
and whether DNA methylation changes are a consequence of TF binding or whether
they drive enhancer activity through exclusion of TF.

1.2.2 The Axes of DNA Methylation Variability

The role of DNA methylation variation has been investigated in many different
contexts. Below we will give a brief overview of the phenotypes, settings, and
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major domains that together constitute the “axes” along which variability in DNA
methylation has been studied.

Development Early studies proposed DNA methylation as a mechanism involved
in X-chromosome inactivation and developmental programs (Riggs 1975; Holliday
and Pugh 1975). Since then, the dynamics of DNA methylation during developmen-
tal changes has been studied extensively, and technological advances now render
possible the study of methylomes of single cells (Smallwood et al. 2014; Guo et al.
2014), with manifest implications for the study of early embryos.

Imprinting and X Chromosome Inactivation Through the phenomenon of
imprinting, genes that are expressed in allele-specific manner have regions
showing parent-of-origin specific DNA methylation. When measured at an
imprinted region, methylation is expected to approach a theoretical 50 % level.
X-chromosome inactivation in females is also achieved through methylation, in
order to transcriptionally silence the inactivated X chromosome, which is random
in humans, and obtain gene dosage similar to males. Therefore, measured levels of
DNA methylation differ by gender at X chromosome.

Disease The study of DNA methylation variability in common complex diseases is
the focus of Epigenome-Wide Association Studies (EWAS), which aim at associat-
ing phenotypic traits to interindividual epigenomic variation, and in particular DNA
methylation. A notable example is represented by cancer EWAS, which not only aim
at understanding the molecular changes of tumorigenic pathways and disease risk,
but also exploit DNA methylation profiling for disease diagnosis and prognosis.
It is also thought that a combination of environmental, genetic, and epigenetic
interactions contribute to the problem of the “missing heritability” (Eichler et al.
2010; Feinberg 2007).

Space and Time When designing and analyzing EWAS, it should be carefully
considered that CpG methylation is subjected to spatial and temporal variability.
One could consider the genome space as the main axis of variability, because
different genomic elements have different methylation levels and show different
degree of inter-sample variability. Alternatively, the tissue/cell type space represents
another important axis of variation, as it is extensively established that different
cell types possess their characteristic methylome. Other cases illustrate perfectly
the extent of temporal variability. Monozygotic twins, for example, accumulate
variability over time in their epigenome, such that older monozygous twins have
higher differences in CpG methylation than younger twins (Fraga et al. 2005). More-
over, an “epigenetic drift” has been generally observed during aging (Bjornsson
et al. 2008; Teschendorff et al. 2013b), confirming that both hypomethylation and
hypermethylation are occurring over time, with acceleration dependent on disease
or tissue factors (Horvath 2013; Horvath et al. 2014; Hannum et al. 2013).

Genotype Genotype is a strong source of interindividual variability in DNA
methylation (Bell et al. 2011). Such genetic variants are defined as methylation
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quantitative trait loci (meQTLs) and they have been described in blood and other
tissues (Bell et al. 2011; Drong et al. 2013; Shi et al. 2014). It is possible that some
genotype-dependent CpGs mediate the genetic risk of common complex diseases
(Liu et al. 2013).

Environment Accumulating evidence shows that several environmental factors
can influence DNA methylation. For example, dietary factors have the potency to
alter the degree of DNA methylation in different tissues (Feil and Fraga 2011; Lim
and Song 2012). Cigarette smoking and pollution represent other known epigenetic
modifiers (Lee and Pausova 2013; Feil and Fraga 2011). Moreover, short- or long-
term physical exercise have also been proposed as physiological stimuli which can
cause changes in DNA methylation (Barrès et al. 2012; Rönn et al. 2013; Lindholm
et al. 2014).

1.2.3 Methods for DNA Methylation Profiling

Classically, methods for measuring DNA methylation have been divided into three
major classes, including enrichment-based methods, digestion with methylation-
sensitive restriction enzymes, and methods using bisulfite (BS) treatment. When
coupled with DNA sequencing, affinity-based enrichment of methylated DNA
fragments allows the interrogation of methylation of genomic regions with a methyl-
binding protein (MBD-seq) (Serre et al. 2010) or an antibody (MeDIP-seq) (Down
et al. 2008). These measurements do not give an absolute estimation of the methyla-
tion levels, but rather a relative enrichment that is dependent on the CpG density
and the quality of the affinity assay (i.e., immunoprecipitation). Furthermore,
the length of the DNA fragments determines their resolution. Similarly, methods
based on restriction enzymes measure the relative enrichment after digesting the
DNA with endonucleases that are sensitive to cytosine methylation (MRE-seq)
(Maunakea et al. 2010), and they are therefore influenced by the genomic frequency
of the recognition site for the selected enzyme. In this chapter, we will focus
on methods using bisulfite conversion to assay the cytosine methylation status.
After treatment with sodium bisulfite, unmethylated cytosines (C) in the genomic
DNA are selectively converted to uracil (U), which are replaced by thymine (T)
following PCR amplification (Fig. 1.1b). Methylated Cs are however protected
from being converted. Afterward, the methylation levels can be quantified using
microarrays or sequencing. Bisulfite treatment may be combined with digestion
using methylation-insensitive restriction enzymes, in a technique called Reduced-
Representation Bisulfite Sequencing (RRBS) (Meissner et al. 2008), to reduce the
amount of reads to a fraction of the genome and thus reduce the cost. As opposed to
Whole Genome Bisulfite Sequencing (WGBS) (Lister et al. 2009), this approach has
reduced genome-wide coverage, but the coverage is higher for CpG islands (Harris
et al. 2010). It is alternatively possible to capture targeted DNA fragments, in order
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Fig. 1.1 Overview of experimental methods and bisulfite treatment for the analysis of DNA
methylation. (a) The experimental methods to assay are shown, as further explained in the text. (b)
The bisulfite treatment and PCR reactions will result in the conversion of unmethylated cystosines
(C) into thymines (T), while 5-methylcitosine (mC) will be protected from the bisulfite-induced
conversion

to restrict the sequencing to specific regions (Lee et al. 2011). Both sequencing
and microarray technology offer single-base resolution. While microarray platforms
have a lower cost per sample and limited genome-wide coverage, WGBS has the
most comprehensive genome-wide coverage but at a higher cost. In the next sections
we will better elucidate microarray- and sequence-based approaches, together with
an overview of the analysis pipelines and softwares.
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1.3 Bisulfite Microarrays

Commercially available microarray platforms conditioned the growing availability
of EWAS, allowing a large sample size at an affordable cost. The sample size
issue is relevant since, in many cases, changes in DNA methylation are mild and
the biological variability may be high. Illumina Infinium HumanMethylation27
(27k) and HumanMethylation450 BeadChip (450k) are the most common types
of oligonucleotide microarrays used for DNA methylation studies; at the date of
writing (December 2014) >16,000 27k and >21,000 450k samples are deposited
on GEO (Gene Expression Omnibus) database. The 450k arrays are based on the
Infinium chemistry and contain 485,512 probes, targeting 99 % of genes and 96 %
of CpG island regions (Bibikova et al. 2011). Oligonucleotide probes are attached
to beads and deposited on an array, where the detection of the methylation status
occurs through fluorescence reading. They represent an extension of the previous
27k platform, which was biased toward promoter regions. This extension resulted
in wider coverage (but still limited compared to sequencing methods), specially
toward other genomic regions like gene bodies and CpG shores (Bibikova et al.
2011; Sandoval et al. 2011). However, this also resulted in the introduction of two
different bead types associated to two different chemical assays, Infinium I and
Infinium II. Infinium I consists of two bead types (Methylated and Unmethylated)
for the same CpG locus, both sharing the same color channel, whereas Infinium II
utilizes a single bead type and two color channels (green and red) (Bibikova et al.
2011). Infinium II assays have larger variance and are less sensitive for the detection
of extreme methylation values, which is probably associated to the dual-channel
readout, thus rendering the Infinium I assay a better estimator of the true methylation
state (Dedeurwaerder et al. 2011; Teschendorff et al. 2013a; Marabita et al. 2013).
Moreover, different genomic elements (promoters, CpG islands, gene bodies, etc.)
have different relative fraction of type I or type II probes (Dedeurwaerder et al.
2011). Methods have been introduced to correct for probe-type bias (see below for
discussion).

The C methylation status for single CpG sites at each allele is always binary (0
or 1); however, the measured methylation levels can, in principle, take any value
between 0 and 1 when averaging over many cells, or when the methylation status
differs between the two alleles (imprinting, X-chromosome inactivation). For bisul-
fite microarrays, the methylation level is usually measured in two different scales,
the ˇ-value and the M-value. The ˇ-value is calculated from signal intensities and
can be interpreted as the percentage of methylation (it ranges from 0 to 1). It is
related to the M-value through a logistic transformation. See reference (Du et al.
2010) for a detailed description of the two quantities. Even if M-values cannot
be directly interpreted as methylation percentages, they offer several advantages,
including the possibility of employing downstream association models that rely
on the assumption of Gaussianity, as ˇ-values appear compressed in the high and
low range and often display heteroscedasticity. Moreover, when the sample size is
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relatively large the use of ˇ- or M-values has been shown to give similar results,
but with a limited sample size, M-values allow more reliable identification of true
positives (Zhuang et al. 2012). However, from a pragmatic point of view and to
allow biological interpretation, it is always advisable to report the final effect size in
terms of median or mean ˇ-value change, even if the feature selection step has been
performed in the M-value space.

Independently of the scale used, the methylation profile for each sample shows
a bimodal distribution, with two peaks corresponding to the unmethylated and
methylated CpG positions. Because of the technical differences in probe design,
a correction method is advisable. It could be argued that for CpG-level methylation
difference analysis, the comparison will involve only probes of the same type.
However, several indications suggest that it is advantageous to perform probe-type
correction: (a) when the fold change (or effect size) is used in combination with the
p-value for feature selection, as otherwise a bias may result from the dissimilar range
between probes of different type (Marabita et al. 2013); (b) when dimensionality
reduction or clustering algorithms are used, the pattern of variability between
probe types may bias the grouping of CpG sites; (c) when DMR identification is
anticipated, the methylation estimates along subsequent genomic positions will be
dependent on probe type.

Methods for reducing the probe-type bias include a peak-based correction
(Dedeurwaerder et al. 2011), SWAN method (Maksimovic et al. 2012), subset
quantile normalization (Touleimat and Tost 2012), and BMIQ (Teschendorff et al.
2013a). In a benchmarking work (Marabita et al. 2013), BMIQ resulted as the
best algorithm for reducing probe design bias. BMIQ, which employs a beta-
mixture and quantile dilation intra-array normalization strategy, is available through
several R packages (ChAMP (Morris et al. 2014), RnBeads (Assenov et al. 2014),
WateRmelon (Schalkwyk et al. 2013)). Briefly, it first applies a beta-mixture model
to assign probes of a given design type to methylation states and subsequently
and uses state-membership probabilities to reassign the quantiles of the type2
probes according to the type1 distribution. Finally, for the probes with interme-
diate methylation values (which are not well described by a beta-distribution), a
methylation-dependent dilation transformation is used, which also preserves the
monotonicity and continuity of the data.

While probe-type normalization is a form of within-array normalization,
between-array normalization is intended to remove part of the technical variability
that is not associated with any biological factor, but which can be considered
as caused by experimental procedures. For 450k data, there is no consensus on
the best approach (Wilhelm-Benartzi et al. 2013; Dedeurwaerder et al. 2014),
although a comparison of different normalization pipelines has been performed in
recent works (Marabita et al. 2013; Pidsley et al. 2013). Many of the proposed
approaches employ a form of quantile normalization (QN), which has been shown
to perform well for gene expression studies (Irizarry et al. 2003). The goal of
QN is to produce identical distribution of probe intensities for all the arrays and
it has been applied to 450k data in several forms (Dedeurwaerder et al. 2014).
While forcing the distribution of the methylation estimates to be the same for
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all the samples is a reasonably too strong an assumption for many biological
comparisons, normalizing signal intensities appears a valid alternative in reducing
technical variability in several contexts (Marabita et al. 2013; Dedeurwaerder et al.
2014). However, examination of the signal intensities and the study design should
guide the application of this level of between-samples normalization, in order not
to harm the integrity of the biological signal. A recent extension of QN, termed
functional normalization (Fortin et al. 2014), uses control probes from the array
to remove unwanted variation, assuming that summarized control probes function
as surrogates of the nonbiological variation, which may include batch effects (see
below).

Several comprehensive R packages have been developed for the processing and
the analysis of 450k data (such as lumi (Du et al. 2010), methylumi (Davis et al.
2014), minfi (Aryee et al. 2014), wateRmelon (Schalkwyk et al. 2013), ChAMP
(Morris et al. 2014), and RnBeads (Assenov et al. 2014)), and the reader is referred
elsewhere for detailed discussion on popular pipelines and packages (Morris and
Beck 2015; Wilhelm-Benartzi et al. 2013; Marabita et al. 2013; Dedeurwaerder
et al. 2014).

Another type of unwanted variation in 450k data is represented by batch effects,
which contaminate many high-throughput experiments including 450k arrays (Leek
et al. 2010; Sun et al. 2011). We define a batch as a subgroup of samples or
experiments exhibiting a systematic nonbiological difference that is not correlated
with the biological variables under study. For example, different batches are
represented by groups of samples that are processed separately, on different days
or by a different operator. However, the definition of a batch results from careful
examination of the data set, in order to identify what is an appropriate batch variable
other than the processing group, as the slide or the position on the slide (i.e., the
array), which represent known sources of batch effect for 450k arrays (Sun et al.
2011; Marabita et al. 2013; Harper et al. 2013).

Batch effects can only affect a subset of probes instead of generating artifacts
globally; therefore, many normalization methods fail in eliminating or reducing
batch effects. Specific methods have been developed to deal with this source
of variability, including ComBat (Johnson et al. 2006), SVA (Surrogate Variable
Analysis) (Leek and Storey 2007), ISVA (Independent Surrogate Variable Analysis)
(Teschendorff et al. 2011), RUV (Remove Unwanted Variation) (Gagnon-Bartsch
and Speed 2012; Fortin et al. 2014). The above methods aim at removing the
unwanted variation that remains in high-throughput assays despite the application of
between-sample normalization procedures. They rely on the explicit specification of
the experimental design, in order to maintain the variability associated to a biologi-
cal factor, while removing variability associated to either known or unknown batch
covariates. For example, the ComBat method directly removes known batch effects
and returns adjusted methylation data, by using an empirical Bayes procedure.
However, when the sources of unwanted variation are unknown, surrogate variables
can be identified by SVA directly from the array data. This method does not directly
adjust the methylation data; however, in a second step, the latent variables can
be included as covariates into a statistical model, in order to identify differential
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methylation while correcting for batch effect. Similarly, ISVA, an extension of SVA,
does not adjust data but identifies features associated with the phenotype of interest
in the presence of potential confounding factors. However, the methods indicated
above may still fail or be inapplicable. Therefore, it is important to remember that
the best safeguard against problematic batch effects is a careful experimental design
(Leek et al. 2010), coupled with a random assignment of the samples to the arrays,
the inclusion of a method to account for batch effect and possibly the presence of
technical replicates, one for each processing subgroup, if the samples cannot be
processed together in the case of large cohorts.

Whole blood is one of the most extensively used tissues for EWAS studies
because it is easily accessible and minimally invasive, allowing large cohorts to be
characterized prospectively and retrospectively, in contrast to most disease-relevant
tissues that are hard to collect. However, cellular heterogeneity is an important factor
to consider in the analysis of 450k data, particularly when blood is the source of
DNA. In fact, cellular composition can explain a large fraction of the variability in
DNA methylation (Reinius et al. 2012; Jaffe and Irizarry 2014). It can thus represent
an important confounder in the association analysis when the phenotype under study
alters cellular composition in blood, therefore resulting in spurious associations.
Statistical methods are available to adjust for cellular composition. The popular
Houseman method (Houseman et al. 2012) requires the availability of reference data
measuring DNA methylation profiles for individual cell types in order to estimate
cell proportions, which can be used to adjust a regression model (Liu et al. 2013).
Alternatively, reference-free approaches (Zou et al. 2014; Houseman et al. 2014)
can be employed to deconvolute DNA methylation when a reference data set is not
available or extremely difficult to obtain.

A critical goal of most experimental designs is to identify DNA methylation
changes that correlate with the phenotype of interest, for example, by comparing
cases and controls. A detailed discussion of the available methods is beyond the
scope of this chapter; however, we will briefly describe some of the most popular
methods. We will first consider the identification of Differentially Methylated
Positions (DMPs). The first and very simple approach consists in the calculation of a
�ˇ as the difference between the median ˇ-values of two experimental groups, and
selecting probes whose absolute �ˇ exceeds a threshold. A j�ˇj> 0.2 corresponds
to the recommended difference that can be detected with 99 % confidence according
to Bibikova et al. (Bibikova et al. 2011). Many works identify DMPs using a
threshold on a p-value from a statistical test (t-test, Mann–Whitney test), including
a correction method for multiple hypothesis testing (Bonferroni or False Discovery
Rate correction). Moreover, to decrease the false positive rate, a second threshold on
the effect size is recommended (Marabita et al. 2013; Dedeurwaerder et al. 2014).
For example, a minimal fold change could be considered (if working with log-
ratios), or a minimal difference in the ˇ-values (5–10 %). Another popular method
is represented by the moderated statistical tests as implemented in limma (Smyth
2004), which uses a moderated t-statistic and an empirical Bayes approach to shrink
the estimated sample variances toward a pooled estimate across sites, resulting in
better inference when the number of samples is small. In this latter case, M-values
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are appropriate, as limma expects log-ratios and the Gaussiainty assumption is
violated by the bounded nature of ˇ-values.

An alternative approach for feature selection consists in assessing differential
variability between sites instead of using statistics based on differential methylation.
In epigenomics of common diseases, this notion has been proposed to be relevant for
understanding and predicting diseases (Feinberg et al. 2010; Feinberg and Irizarry
2010), by assuming that common disease involves a combination of genetic and
epigenetic factors and that DNA methylation variability could either mediate genetic
effects or be mediators of environmental effects. Methods are available to analyze
differential variability and associate it with a phenotype of interest (Teschendorff
and Widschwendter 2012; Jaffe et al. 2012a).

While the best approach for the identification of Differentially Methylated
Regions (DMRs) is today represented by bisulfite sequencing, 450k arrays are a
possible alternative and methods have been developed to deal with their charac-
teristics, including Probe Lasso (Butcher and Beck 2015), Bump hunting (Jaffe
et al. 2012b), DMRcate (Peters and Buckley 2014), and A-clustering (Sofer et al.
2013). The genomic coverage of 450k arrays is uneven, with a bias toward CpG
islands, promoters, and genic regions; moreover, neighboring CpG sites have highly
correlated methylation levels. These characteristics complicate the application of
fixed window-based approaches for the identification of DMRs, and methods like
Probe Lasso apply a flexible window based on probe density to call DMR and
calculate a p-value by combining individual p-values, weighting by the underlying
correlation structure of methylation level. The Bump hunting method (which is not
restricted to 450k arrays) is another approach that was developed to deal with the
spatial correlation of CpG positions, and which finds genomic regions where there
is statistical evidence of an association.

1.4 Bisulfite Sequencing

Bisulfite sequencing (BS) has been thoroughly compared with other sequence- and
array-based approaches (Bock et al. 2010; Harris et al. 2010; Li et al. 2010) and
it currently represents the gold-standard technology for a quantitative and accurate
genome-wide measurement of DNA methylation at single base-pair resolution.
Although a less cost-attractive option, sequencing technologies and experimental
protocols have advanced recently and it is becoming advantageous to use BS in
many settings. For example, the profiling of the methylome in single cells has been
recently achieved (Smallwood et al. 2014; Guo et al. 2014).

The use of next-generation sequencing has not only represented a technolog-
ical improvement, but it has also contributed conceptual developments in our
understanding of the biological role of DNA methylation (Rivera and Ren 2013).
For example, the traditional view of DNA methylation favored a mitotically
stable modification, characteristic of repressed chromatin. However, sequencing
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technologies have expanded our view on DNA methylation, and we have started
to understand the complexity of this epigenetic modification and its dynamical
patterns, the relationship with other marks (including 5-hydroxymethylcytosine
(5hmC) or 5-formylcytosine (5fC)), and the distribution of non-CpG methylation
in embryonic or adult tissues, for example.

Several protocol variants exist for performing genome-wide BS (Lister and Ecker
2009; Laird 2010), and here we focus on two of the most widely used, namely,
WGBS and RRBS. The two strategies use bisulfite treatment to infer the methylation
status of the Cs in the genome; however, they noticeably differ for their genome-
wide coverage and costs. RRBS libraries are prepared by digesting genomic DNA
with the methylation-insensitive restriction enzyme MspI, which cut at the CCGG
sites. After end-repair and adapter ligation, DNA is size-selected and treated with
sodium bisulfite. Then, purified DNA is PCR-amplified and sequenced. RRBS
provides single-base resolution measurements of DNA methylation, with good
coverage for CpG-rich regions (as CpG islands), but low genome-wide coverage.
Therefore, this method increases the depth and reduces the cost per CpG for
cytosines in CpG islands (Harris et al. 2010). Instead, WGBS has larger genome-
wide coverage, but increased cost. WGBS libraries are generated from fragmented
genomic DNA, which is adapter-ligated, size-selected, bisulfite-converted, and
finally amplified by PCR amplification. However, modifications of this experimental
workflow have been introduced in order to expand the applicability of this approach
to many settings. For example, Post-Bisulfite Adaptor Tagging (PBAT) has been
developed to reduce the loss of amplifiable DNA caused by degradation during
bisulfite conversion, and therefore to reduce the amount of input DNA (Miura et al.
2012). Alternatively, a “tagmentation” protocol (Tn5mC-seq) allows the production
of libraries from reduced amount of starting DNA (Adey and Shendure 2012).

The recent work by Ziller et al. (2013) observed that roughly only 20 % of CpG
methylation in the genome can be considered “dynamic,” and that therefore a sub-
stantial part of WGBS reads are potentially uninteresting, resulting in a combined
loss of around 80 % of sequencing depth due to noninformative reads and static
regions. Therefore, capture protocols that sequence target regions would appear to
be advantageous if a flexible design could allow one to focus on representative,
dynamic, or regulatory regions only. For example, the Agilent SureSelect platform
allows BS on a selected panel of regions using hybridization probes (Ivanov et al.
2013; Miura and Ito 2015). The predefined regions include 3.7 M CpGs on CpG
islands and promoters, cancer and tissue DMRs, DNAseI hypersensitive sites, and
other regulatory elements.

The percentage of methylation after sequencing is calculated by counting the
reads supporting a methylated or unmethylated C, and this is achieved by aligning
reads to a reference genome. However, the bisulfite treatment converts unmethylated
Cs into Ts, resulting in libraries of reduced complexity and reads that do not exactly
match the reference genome sequence. Therefore, a method is needed to incorporate
the possible conversion into the alignment procedure. Several alternative strategies
and aligners have been proposed and their different features have been reviewed
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elsewhere (Bock 2012; Krueger et al. 2012; Tran et al. 2014). Bismark (Krueger
and Andrews 2011), for example, represents one of the most popular mapping tools.
It converts in silico all the Cs both in the reads and in the reference genome; then
a standard aligner (Bowtie or Bowtie2) is used to map the reads to each strand
of the genome. This method therefore uses only three letters for alignment, and
the reduced complexity is compensated by the lack of bias toward methylated
regions. To avoid decreased mapping efficiency, special care should be taken by
an initial quality control and it is recommended to perform both sequence adapter
trimming and adaptive quality trimming at the read 30 end (Krueger et al. 2012).
Indeed, some libraries may show both reduced quality scores and the presence of
adapter sequences at the end of the reads (if the read length is longer than the DNA
fragment), causing a dramatic decrease in the percentage of mapped reads.

After mapping, the DNA methylation levels are calculated from the aligned
reads, counting the number of reads containing a C or a T in the genome, for each C
independently of the context. Usually, only CpG methylation is further retained for
downstream analysis; however, non-CpG methylation can be analyzed as well using
BS, if required in the biological context (Lister et al. 2009, 2013). At this stage, M-
bias plots (Hansen et al. 2012) can help in identifying any bias in methylation levels
toward the beginning or the end of the reads. For example, many library preparation
protocols include an end-repair step after DNA fragmentation. This enzymatic reac-
tion will introduce unmethylated Cs, which will align to the genome, but without
preserving their original methylation. Therefore, if detected with the M-bias plot,
this effect should be removed by excluding the biased positions from the methyla-
tion call. If desired, the Bis-SNP package (Liu et al. 2012) can perform base quality
recalibration, indel calling, genotyping, and methylation extraction from BS data.

Fragments aligning exactly to the same genomic position could be the result of
PCR amplification. However, the execution of de-duplication step is dependent on
the exact experimental protocol. For example, in RRBS libraries it is expected that
a higher fraction of fragments will all start at the same genomic location, given
the initial MspI enzymatic digestion, and therefore the de-duplication step could
remove large fraction of valid reads. For other protocols, including WGBS and
target enrichment, de-duplication is suitable to prevent multiple counting of the
same fragment, which will cause methylation bias.

Similar to microarrays, the analysis of BS data allows site- and region-level
differential methylation analysis. While some aspects are common to all DNA
methylation studies, specific considerations and statistical tools apply only to BS
data. The simplest test for assessing differential methylation is Fisher’s exact test.
This method uses read counts to assess statistical significance; however, it is not able
to completely model the biological variability. If biological replicates are present,
the counts are pooled together to apply this method, thus removing the within-group
variation that is a requisite to evaluate significant difference given the observed
biological differences between samples of the same group. Therefore, logistic
(MethylKit (Akalin et al. 2012)) or beta-binomial (methylSig (Park et al. 2014))
models have been used to account for sampling (read coverage) and biological
variability.
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For the identification of DMR, the abovementioned Bump hunting method could
be extended to deal with sequencing data (Jaffe et al. 2012b). Similarly, BSmooth
(Hansen et al. 2012) (available through bbseq) identifies regions as groups of
consecutive CpGs where an absolute score (similar to t-statistics) is above a selected
threshold. The approach is based on the application of a local regression to smooth
the methylation profiles using weights that are also influenced by the coverage.
In this way, the algorithm improves the precision and allows the use of a lower
coverage threshold, by assuming that the methylation estimates vary smoothly along
the genome. This method is therefore mainly applicable for WGBS in the presence
of biological replicates, from which variability is modeled. Local smoothing is
also used by another algorithm, BiSeq (Hebestreit et al. 2013), which instead was
developed for targeted BS approaches such as RRBS. BiSeq first finds clusters of
CpGs and applies local smoothing before testing for differential methylation, using
a beta regression model and a Wald test. The algorithm also provides a hierarchical
method for calculating an FDR on clusters and sites, and therefore allows defining
DMR boundaries.

In order to functionally annotate the discovered DMPs/DMRs, pathway or gene
ontology analysis is commonly used. In a typical enrichment analysis, DMRs
are first mapped to their nearest genes and then the fraction of annotated genes
with a DMR for a given pathway/ontology is compared to the total fraction of
genes annotated with that category in the genome. To this purpose, numerous tools
are available, which use different algorithms to define enrichment (Huang et al.
2009). Otherwise, a region-based enrichment analysis for cis-regulatory regions
is possible through the GREAT tool (http://great.stanford.edu/). This software
defines gene regulatory domains with an adjustable “association rule” to connect
a TSS (transcriptional start site) of a gene with its cis-regulatory region, such that
all DMRs (or other noncoding sequences) that lie within the regulatory domain
are assumed to regulate that gene. Then, a genomic region-based enrichment
significance test is performed, accounting for the length of gene regulatory domains.
Thus, the functional enrichment is carried using regions as input, instead of
genes. This approach has been shown to improve the functional interpretation of
regulatory regions (McLean et al. 2010). However, even assuming the mapping
problem has been solved, it is important to remember that for regions chang-
ing in DNA methylation, there is no absolute and unequivocal link between
the direction of change and the corresponding change in gene expression. For
example, for promoter regions with CpG islands, a methylation event corresponds
to gene repression; however, opposite examples have been reported for other
regions (Jones 2012). Moreover, when the probes on the array are not evenly
distributed across the genome, the use of the proper background is important
not to bias the pathway/ontology enrichment analysis. For all the abovemen-
tioned reasons, care should be included in performing and interpreting functional
enrichment analysis with DNA methylation data, in order to avoid potential
biases.

http://great.stanford.edu/
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1.5 Histone Modifications

While DNA methylation was the first uncovered epigenetic regulatory mechanism,
several other mechanisms have been uncovered. Arguably, “histone modification”
is among the most relevant epigenetic marks. In this third section, we provide
an introduction to histone modifications, an overview of profiling experimental
protocols and data analysis.

1.5.1 Introduction to Histone Modifications

Histones are key players because, through covalent modifications of their residuals
(e.g., lysine), they have a crucial role in the regulation of transcription, DNA repair,
and replication. These modifications are dynamically regulated by chromatin-
modifying enzymes (Kouzarides 2007); an enzyme first recognizes available dock-
ing sites in histones and then recruits additional chromatin modifiers and remodeling
enzymes. Enzymes are associated with specific histone modifications. During the
last decades, major efforts have been devoted to the experimental, functional, and
regulatory characterization of the different covalent modifications (Tollefsbol 2010).
Most relevant experimental protocols and data analysis procedures are described
in the next subsection. Table 1.1 summarizes the most relevant types of histone
modifications such as methylation, sumoylation, ubiquitination, and acetylation.

The histone modifications selected in the ENCODE project are among the
most well characterized (Consortium et al. 2012) and include H2A.Z, H3K4me1,
H3K4me2, H3K4me3, H3K9ac, H3K9me1, H3K9me3, H3K27ac, H3K27me3,
H3K36me3, H3K29me2, H4K20me1. For the interested reader we also recommend
to consider chromatin modifications associated with nucleosome regulation (Tessarz
and Kouzarides 2014; Becker and Workman 2013), the role of histone variants
(Henikoff and Smith 2015) and its association to disease (Maze et al. 2014).

1.5.2 Profiling Histone Modifications: Experimental Protocol
and Data Analysis

1.5.2.1 Protocol

The idea behind genome-wide histone modification profiling is the generation of
DNA fragments enriched with the selected histone mark of interest. Once the DNA
fragments are obtained, microarray-based or sequencing-based technologies can be
applied to quantify the histone marks. The widely accepted protocol for histone
mark DNA fragment enrichment detection is Chromatin Immunoprecipitation
(ChIP) (Solomon et al. 1988).
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Table 1.1 Histone modifications

Histone
modification Mechanism

Affected
residuals Functional role

Proteins and
protein
families
associated

Sumoylation Addition of a small
ubiquitin-related
modified protein

Lysine Transcription
repression

E1,E2,E3

Ubiquinitation Covalent
attachment of one
or more ubiquitin
monomers

Lysine Transcriptional
activation

E1,E2,E3,
PRC1, UBP

ADP-
ribosylation

Addition of a
ADP-ribose moiety

Lysine Chromatin
condensation, DNA
repair

ART, PARPs

Phosphorylation Addition of a
phosphate group

Serine,
tyrosine

Transcription regulation
(activation, repression),
DNA repair

PI3K, WSTF,

Methylation Addition of a
methyl group

Arginines
(mono,di),
lysines
(mono,di,tri)

Transcription regulation
(activation, elongation,
repression), DNA repair

LSD1, JMD2,
JARID1

Acetylation Addition of an
acetyl functional
group

Lysine Transcriptional
activation, DNA repair

HAT (GNAT,
MOTYF),
p300, CBP

ChIP is a powerful tool for studying protein–DNA interactions. Briefly, ChIP
consists of two experimental parts:

1. DNA–protein fragment generation. First protein–DNA complexes are cross-
linked in living cells. This is usually achieved by the addition of formaldehyde.
Next, cells are lysed and chromatin is mechanically sheared in order to obtain
fragments of 0.2–2 kb depending on later requirements (array or sequencing).
In the context of histone modification, DNA digestion without cross-linking or
sonication is preferred for fragmenting the DNA.

2. Enrichment for selected marker. Antibodies are used to immunoprecipitate cross-
linked protein–DNA complexes enriched with a selected epitope. Then cross-
links are reversed and DNA is recovered.

The DNA recovered can be then processed in two different ways:

(a) Array-based profiling: this technique is named ChIP-on-chip and consists in
the labeling and hybridization of enriched DNA fragments to tiling DNA
microarrays. ChIP-on-chip allowed the first genome-wide study of DNA–
protein binding interactions (Ren et al. 2000; Blat and Kleckner 1999). Before
Next-Generation Sequencing (NGS) became widely affordable, ChIP-on-chip
was the standard methodology for genome-wide histone profiling. However,
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with the advent of sequencing technologies ChIP-on-chip has been replaced
by ChIP-seq because the latter produces better signal-to-noise ratios, allows a
better detection of marks (Ho et al. 2011), has higher resolution, fewer artifacts,
greater coverage, and larger dynamic range (Park 2009). For this reason, for the
rest of the chapter we will discuss mainly sequencing-based analysis.

(b) Sequencing-based profiling: similar to DNA methylation, NGS provided novel
and better tools for histone genome-wide profiling. Interestingly, ChIP-seq was
one of the earliest applications of NGS (Johnson et al. 2007; Barski et al. 2007).
Nowadays, sample preparation kits for ChIP-seq are commercially available,
thus facilitating the preparation of libraries for sequencing.

In Fig. 1.2, the ChIP-seq protocol is detailed. The outcome of ChIP-seq is a set of
(millions of) DNA sequences that require processing in order to identify the regions
associated to the mark of interest. ChIP-seq has been widely used for profiling
histone marks, transcription factor binding, and DNA methylation; in each case,
the experimental and data analysis procedures are adapted accordingly. When doing
ChIP-seq, it is critical to generate a control ChIP-seq experiment (Landt et al. 2012),
which is necessary to account for possible biases, because DNA digestion may not
be completely uniform. Two methods for the generation of control libraries are
considered: (1) “Input”: DNA from the same sample is processed as any ChIP-seq
library but without the immune-precipitation step; and (2) “mock ChIP-seq”: DNA
from the same sample is processed similarly but using instead a “control antibody”
expected to react only with an irrelevant nonnuclear antigen. Several works have
shown the benefits of using control libraries (Landt et al. 2012; Liang and Keleş
2012); interestingly, the possibility of using immunoprecipitation of histone H3 as
a background has been proposed (Flensburg et al. 2014).

1.5.2.2 Data Analysis

The aim of data analysis is to identify the genomic regions associated with the
mark of interest. In the case of ChIP-on-chip, Negre et al. (2006) and Huebert et al.
(2006) provide an integrated overview of experimental procedures and data analysis
methods while Benoukraf et al. (2009) provide an analysis suite for ChIP-on-chip
data analysis.

In the case of ChIP-seq, the starting material is a set of (millions of) DNA
sequences and for each sequence, a string of quality score for each base. The
analysis of ChIP-seq data involves several steps, some of which are shared among
several NGS-based data analysis pipelines:

Step (1) Quality Control The first step of the analysis is to assess the quality of the
data from the set of sequences. Several tools do exist, but arguably FastQC (http://
www.bioinformatics.babraham.ac.uk/projects/fastqc/) from Babraham Institute and
Picard (http://broadinstitute.github.io/picard/) from the Broad Institute are two of
the most common. The most relevant quality measures are shown in Fig. 1.3 and

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://broadinstitute.github.io/picard/
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Fig. 1.2 ChIP-seq protocol. The figure depicts the different experimental steps of ChIP-seq as
described in the text (Figure generated by Jkwchiu under CreativeCommons3.0)
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Fig. 1.3 Example of FastQC output. (a) Per sequence GC content: expected (blue) versus
observed (red). Y-axis presents the number of reads and X-axis shows the mean GC content. (b)
Quality scores across all bases. Y-axis presents the quality score and X-axis shows position in the
read. (c) Quality score distribution over sequences. Y-axis presents the number of reads and X-axis
shows the mean sequence quality. (d) K-mer enrichment. Y-axis presents the relative enrichment
of a k-mer and X-axis shows the position in the read

briefly described here. We highly recommend the reader to visit the online tutorial
material of mentioned tools; some of the measures explained below are estimated
differently by the different tools.

1. Percentage of duplications: percentage of sequences that are not unique in the set
of DNA sequences. An elevated duplication level may argue for PCR artifacts or
DNA contamination.

2. Per sequence GC content: the level of GC content is expected to be similar to that
of the entire genome. This is not true when considering DNA methylation but is
commonly considered valid when doing histone mark analysis. An example is
provided in Fig. 1.3a.

3. Quality scores across all bases: we observe that the base quality score is degraded
in the last bases and this is expected because sequencing chemistry degrades with
increased read length. However, when the quality is below a certain threshold
(e.g., median for any base below 25) the quality of the sequences is under
question. Figure 1.3b provides the distribution of quality score along reads, while
Fig. 1.3c provides the density of the median quality score.
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Fig. 1.4 ChIP-seq mapped data. The figure presents an example of mapped reads into the genome.
(a) Short genomic region where it is superposed the mapping of several reads to be positive (blue)
or negative (red) strand. (b) USCS display of a genomic region where the enrichment of H3K27Ac
enrichment score is shown at a base resolution

4. k-mer content: investigate if a k-mer (a sequence of length k) is overrepresented
at different locations of the sequences. It is usual to investigate if the initial part
of the sequences contains an overrepresentation of adapter sequences, because
those will require trimming. Figure 1.3d provides an overview.

FastQC provides certain thresholds to raise warnings on the different quality
controls; however, as important as those thresholds is that quality measures are
homogeneous among all samples under consideration. In addition, software that
provides comprehensive quality controls on ChIP-seq data includes CHANCE (Diaz
et al. 2012) or even user-friendly tools such as CLCbio software (CLCbio 2014).
Additionally, ChIPQC Bioconductor package provides an R-based tool for quality
metrics generation of ChIP-seq data (Carroll et al. 2014b).

Step (2) Mapping to a reference genome The next task is to map reads
(sequences) to the genome of reference. To this end, several softwares exist, with
one of the most widely used tools being, arguably, bowtie2 (Langmead and Salzberg
2012). The general output of a mapper assigns each read to a genomic location and
a quality of the mapping; a summarized example is depicted in Fig. 1.4a, where
reads are mapped to genomic regions, either to the positive or negative strand. It
is always recommended to, at least, visually investigate selected regions; among
the visualization tools UCSC Genome Browser (Karolchik et al. 2014) and Broad
Institute’s IGV (Robinson et al. 2011) are commonly used; we also recommend
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the use of Bioconductor package tracktables (Carroll et al. 2014a) to generated
customized visualizations and dynamic IGV reports. Figure 1.4b provides an
example of a UCSC Genome Browser histone mark summary visualization where
for each base the enrichment is provided. Since ChIP-seq reads are sequenced
from both ends of a signal, the positive and negative strands will enrich each one
at different ends; for this reason, the signal is to be considered bimodal when
considering positive and negative strands simultaneously (Zhang et al. 2008). We
denote the distance between those ends as d.

Step (3) Peak Identification Histone marks are identified across the genome
as “peaks.” Figure 1.4b provides an intuitive idea of the signal as a peak: we
are interested in finding genomic regions where several consecutive bases show
significant signal enrichment. In Fig. 1.4b, the left part of the signal (pink) shows
low enrichment while to the right there are several regions (peaks) with higher
enrichment. Many algorithms, usually called peak-finders, have been developed in
order to identify significant enriched regions (peaks) from sequencing data. It is
out of the scope of this chapter to present a comprehensive review of them, but we
shortly characterize them:

• Generic peak-finders: among the first peak-finder algorithms, the most successful
one was the Model-based analysis of ChIP-seq data (MACS) algorithm from
Zhang et al. (2008), which uses some concepts inherited from algorithms
developed for ChIP-on-chip data analysis. Briefly, MACS first performs a linear
scaling of the control library to be the same as the signal ChIP-seq library.
Subsequently, MACS models the distribution of the number of reads per base as a
Poisson distribution and then considers all reads a d/2 number of bases across the
genome. Finally, a search for significantly enriched regions is conducted through
a sliding window of 2*d size. The use of a control library allows FDR estimation.
In Bailey et al. (2013), a discussion among current methodologies is provided.

• Histone-specific peak-finder: many of the methodologies developed considered
the peaks of interest to be narrow, such as those observed from most Transcription
Factor (TF) ChIP-seq data. However, in the case of histone marks, histone
modification enzymes, chromatin remodeling complexes, or RNAPII, we expect
a spreading of the signal over larger regions; those are defined as broad-source
factors by Landt et al. (2012). For this reason, methodologies such as SICER
(Zang et al. 2009), which aims at the identification of statistically significant
spatial cluster of signals, were developed. Methods aiming at uncovering both
broad and narrow peaks also exist (Peng and Zhao 2011), which would be optimal
for mixed-source factors, that is, marks that can be broad or narrow.

The output of most peak-finders provides similar type of information. Most
common outputs include the following:

• Genomic location: chromosome, start and ending site.
• Summit: in many cases, the base of the peak with the highest enrichment is also

identified.
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• Signal strength: number of reads or number of reads per million are also usually
provided.

• Statistical significance: p-values and FDRs are provided. This allows the use of
different thresholds during follow-up analyses.

In Landt et al. (2012), and as part of the ENCODE consortia, the authors
recommend the use of ChIP-seq replicates; it is recommended to generate a control
library for every chromatin preparation and sonication batch. When more than one
library is prepared and analyzed against the control, we will obtain a set of peaks for
every replication; in those cases, irreproducible discovery rate (IDR) (Li et al. 2011)
allows assessing agreement between replicates and also provides FDR estimates for
peaks.

Step (4) Peak analysis Once signals have been uncovered, many follow-up
analyses are possible. We enumerate the most common ones:

• Motif discovery: denotes the identification of transcription factor binding sites
in peaks. When applied to TF ChIP-seq, it allows the uncovering of associated
TF motifs; however, when applied to histone marks, the identification of motifs
and its characterization through motif databases such as TRANSFAC (Matys
et al. 2006) or JASPAR (Portales-Casamar et al. 2010) may provide insights into
histone-associated TFs for the system under study. MD tools are Homer (Heinz
et al. 2010), MEME suite (Bailey et al. 2009), CisFinder (Sharov and Ko 2009),
and rGADEM (Droit et al. 2014) among many others. Tran and Huang (2014) is
a recent survey on MD web tools.

• Pathway enrichment analysis: similarly to gene expression analysis, it is impor-
tant to reveal if the signal from the peaks can be associated, for instance,
with specific pathways, diseases, or gene ontology terms. Mapping peaks to
genes and then applying classical gene set analyses is an option. However, this
option may not be optimal because biases are introduced by gene length (higher
probability of having peaks) or by peaks from intergenic regions (such peaks
may be associated with genes 10–20 kb away, and which are therefore possibly
not closest to the peak itself). ChIP-Enrich (Welch et al. 2014) was developed
to correct for gene lengths, while GREAT (McLean et al. 2010) introduces
different definitions of gene domains to correct for the uncertainty of the gene-
peak mappings.

• Mapping to genes: because different histone marks may act at different genomic
locations, the characterization of peaks as being intergenic, or associated with
promoter, gene body, intron, exon, or start/end of the gene (among others) may
also provide insights into a histone’s genomic location preferences and associa-
tion mechanisms. ENCODE provided relevant examples of such characterization
in (ENCODE Project Consortium et al. 2007).
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1.6 Repositories and Other Resources

A common task in current data analysis is represented by the integration of different
public available data with own experimental data. A first use is, for instance, the
overlap of a given histone mark, that is, H3K4me1, in a specific system, that is,
CD4 T cells, with H3K4me1 profiles of other cell or tissue types. A second possible
usage is to conduct integrative analysis with different epigenetic marks in order
to gain functional insight into the regulatory network that is active in the studied
biological process.

Typically, histone marks are analyzed in combination with gene expression or
DNA methylation data. Furthermore, the researcher has now the availability of a
growing selection of epigenomic data (Table 1.2), produced by several international
consortia and projects. The size of the epigenomic data sets and publications has
grown a lot in recent years, resulting in the availability of different data types that
are essential to define the function of the regions under study, and which can be
visualized using online or local tools (Table 1.3).

Large data sets allow the research of regulatory mechanisms, impossible to
perform in smaller samples. For instance, the idea that histone marks act in a
combinatorial manner was considered by different researchers when ChIP-on-chip
experiments were first generated; the ENCODE’s pilot project (Thurman et al.
2007) identified higher-order patterns of active and repressed functional domains
in human chromatin, through the integration of histone modifications, RNA output,
and DNA replication timing. Only when Zho’s laboratory generated ChIP-seq data
for several histones and for the same system (CD4C T cells) was it possible to
obtain more robust insights into the cooperation among histone marks (Wang et al.
2008). Interestingly, Karlic et al. (2010) showed that specific combination of histone
marks was predictive of gene expression; later the prediction of gene expression was
also conducted in new ENCODE data by Dong et al. (2012). Histone acetylation
dynamics were also investigated by Zho’s laboratory by profiling HDACs and HATs
again in CD4C T cells.

Over the years, the ENCODE project has generated larger sets of histone
mark profiles for several histone marks and several cell types. Interestingly, the
generation of such large data sets motivated the use of unsupervised learning
methods (Hoffman et al. 2013; Ernst and Kellis 2010; Ernst et al. 2011) in order
to identify functional regions and classify them into a small number of labels. In
the analysis, data from histone modifications, DNase-seq, FAIRE, RNA polymerase
2, and CTCF were considered. Labels were annotated in a post hoc analysis
step; those were further summarized into summary states (Transcription Start Site,
Promoter Flanking, Enhancer, Weak Enhancer, CTCF binding, Transcribed Region,
and Repressed or Inactive Region).
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Table 1.2 Epigenome projects and other data repositories

Name Description URL

ENCODE A project aimed at identifying
functional elements in the human
genome. Assays include: ChIP-seq,
RNA-seq, DNase-seq, gene
expression arrays, 450k arrays,
RRBS, Repli-seq, CAGE, Genotype,
RNA Bind-n-Seq, WGBS,
FAIRE-seq, RAMPAGE, RIP-chip,
RNA-PET, Repli-chip, MRE-seq,
ChIA-PET, protein sequencing by
tandem mass spectrometry, 5C, and
more. Samples include mainly
immortalized cell lines but also
tissues and primary cells

https://www.encodeproject.org/

NIH
Roadmap
Epigenomics

A collection of normal epigenomes to
provide a reference for the normal
counterparts of tissues and organ
systems frequently involved in human
disease. Assays include DNA
methylation (MeDIP-Seq, MRE-Seq,
RRBS, WGBS), histone modifications
(ChIP-seq), chromatin accessibility
(DNase-seq), and RNA expression
(mRNA-Seq, smRNA-Seq). Samples
include Embryonic Stem Cells and
primary ex vivo fetal and adult tissues

http://www.roadmapepigenomics.org/

Blueprint
Epigenome

A project focused on obtaining
reference epigenomes from cells of
the hematopoietic system. Assays
include: RNA expression (RNA-seq),
DNA methylation (WGBS),
chromatin accessibility (DNase-seq),
and histone modifications (ChIP-seq).
Samples include primary cells from
healthy individuals and patients
(hematopoietic neoplasias, chronic
autoimmune diseases, type 1 diabetes)

http://www.blueprint-epigenome.eu/

International
Human
Epigenome
Consortium

A consortium with goal of providing
access to human epigenomes and
coordinate their production for key
cellular states relevant to health and
diseases. It gathers data from different
projects (Blueprint, CEEHRC,
CREST/IHEC, DEEP, ENCODE,
NIH Roadmap)

http://www.ihec-epigenomes.org/

GEO Public data repository of
high-throughput genomic data,
including array- and sequence-based
assays

http://www.ncbi.nlm.nih.gov/geo/

(continued)

https://www.encodeproject.org/
http://www.roadmapepigenomics.org/
http://www.blueprint-epigenome.eu/
http://www.ihec-epigenomes.org/
http://www.ncbi.nlm.nih.gov/geo/
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Table 1.2 (continued)

Name Description URL

The
Cancer
Genome
Atlas
(TCGA)

A project focusing on cancer genomics, with the
primary goal of understanding the molecular basis
of cancer. Assays include: genome and exome
sequencing, DNA methylation (450k array and
WGBS), gene expression (mRNA-seq,
miRNA-seq, Total RNA-seq, arrays), CNV (arrays
and DNA-seq), protein expression, and more

http://cancergenome.nih.gov/

FANTOM Although not an epigenomic project in the strict
sense, it focuses on transcriptome analysis toward
an understanding of the transcriptional regulatory
network and the identification of functional
elements in mammalian genomes. The FANTOM5
phase used CAGE to map the sets of transcripts,
transcription factors, promoters, and enhancers
active in diverse mammalian primary cell types

http://fantom.gsc.riken.jp/

Table 1.3 Genome browsers and other software tools for the visualization and the analysis of
epigenomes

Name Description URL

UCSC
Genome
Browser

Online genomic browser that contains the reference
sequences of a large collection of genomes. It also
provides access to ENCODE data. Both the browser
and the data can be downloaded for local runs

http://genome.ucsc.edu/

WashU
Epigenome
Browser

Online genomic browser that provides access and
visualization of ENCODE, NIH Roadmap, and other
data. Several visualizations are available

http://epigenomegateway.
wustl.edu/browser/

Roadmap
Epigenome
Browser

Online genomic browser providing visualization of
NIH Roadmap assays

http://epigenomegateway.
wustl.edu/browser/
roadmap/

IGV Integrative Genomics Viewer that can be downloaded
and run locally for interactive exploration of large
genomic data sets. Java Web Start or binary download
are available

http://www.
broadinstitute.org/igv/

IGB Integrated Genome Browser that can be downloaded
and run locally for interactive exploration of large
genomic data sets. Java Web Start or binary download
are available

http://bioviz.org/igb/

Ensembl
Genome
Browser

Online genomic browser that contains the reference
sequences of a large collection of genomes. It also
provides access to ENCODE data. Both the browser
and the data can be downloaded for local run

http://www.ensembl.org/
index.html

Galaxy Web-based application to analyze genomic data.
Custom data can be uploaded and a web interface is
used to execute command line applications. It
provides direct access to ENCODE data through
UCSC table browser. It can be downloaded and
installed locally

http://galaxyproject.org/

http://cancergenome.nih.gov/
http://fantom.gsc.riken.jp/
http://genome.ucsc.edu/
http://epigenomegateway.wustl.edu/browser/
http://epigenomegateway.wustl.edu/browser/
http://epigenomegateway.wustl.edu/browser/roadmap/
http://epigenomegateway.wustl.edu/browser/roadmap/
http://epigenomegateway.wustl.edu/browser/roadmap/
http://www.broadinstitute.org/igv/
http://www.broadinstitute.org/igv/
http://bioviz.org/igb/
http://www.ensembl.org/index.html
http://www.ensembl.org/index.html
http://galaxyproject.org/
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1.7 Conclusions

We have presented a brief overview of epigenomics and provided the newcomer with
information of available tools for the analysis of epigenomic data sets. However,
the methodologies are in continuous development especially in the context of data
integration.
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