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Summary. We propose a framework for learning from data and validating Bayesian
network models of gene networks. The learning phase selects multiple locally optimal
models of the data and reports the best of them. The validation phase assesses the
confidence in the model reported by studying the different locally optimal models
obtained in the learning phase. We prove that our framework is asymptotically
correct under the faithfulness assumption. Experiments with real data (320 samples
of the expression levels of 32 genes involved in Saccharomyces cerevisiae, i.e. baker’s
yeast, pheromone response) show that our framework is reliable.

1 Introduction

The cell is the functional unit or building block of all the organisms. The
cell is self-contained, as it includes the information necessary for regulating
its function. This information is encoded in the DNA of the cell, which is
divided into a set of genes, each coding for one or more proteins. Proteins are
required for practically all the functions in the cell, and they are produced
through the expression of the corresponding genes. The amount of protein
produced is determined by the expression level of the gene, which may be
regulated by the protein produced by another gene. As a matter of fact, much
of the complex behavior of the cell can be explained through the concerted
activity of genes. This concerted activity is typically represented as a network
of interacting genes. Identifying this network, which we call gene network
(GN), is crucial for understanding the behavior of the cell which, in turn, can
lead to better diagnosis and treatment of diseases. This is one of the most
exciting challenges in bioinformatics. For the last few years, there has been
an increasing interest in learning Bayesian network (BN) models of GNs [1; 9;
12; 14; 17; 20; 21; 23], mainly owing to the following two reasons. First, there
exist principled algorithms for learning BN models from data [3; 5; 19; 21; 27].
Second, BN models can represent stochastic relations between genes. This is
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particularly important when inferring models of GNs from gene expression
data, because gene expression has a stochastic component [2; 18], and because
gene expression data typically include measurement noise [9; 25].

Following the papers cited above, we view a GN as a probability distri-
bution p(U), where U is a set of random variables such that each of them
represents the expression level of a gene in the GN. And we aim to learn
about the (in)dependencies in p(U) by learning a BN model from some given
gene expression data sampled from p(U). Specifically, we define a BN model
M(G) as the set of independencies in G, where G is an acyclic directed graph
(DAG) whose set of nodes is U. The independencies in G correspond to the
d-separation statements in G: X and Y are d-separated given Z in G if for
every undirected path in G between a node in X and a node in Y there exists
a node W in the path such that either (i) W does not have two parents in the
path and W ∈ Z, or (ii) W has two parents in the path and neither W nor
any of its descendants in G is in Z. The probability distributions that do not
satisfy any other independence than those in G are called faithful to G.

In this paper, we follow the so-called model selection approach to learning
a BN model from some given data: Given a scoring criterion that evaluates
the quality of a model with respect to the data, model selection searches the
space of models for the highest scoring model. Unfortunately, model selection
is NP-complete [4]. For this reason, most algorithms for model selection are
heuristic and they only guarantee convergence to a locally optimal model.
Validating this model is crucial, as the number of locally optimal models can
be large [19]. When inferring a BN model of a GN from gene expression data,
validation becomes even more important: Gene expression data are typically
scarce and noisy [9; 25] and, thus, they may not have enough power to dis-
criminate between those locally optimal models that are close to the set of
independencies in the probability distribution of the GN and those that are
not.

In this paper, we propose a framework for learning from data and vali-
dating BN models of GNs. The learning phase consists in running repeatedly
a stochastic algorithm for model selection in order to discover multiple lo-
cally optimal models of the learning data and, then, reporting the best of
them. The validation phase assesses the confidence in some features of the
model reported by studying the different locally optimal models obtained in
the learning phase. The higher the confidence in the features of the model
reported, the more believable or valid it is. We prove that our framework is
asymptotically, i.e. in the large sample limit, correct under the faithfulness
assumption. We show with experiments on real data that our framework is
reliable.

In the sections below, we describe the learning and validation phases of our
framework (Sects. 2 and 3, respectively) and, then, we evaluate it on synthetic
and real data (Sects. 4 and 5, respectively). We conclude in Sect. 6 with a
discussion on this and related works.
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2 Learning Phase

As mentioned in the previous section, the learning phase runs repeatedly a
stochastic algorithm for model selection in order to obtain multiple locally
optimal models of the learning data and, then, reports the best of them. We
use the k-greedy equivalence search algorithm (KES) [19] for this purpose.
Like most algorithms for model selection, KES consists of three components:
A neighborhood, a scoring criterion, and a search strategy. The neighborhood
of a model restricts the search to a small part of the search space around
the model, and it is usually defined by means of local transformations of the
model. The scoring criterion evaluates the quality of a model with respect
to the learning data. The search strategy selects a new model, based on the
scoring criterion, from those in the neighborhood of the current best model.
The paragraphs below describe these components in the case of KES.

KES uses the inclusion boundary of a model as the neighborhood of the
model. The inclusion boundary of a model M(G1), IB(M(G1)), is the union of
the upper and lower inclusion boundaries, UIB(M(G1)) and LIB(M(G1)),
respectively. UIB(M(G1)) is the set of models M(G2) that are strictly in-
cluded in M(G1) and such that no model strictly included in M(G1) strictly
includes M(G2). Likewise, LIB(M(G1)) is the set of models M(G2) that
strictly include M(G1) and such that no model strictly including M(G1) is
strictly included in M(G2). IB(M(G1)) is characterized using DAGs as the
set of models represented by all the DAGs that can be obtained by adding
or removing a single edge from any representative DAG of M(G1), where a
DAG G2 is representative of M(G1) if M(G1) = M(G2) [5]. Any representa-
tive DAG G2 of a model can be obtained from any other representative DAG
G1 of the model through a sequence of covered edge reversals in G1, where
the edge X → Y is covered in G1 if X and Y share all their parents but X in
G1 [5].3

KES scores a model by scoring any representative DAG of the model. Thus,
KES requires that all the representative DAGs of a model receive the same
score. Furthermore, KES also requires that the scoring criterion is locally con-
sistent: Given an i.i.d sample from a probability distribution p(U), the scoring
criterion is locally consistent if the score assigned to a DAG G asymptotically
increases (resp. decreases) with each edge removal that adds independencies
to M(G) that hold (resp. does not hold) in p(U). The two most commonly
used scoring criteria, the Bayesian Dirichlet metric with uniform prior (BDeu)
[15] and the Bayesian information criterion (BIC) [24], satisfy the two require-
ments above and can be used with KES [5]. BDeu scores the exact marginal
likelihood of the learning data for a given DAG, whereas BIC scores an as-
ymptotic approximation to it. Finally, KES uses the following search strategy:

3 A more efficient, though more complex, characterization of IB(M(G)) using com-
pleted acyclic partially directed graphs is reported in [28; 29].
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KES (k∈[0,1])
M = model of the DAG without any edge
repeat

B = set of models in IB(M) with higher score than M
if |B| > 0 then

C = random subset of B with size max(1,|B|·k)
M = the highest scoring model in C

else return M

where |B| denotes the cardinality of the set B. For the sake of simplicity,
KES represents each model in the search space by one of its representative
DAGs. Thus, B and C are sets of DAGs. The input parameter k ∈ [0, 1] al-
lows to trade off greediness for randomness. This makes KES (k �= 1) able
to reach different locally optimal models when run repeatedly. KES (k = 1)
corresponds to the greedy equivalence search algorithm (GES) proposed in
[5].4 We refer the reader to [19] for a thorough study of KES, including the
proof of the following property.

Theorem 1. Given a fully observed i.i.d sample from a probability distribu-
tion faithful to a DAG G, KES asymptotically returns M(G).

3 Validation Phase

In the light of the experiments in [19], the learning phase described in the
previous section is very competitive. However, when the learning data are as
scarce, noisy and complex as gene expression data are, the best locally optimal
model discovered in the learning phase may not be reliable, because the learn-
ing data may lack the power to discriminate between those locally optimal
models that are close to the set of independencies in the sampled probability
distribution and those that are not. Therefore, validating the model learnt is
of much importance. Our proposal for validating it consists of two main steps.
First, extraction of relevant features from the model. Second, assessment of
the confidence in the features extracted. The higher the confidence in these
features, the more believable or valid the model is. The following sections
describe these two steps.

3.1 Feature Extraction

First of all, we need to adopt a model representation scheme that allows in-
teresting features to be extracted. Representing a model by a DAG does not

4 To be exact, GES is a two-phase algorithm that first uses only UIB(M(G)) and,
then, only LIB(M(G)). KES (k = 1) corresponds to a variant of GES described
in [5] that uses IB(M(G)) in each step.
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seem appropriate here, because there may be many representative DAGs of
the model. A completed acyclic partially directed graph (CPDAG) provides,
on the other hand, a canonical representation of a model. A CPDAG rep-
resents a model by summarizing all its representative DAGs: The CPDAG
contains the directed edge X → Y if X → Y exists in all the representa-
tive DAGs, while it contains the undirected edge X–Y if X → Y exists in
some representative DAGs and Y → X in some others. See [5] for an efficient
procedure to transform a DAG into its corresponding CPDAG.

We pay attention to four types of features in a CPDAG: Directed edges,
undirected edges, directed paths, and Markov blanket neighbors. Two nodes
are Markov blanket neighbors if there is an edge between them or if they have
a child in common. We focus on these types of features because they sug-
gest relevant features of the probability distribution of the learning data. A
directed or undirected edge suggests an unmediated dependence. A directed
path suggests a causal pathway because it appears in all the representative
DAGs of the model. Finally, the Markov blanket neighborhood of a random
variable suggests the minimal set of predictors of the probability distribution
of the random variable, because the Markov blanket neighborhood is the min-
imal set conditioned on which the random variable is independent of the rest
of random variables.

3.2 Confidence Assessment

Despite the fact that the different locally optimal models discovered in the
learning phase disagree in some features, we expect them to share some oth-
ers. In fact, the more strongly the learning data support a feature, the more
frequently it should appear in the different locally optimal models found. Like-
wise, the more strongly the learning data support a feature, the higher the
likelihood of the feature being true in the probability distribution that gener-
ated the learning data. This leads us to assess the confidence in a feature as
the fraction of models containing the feature out of the different locally opti-
mal models obtained in the learning phase. Note that we give equal weight to
all the models available, no matter their scores. Alternatively, we could weight
each model by its score. We prove below that this approach to confidence esti-
mation is asymptotically correct under the faithfulness assumption. We show
in Sect. 4 that it is accurate for finite samples as well.

Theorem 2. Given a fully observed i.i.d sample from a probability distribu-
tion faithful to a DAG G, the features in M(G) asymptotically receive confi-
dence equal to one and the rest equal to zero.

Proof. Under the conditions of the theorem, KES asymptotically returns
M(G) owing to Theorem 1. ("
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3.3 Validity Assessment

Let M∗ denote the best locally optimal model found in the learning phase.
Deciding on the validity of M∗ on the basis of the confidence values scored by
its features may be difficult. We suggest a sensible way to ease making this
decision. We call true positives (TPs) to the features in M∗ with confidence
value equal or above a given threshold value t. Likewise, we call false positives
(FPs) to the features not in M∗ with confidence value equal or above t, and
false negatives (FNs) to the features in M∗ with confidence value below t.
In order to decide on the validity of M∗, we propose studying the trade-off
between the number of FPs and FNs for each type of features under study as a
function of t. The fewer FPs and FNs for high values of t, the more believable
or valid M∗ is. In other words, we trust M∗ as a valid model of the probability
distribution of the learning data if the features in M∗ receive high confidence
values, while the features not in M∗ score low confidence values. Note that we
treat on equal basis FPs and FNs. Alternatively, we can attach different costs
to them according to our preferences, e.g. we may be less willing to accept
FPs than FNs. The following property follows directly from Theorem 2.

Theorem 3. Given a fully observed i.i.d sample from a probability distribu-
tion faithful to a DAG G, the number of FPs and FNs is asymptotically zero
for any t > 0.

Therefore, our framework for learning from data and validating BN models
of GNs is asymptotically correct under the faithfulness assumption, i.e. the
learning phase always returns the true model (Theorem 1) and the validation
phase always confirms its validity (Theorem 3). We note that, although the
faithfulness assumption may not hold in practice, the theorems above are
desirable properties for any work on BN model validation to have.

4 Evaluation on Synthetic Data

We have proven in Theorems 2 and 3 that our approach to confidence esti-
mation is asymptotically correct under the faithfulness assumption. We now
show that it is also accurate for finite samples under the faithfulness assump-
tion. The database used in the evaluation is the Alarm database [16]. This
database consists of 20000 cases sampled from a BN model representing po-
tential anesthesia problems in the operating room. The CPDAG of the BN
model sampled has 37 nodes and 46 edges, and each node has from two to
four states. We perform experiments with samples of sizes 1 %, 2 %, 5 %, 10
%, 25 %, 50 % and 100 % of the Alarm database. The results reported are
averages over five random samples of the corresponding size.

The setting for the evaluation is as follows. We consider KES (k =
0.6, 0.8, 0.9) with BIC as the scoring criterion. We avoid values of k close
to 0 so as to prevent convergence to poor locally optimal models [19]. For
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each sample in the evaluation, we first run KES 1000 independent times and
use the different locally optimal models discovered to estimate the confidence
in the features of interest, i.e. directed edges, undirected edges, directed paths,
and Markov blanket neighbors. We give equal weight to all the models used
for confidence estimation. Then, we compute the trade-off between the num-
ber of FPs and FNs for each type of features under study as a function of the
threshold value t. We treat equally FPs and FNs when computing the trade-
off. Unlike in Sect. 3.3, FPs and FNs are calculated with respect to the true
model so as to assess the accuracy of our method for confidence estimation.

We report results for k = 0.8 and omit the rest because they all lead to
the same conclusions. Out of the 1000 independent runs of KES performed for
each of the samples in the evaluation, we obtained an average of 203 different
locally optimal models for the sample size 1 %, 233 for 2 %, 161 for 5 %,
115 for 10 %, 119 for 25 %, 85 for 50 %, and 70 for 100 %. We note that
the number of different locally optimal models obtained decreases as the size
of the learning data increases, which is expected because Theorem 1 applies.
Figure 1 shows the trade-off curves between the number of FPs and FNs as a
function of the threshold value t. We note that the CPDAG of the true model
has 42 directed edges, 4 undirected edges, 196 directed paths, and 65 Markov
blanket neighbors. We do not report trade-off curves for undirected edges
because they are difficult to visualize as there are only four undirected edges
in the true model. Instead, the trade-off curves in Fig. 1 (top) summarize the
number of FPs and FNs for both directed and undirected edges. The shape of
the trade-off curves for the three types of features, concave down and closer
to the horizontal axis (FNs) than to the vertical axis (FPs), indicates that our
method for confidence estimation is reliable: For all the sample sizes except
1 %, there is a wide range of values of t such that (i) the number of TPs is
higher than the number of FNs, and (ii) the number of FNs is higher than the
number of FPs. For the sample size 1 %, these observations are true only for
Markov blanket neighbors, which indicates that these features are easier to
learn. This makes sense as Markov blanket neighbors are less sensitive than
the other types of features to whether the edge between two nodes is directed
or undirected. The trade-off curves in the figure also show that the number
of FPs and FNs decreases as the size of the learning data increases, which is
expected because Theorem 3 applies. In particular, when setting t to the value
that minimizes the sum of FPs and FNs for the sample size 100 %, there are
1 FP and 1 FN (45 TPs) for edges (t = 0.45), 1 FP and 10 FNs (186 TPs) for
directed paths (t = 0.6), and 0 FPs and 3 FNs (62 TPs) for Markov blanket
neighbors (t = 0.7). Figure 2 depicts the TP and FP edges for the sample size
100 % when t = 0.45, 0.95. Recall that t = 0.45 is the threshold value that
minimizes the sum of FPs and FNs for edges and that it implies 1 FP and 1
FN (45 TPs). The FN edge 12→ 32 is reported in [6] to be not supported by
the data. When t = 0.95, there are 0 FPs and 17 FNs (29 TPs). Therefore,
our method for confidence assessment assigns to a considerable amount of
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Fig. 1. Trade-off between the number of FPs and FNs for the Alarm databases
(k = 0.8) at threshold values t = 0.05 ·r, r = 1, . . . , 20. Top, directed and undirected
edges. Middle, directed paths. Bottom, Markov blanket neighbors.
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Fig. 2. Directed and undirected edges for the Alarm database of size 100 % (k = 0.8)
when t = 0.45 (plain and bold edges) and when t = 0.95 (bold edges). Solid edges
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TPs higher confidence than to any FP. This is also true for directed paths
and Markov blanket neighbors as can be seen in Fig. 1 (middle and bottom).

5 Evaluation on Real Data

In this section, we evaluate the framework for learning from data and val-
idating BN models of GNs that we have proposed in Sects. 2 and 3. The
experimental setting is the same as in the previous section with the only ex-
ception that FPs and FNs are now calculated with respect to the best locally
optimal model found in the learning phase (recall Sect. 3.3). The data used
in the evaluation are the data in [14], which we call the Yeast database here-
inafter. This database consists of 320 records characterized by 33 attributes.
The records correspond to 320 samples of unsynchronized Saccharomyces cere-
visiae (baker’s yeast) populations observed under different experimental con-
ditions.5 The first 32 attributes of each record represent the expression levels
of 32 genes involved in yeast pheromone response. This pathway plays an
essential role in the sexual reproduction of yeast. The last attribute of each
record, named MATING TYPE, indicates the mating type of the strain of
yeast in the corresponding sample, either MATa or MATα, as some of the
32 genes measured express only in strains of a specific mating type. Gene
expression levels are discretized into four states. We refer the reader to [14]
for details on the data collection and preparation process. Table 1 reproduces
the description of the 32 genes in the database that is given in [14]. The

5 Yeast is extensively studied in molecular biology and bioinformatics because it is
considered an ideal organism: It is quick and easy to grow, and it provides insight
into the workings of other organisms, including humans.
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Table 1. Top, description of the 32 genes in the Yeast database. The genes are di-
vided into functional groups according to the current knowledge of yeast pheromone
response. Each group has a different color assigned. Bottom, description of the
groups of genes.

Gene Group Function of the protein encoded by the gene

STE2 Magenta Transmembrane receptor peptide
MFA1 Magenta a-factor mating pheromone
MFA2 Magenta a-factor mating pheromone
STE6 Magenta Responsible for the export of a-factor from MATa cells
AGA2 Magenta Binding subunit of a-agglutinin complex, involved in cell-cell adhesion

during mating by binding Sag1
BAR1 Magenta Protease degrading α-factor
STE3 Red Transmembrane receptor peptide
MFALPHA1 Red α-factor mating pheromone
MFALPHA2 Red α-factor mating pheromone
SAG1 Red Binding subunit of α-agglutinin complex, involved in cell-cell adhesion

during mating by binding Aga2 (also known as Agα1)
FUS3 Blue Mitogen-activated protein kinase (MAPK)
STE12 Blue Transcriptional activator
FAR1 Blue Substrate of Fus3 that leads to G1 arrest, known to bind to STE4 as

part of complex of proteins necessary for establishing cell polarity
required for shmoo formation after mating signal has been received

FUS1 Blue Required for cell fusion during mating
AGA1 Blue Anchor subunit of a-agglutinin complex, mediates attachment of Aga2

to cell surface
GPA1 Green Component of the heterotrimeric G-protein (Gα)
STE4 Green Component of the heterotrimeric G-protein (Gβ)
STE18 Green Component of the heterotrimeric G-protein (Gγ)
STE7 Yellow MAPK kinase (MAPKK)
STE11 Yellow MAPKK kinase (MAPKKK)
STE5 Yellow Scaffolding peptide holding together Fus3, Ste7 and Ste11 in a large

complex
KSS1 Orange Alternative MAPK for pheromone response (in some dispute)
STE20 Orange p21-activated protein kinase (PAK)
STE50 Orange Unknown function but necessary for proper function of Ste11
SNF2 Brown Implicated in induction of numerous genes in pheromone response path-

way (component of SWI-SNF global transcription activator complex)
SWI1 Brown Implicated in induction of numerous genes in pheromone response path-

way (component of SWI-SNF global transcription activator complex)
SST2 White Involved in desensitization to mating pheromone exposure
KAR3 White Essential for nuclear migration step of karyogamy
TEC1 White Transcriptional activator believed to bind cooperatively with Ste12 (mo-

re active during induction of filamentous or invasive growth response)
MCM1 White Transcription factor believed to bind cooperatively with Ste12 (more

active during induction of pheromone response)
SIN3 White Implicated in induction or repression of numerous genes in pheromone

response pathway
TUP1 White Implicated in repression of numerous genes in pheromone response

pathway

Group Description of the group

Magenta Genes expressed only in MATa cells
Red Genes expressed only in MATα cells
Blue Genes whose promoters are bound by Ste12
Green Genes coding for components of the heterotrimeric G-protein complex
Yellow Genes coding for core components of the signaling cascade (except FUS3 which is

in the group Blue)
Orange Genes coding for auxiliary components of the signaling cascade
Brown Genes coding for components of the SWI-SNF complex
White Others
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description is based on [7; 8; 22]. The table also divides the genes into groups
according to their function in the domain under study.

We first report the results of the learning phase. Out of the 1000 indepen-
dent runs of KES performed for each value of k considered in the evaluation,
we obtained 967 different locally optimal models for k = 0.6, 330 for k = 0.8,
and 159 for k = 0.9. In the three cases, the best model found was the same.
Figure 3 (top) shows its CPDAG. We remark that the graph in the figure does
not intend to represent the biological or physical GN, but the (in)dependencies
in it. We note that all the edges in the CPDAG are undirected, meaning that
each edge appears in opposite directions in at least two representative DAGs
of the model. As a matter of fact, none of the CPDAGs of the different locally
optimal models obtained in the 3000 runs of KES performed has directed
edges. This reduces the types of features to study hereinafter to only two:
Undirected edges and Markov blanket neighbors. However, when there is not
any directed edge in a CPDAG, two nodes are Markov blanket neighbors if
and only if they are connected by an undirected edge. Therefore, we only pay
attention to undirected edges hereinafter.

We now discuss the results of the validation phase. Figure 3 (bottom left)
shows the trade-off between the number of FPs and FNs for undirected edges
as a function of the threshold value t. We note that the CPDAG of the best
model found in the learning phase has 32 undirected edges. As can be appre-
ciated from the figure for each value of k considered in the evaluation, FNs
only happen for high values of t, while FPs only occur for low values of t.
Therefore, TPs receive substantially higher confidence values than FPs. For
k = 0.8, for instance, no TP scores lower than 0.60, while no FP scores higher
than 0.25. These observations support the validity and meaningfulness of the
best model discovered in the learning phase. Figure 3 (bottom right) depicts
the undirected edges for k = 0.8 when t = 0.60, 0.90. We note that all the
edges in the figure are TPs. As a matter of fact, there are 0 FPs and 0 FNs
(32 TPs) for t = 0.60, and 0 FPs and 11 FNs (21 TPs) for t = 0.90. The
figures for k = 0.6, 0.9 are similar to the one shown. We omit them for the
sake of readability.

It is worth mentioning that we repeated the experiments in this section
with a random database created by randomly reshuffling the entries of each
attribute in the Yeast database. In such a database, we did not expect to find
features scoring high confidence values. As a matter of fact, no edge was added
in any of the 3000 runs of KES performed. This leads us to believe that the
results presented above are not artifacts of the learning and validation phases
but reliable findings. We give below further evidence that the (in)dependencies
in the best model induced in the learning phase are consistent with the existing
knowledge of yeast pheromone response. This somehow confirms the results
of the validation phase, namely that the best model obtained in the learning
phase is reliable.

We first discuss consistency with respect to the knowledge in Table 1.
Magenta-colored genes are marginally dependent one on another as well as on
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MATING TYPE. Moreover, no gene from other group mediates these depen-
dencies. Likewise, red-colored genes are marginally dependent one on another
as well as on MATING TYPE, and no gene from other group mediates these
dependencies. These observations are consistent with the fact that magenta-
colored genes express only in MATa cells, while red-colored genes express only
in MATα cells. This also supports the fact that MATING TYPE is the only
node that mediates between magenta and red-colored genes. Green-colored
genes are marginally dependent one on another, and no gene from other
group mediates these dependencies. These observations are consistent with
the fact that green-colored genes code for components of the heterotrimeric
G-protein complex. Yellow-colored genes are marginally dependent one on
another, which is consistent with these genes coding for core components of
the signaling cascade. While STE5 and STE7 are adjacent, two green-colored
genes (GPA1 and STE18) mediate between them and STE11. A similar re-
sult is reported in [14]. The authors conjecture that this finding may indicate
common or serial regulatory control between green and yellow-colored genes.
Orange-colored genes are marginally dependent one on another, which is con-
sistent with the fact that they code for auxiliary components of the signaling
cascade. Only TUP1 mediates these dependencies, specifically orange-colored
genes are independent one of another given TUP1. As a matter of fact, TUP1
has the highest number of adjacencies in the model, which is consistent with
its role as repressor of numerous genes in pheromone response pathway. We
note that several nodes mediate between the core (yellow-colored) and the
auxiliary (orange-colored) components of the signaling cascade. This agrees
with [14]. The authors suggest that this finding may indicate that these two
groups of genes have different regulatory mechanisms. Brown-colored genes
are marginally dependent one on another, which is consistent with these genes
coding for components of the SWI-SNF complex. However, TUP1 and STE20
mediate this dependency. A similar result is reported in [14]. Blue-colored
genes are marginally dependent one on another, which is consistent with the
promoters of these genes being bound by Ste12. However, several other genes
mediate these dependencies.

We now discuss further evidence that does not appear in Table 1. The
edges STE2–STE6, STE3–SAG1, and SST2–AGA1 are consistent with the
genes connected by each edge being expressed similarly and being cell cycle-
regulated [26]:6 STE2 and STE6 peak at the M phase, while the rest of the
genes peak at the M/G1 transition. Likewise, the genes connected by each
of the edges MFALPHA2–STE3, MFA1–AGA2, and FAR1–TEC1 are also
substantially correlated as well as cell cycle-regulated [26], though they do

6 The cell cycle is the sequence of events by which the cell divides into two daughter
cells and, thus, it is the biological basis of life. The cell cycle is divided into four
main phases: G1, S, G2 and M. In G1 and G2, the cell grows and prepares to
enter the next phase, either S or M. In S, the DNA is duplicated. In M, the actual
cell division happens.
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k = 0.6 k = 0.8 k = 0.9
t FPs FNs FPs FNs FPs FNs

1.00 0 30 0 25 0 22
0.95 0 22 0 15 0 12
0.90 0 17 0 11 0 10
0.85 0 12 0 8 0 7
0.80 0 11 0 6 0 3
0.75 0 8 0 2 0 1
0.70 0 5 0 1 0 1
0.65 0 2 0 1 0 1
0.60 0 1 0 0 0 0
0.55 0 1 0 0 0 0
0.50 0 0 0 0 0 0
0.45 0 0 0 0 0 0
0.40 0 0 0 0 0 0
0.35 0 0 0 0 0 0
0.30 1 0 0 0 0 0
0.25 6 0 0 0 0 0
0.20 9 0 4 0 2 0
0.15 11 0 7 0 6 0
0.10 17 0 11 0 10 0
0.05 25 0 18 0 14 0

Fig. 3. Top, CPDAG of the best model learnt from the Yeast database (k = 0.8).
Bottom left, trade-off between the number of FPs and FNs for undirected edges for
the Yeast database at threshold values t = 0.05 · r, r = 1, . . . , 20. Bottom right,
undirected edges for the Yeast database (k = 0.8) when t = 0.60 (solid and dashed
edges) and when t = 0.90 (solid edges). Nodes are colored with the color of the
functional group they belong to in Table 1.
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not peak at the same phase of the cell cycle (MFALPHA2 and MFA1 peak
at the G1 phase, FAR1 at the M phase, and STE3, AGA2 and TEC1 at the
M/G1 transition). The edge STE6–FAR1 is consistent with these genes being
cell cycle-regulated, both peaking at the M phase [26]. The edge TUP1–MCM1
is consistent with the fact that these genes interact in the cell [13].

Finally, it is worth mentioning that most of the edges scoring high confi-
dence values in the validation phase are supported by the existing knowledge
of yeast pheromone response. For instance, most edges in Fig. 3 (bottom right)
with confidence values equal of above 0.90 have been discussed in the para-
graphs above. Therefore, we can conclude that the framework proposed in this
paper for learning from data and validating BN models of GNs is accurate and
reliable: The learning phase has produced a model that is consistent with the
existing knowledge of the domain under study, and the validation phase has
confirmed, independently of the existing knowledge, that the model is indeed
meaningful.

6 Discussion

There exist numerous works showing that a BN model induced from gene ex-
pression data can provide accurate biological insight into the GN underlying
the data [1; 9; 12; 14; 17; 20; 21; 23]. This work is yet another example. How-
ever, learning BN models from data is a challenging problem (NP-complete
and highly multimodal), specially if the learning data are as scarce and noisy
as gene expression data are. For these reasons, any BN model of a GN ob-
tained from gene expression data must be biologically validated before being
accepted. Validating the model through biological experiments is expensive
and, thus, the validation step typically reduces to checking whether the model
agrees with the existing biological knowledge of the domain under study. Un-
fortunately, this way of proceeding condemns models providing true but new
biological insight to be rejected. In this paper, we suggest a solution to this
problem: We propose a method for checking whether the model learnt is statis-
tically reliable, independently of the existence of biological knowledge. If the
model fails to be reliable as a whole, we can instead report the features that
are reliable, which are usually very informative. As a matter of fact, some of
the works cited above focus on learning features with confidence value above
a given threshold rather than on model selection [12; 14; 20]. A major limita-
tion of this approach is that, in general, a set of features does not represent
a (global) model of the probability distribution of the learning data but a
collection of (local) patterns, because each feature corresponds to a piece of
local information. Therefore, the reasoning about the (in)dependencies of the
probability distribution of the learning data that a set of features allows is
much less powerful than that of a model, e.g. a model can be queried about
any (in)dependence statement but a set of features cannot. For this reason,
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we prefer our framework for model selection and validation and, only if the
model selected does not pass the validation phase, we report features.

The works on learning features cited above use the methods in [10; 14]
to estimate the confidence in a feature. See [11] for yet another interesting
method. Like our method, these methods assess the confidence in a feature as
the fraction of models containing the feature out of a set of models. However,
they differ from our method in how this set of models is obtained. In [10] it
is obtained by running a greedy hill-climbing search on a series of bootstrap
samples of the learning data, in [11] by Markov chain Monte Carlo simulation,
and in [14] by selecting the highest scoring models visited during a simulated
annealing search. No proof of asymptotic correctness is reported for any of
these methods. We have proven that our method is asymptotically correct
under the faithfulness assumption. The key in the proof is that our algorithm
for model selection uses the inclusion boundary neighborhood, which takes
into account all the representative DAGs of the current best model to produce
the neighboring models. This is a major difference with the works on learning
BN models of GNs cited at the beginning of this section, which use classical
neighborhoods based on local transformations (single edge additions, removals
and reversals) of a single representative DAG of the current best model. The
inclusion boundary neighborhood outperforms the classical neighborhoods in
practice without compromising the runtime, because it reduces the risk of
getting stuck in a locally but not globally optimal model [3]. Moreover, unlike
the classical neighborhoods, the inclusion boundary neighborhood allows to
develop asymptotically optimal algorithms for model selection [3; 5; 19].

We are currently engaged in two lines of research. First, we are interested
in replacing the faithfulness assumption by a weaker assumption such as the
composition property assumption. Second, we would like to use the results
of the validation phase to design informative gene perturbations, gather new
data, and refine the models obtained in the learning phase accordingly. We
hope that by influencing the data collection process we will reduce the amount
of data required for learning a reliable model. This is important given the high
cost of gathering gene expression data. Moreover, combining observational and
interventional data will also provide insight into the causal relations in the
GN under study.
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