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Abstract

We study cross-validation as a scoring criterion for learning dynamic Bayesian network models that generalize well.

We argue that cross-validation is more suitable than the Bayesian scoring criterion for one of the most common inter-

pretations of generalization. We confirm this by carrying out an experimental comparison of cross-validation and the

Bayesian scoring criterion, as implemented by the Bayesian Dirichlet metric and the Bayesian information criterion.

The results show that cross-validation leads to models that generalize better for a wide range of sample sizes.

� 2005 Elsevier B.V. All rights reserved.
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1. Motivation

Let X t ¼ fX t
1; . . . ;X

t
Ig denote a set of I discrete

random variables that represents the state of a tem-

poral process at a discrete time point t. A dynamic

Bayesian network (DBN) is a pair (G,h) that

models the temporal process by specifying a proba-
bility distribution forX0, . . . ,XT,p(X0, . . . ,XTjG,h)
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(Friedman et al., 1998; Neapolitan, 2003). The first

component of the DBN, G, is an acyclic directed

graph (DAG) whose nodes correspond to the ran-

dom variables in X0 and X1. Edges from X1 to X0

are not allowed because they do not conform with

the arrow of time. The second component of the

DBN, h, is a set of parameters specifying a condi-
tional probability distribution for each node X t

i in

G given its parents PaðX t
iÞ in G, pðX t

ijPaðX t
iÞ;G; hÞ.

In this paper, all these conditional probability dis-

tributions are multinomial, which is the most com-

mon choice. We call G the (DBN) model and h the
ed.

mailto:jmp@ifm.liu.se


1 For instance, all those papers that measure the generaliza-

tion ability of a model as the cross-entropy or log-loss of the

model after plugging the ML or MAP parameters into it agree

with our interpretation of generalization.
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(DBN) parameters. A DBN represents

p(X0, . . . ,XTjG,h) through the factorization

pðX 0; . . . ;XT jG; hÞ ¼
YT
t¼0

YI
i¼1

pðX t
ijPaðX t

iÞ;G; hÞ;

ð1Þ

where PaðX t
iÞ ¼ fX t�1

j jX 0
j 2 PaðX 1

i Þg [ fX t
jjX 1

j 2
PaðX 1

i Þg and pðX t
ijPaðX t

iÞ;G; hÞ ¼ pðX 1
i jPaðX 1

i Þ;G;
hÞ for t > 1. Note that we implicitly assume that

X 0
i ; . . . ;X

T
i have all the same set of possible values.

Note also that our definition of DBNs constrains

the temporal processes that can be modelled to

be both first-order Markov, i.e. p(XtjX0, . . . ,Xt�1,

G,h) = p(XtjXt�1,G,h), and stationary, i.e. p(Xtj
Xt�1,G,h) is the same for all t. These constraints

can be easily removed. However, they are com-

monly adopted because they reduce the complexity

of the DBNs under consideration, which can be
otherwise overwhelming, particularly for large val-

ues of T (Friedman et al., 1998; Neapolitan, 2003).

Learning a DBN model from data aims to find

the best model of the unknown probability distri-

bution underlying the temporal process on the

basis of a random sample of finite size, i.e. the

learning data. The goodness of a model is evalu-

ated with the help of a scoring criterion, which
represents our preferences for the models. Let

D = {D1, . . .,DS} denote the learning data, which

consists of S independent and identically distrib-

uted time series. Each Ds specifies values for the

random variables X 0; . . . ;XTs . The Bayesian scor-

ing criterion (BSC) is probably the most com-

monly used scoring criterion. The BSC value of a

model G given the learning data D is defined as

log pðD;GÞ ¼ log pðDjGÞ þ log pðGÞ. ð2Þ
For simplicity, p(G) is usually assumed to be

uniform. In this paper, we make this assumption

as well. Thus, BSC is equivalent to log pðDjGÞ.
This means that BSC scores the likelihood of

G having generated D. According to Chickering
and Heckerman (2000), BSC can also be inter-

preted as follows. From the chain rule of probabil-

ity, we have

log pðDjGÞ ¼
XS

s¼1

log pðDsjD1; . . . ;Ds�1;GÞ; ð3Þ
where p(DsjD1, . . . ,Ds�1,G) represents the predic-

tive accuracy of G for Ds given D1, . . . ,Ds�1 after

averaging over h. The log in front of p(DsjD1, . . . ,
Ds�1,G) can be thought of as the utility function

for prediction. Thus, BSC scores the accuracy of
G as a sequential predictor of D under the log util-

ity function. This means that BSC summarizes not

only how well a model fits the learning data but

also how well it generalizes to unseen data. Scoring

the generalization ability of the models is crucial

because it prevents overfitting and, thus, guaran-

tees a good approximation to the unknown prob-

ability distribution of the temporal process that
generated the learning data.

In this paper, we aim to learn DBN models that

generalize well. We interpret the generalization

ability of a model G as the expected predictive

accuracy for the next time series, DS+1, after plug-

ging the maximum likelihood (ML) or maximum a

posteriori (MAP) parameters obtained from D, ĥ,
into G, i.e. E½log pðDSþ1jG; ĥÞ�. As in BSC, we con-
sider the log utility function. This is a very com-

mon interpretation of the generalization ability

of a model1 but, unfortunately, BSC does not fully

conform to it for the following three reasons,

which have been previously discussed in (Chicker-

ing and Heckerman, 2000). First, we are interested

in the predictive accuracy for DS+1 given the S

time series already seen, i.e. D. In contrast, BSC
combines the accuracy of predictions based on

0,1,2, . . . ,S � 1 time series, i.e. all the predictions

are based on less than S time series and some of

them in many less than S. Second, we are inter-

ested in the expected predictive accuracy for

DS+1 because DS+1 is unknown. In contrast, BSC

combines the accuracy of predictions for known

time series, i.e. Ds is known when making the pre-
diction based on D1, . . . ,Ds�1. Third, we are inter-

ested in the predictive accuracy after plugging ĥ
into G. In contrast, BSC averages the predictive

accuracy over all the possible values of h. Conse-
quently, BSC is not fully in line with our prefer-
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ences for the models. As we will see, this substan-

tially harms generalization.

Unfortunately, the exact evaluation of

E½log pðDSþ1jG; ĥÞ� is computationally unfeasible

in all but small domains, because it implies sum-
ming over all DS+1 and all G. That is

E½logpðDSþ1jG; ĥÞ�
¼
X
DSþ1

pðDSþ1jDÞ logpðDSþ1jG; ĥÞ

¼
X
DSþ1

X
G

pðGjDÞpðDSþ1jD;GÞ
" #

logpðDSþ1jG; ĥÞ.

ð4Þ

In this paper, we propose K-fold cross-valida-

tion (CV) as a computationally feasible scoring cri-

terion for learning DBN models that generalize

well under our interpretation of generalization.

The CV value of a model G given the learning data
D is computed as follows. First, D is randomly

split into K mutually exclusive subsets or folds

D1, . . . ,DK of approximately equal size. Then, the

predictive accuracy of G for Dk after plugging

the ML or MAP parameters obtained from DnDk,

ĥ
k
, into G, i.e. log pðDkjG; ĥkÞ, is calculated for all

k. Finally, the CV value of G given D is computed

as

1

S

XK
k¼1

log pðDkjG; ĥkÞ. ð5Þ

CV is intended to estimate E½log pðDSþ1jG; ĥÞ�.
Obviously, CV departures from this aim in that

it combines the accuracy of predictions based on

less than S time series. We believe that this is a

minor departure if K is large enough. Thus, we
hypothesize that CV complies better than BSC

with our interpretation of the generalization abil-

ity of a model. The experimental results that we re-

port in Section 2 confirm this hypothesis: CV leads

to models that generalize better than those ob-

tained by BSC for a wide range of sample sizes.

It is worth mentioning that, in the experiments,

we consider two implementations of BSC: On
one hand, the Bayesian Dirichlet metric (BD)

(Friedman et al., 1998; Heckerman et al., 1995)

which calculates BSC exactly and, on the other

hand, the Bayesian information criterion (BIC)
(Friedman et al., 1998; Schwarz, 1978) which is

an asymptotic approximation to BSC. CV outper-

forms both implementations of BSC.

The remaining two sections of this paper are de-

voted to the experimental comparison of CV and
BSC, and to the discussion of this and related

works.
2. Experiments

In this section, we evaluate CV as a scoring cri-

terion for learning DBN models that generalize
well. We use BSC (BD and BIC implementations)

as benchmark. All the experiments involve data

sampled from known DBNs. This enables us to as-

sess the topological accuracy of the models learnt,

in addition to their generalization ability. We first

describe the experimental setting.

2.1. Experimental setting

All the learning databases in the experiments

involve between 20 and 40 nodes. This prohibits

performing an exhaustive search for the highest

scoring model and, thus, we turn to heuristics.

Specifically, we use a greedy hill-climbing search:

We start from the empty graph and, gradually, im-

prove it by applying the highest scoring single edge
addition or removal available. This is a popular

search strategy due to its simplicity and good per-

formance (Friedman et al., 1998; Heckerman et al.,

1995).

The version of CV that we use in the experi-

ments is 10 times 10-fold cross-validation, i.e. we

average 10 runs of 10-fold cross-validation with

different folds in each run. The folds are the same
for all the models evaluated. This setting guaran-

tees a good replicability of the results (Bouckaert,

2003; Kohavi, 1995). It is worth mentioning that

CV shares two important properties with BD

and BIC. First, CV decomposes into local scores,

one for each node and its parents. This means that

scoring an edge addition or removal in the greedy

hill-climbing search requires computing a single
local score. Second, all the sufficient statistics re-

quired in each evaluation of CV can be computed

in a single pass of the learning data at the expense
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of storage space. This is typically the most time

consuming step in the evaluation of CV, BD and

BIC.

CV prevents overfitting by recommending the

addition of only those edges that seem to be bene-
ficial for generalization. This excludes the vast

majority of false positive edges. However, a con-

siderable number of false positive edges can still

get recommended just by chance due to the noisy

and/or finite nature of the learning data. Solving

this problem is crucial for CV to be a competitive

scoring criterion. The overfitting problem of CV

has been previously noticed in (Hofmann and
Tresp, 1998; Ng, 1997). Despite these works are

not concerned with learning DBN models from

data, their arguments are general and apply to this

task as well. In (Hofmann and Tresp, 1998), the

authors suggest that overfitting occurs due to the

large variance of CV and propose solving it by

adding a penalty to CV. The penalty is up to the

user as the authors do not provide any principled
method for setting it. In (Ng, 1997), the author

claims that overfitting occurs due to testing too

many hypotheses, which in our context means test-

ing too many edge additions, and proposes an

algorithm to solve it. The algorithm discards the

best scoring hypotheses due to the risk of overfit-

ting and returns the next best one.

In this paper, we propose solving the overfitting
problem of CV in a new and principled way. We

modify the greedy hill-climbing search so as to

add an edge only if it significantly improves the

CV value of the model. In order to decide upon

the significance of the improvement in CV for an

edge addition, we propose carrying out a hypo-

thesis test with the improvement in CV as the test

statistic and under the null hypothesis that the
improvement is just by chance due to the noisy

and/or finite nature of the learning data and, thus,

the edge should not be added to the model. As we

do not know an analytical expression of the prob-

ability distribution for the test statistic under the

null hypothesis, we empirically estimate it. To be

exact, we need to estimate one such probability dis-

tribution for each edge that can be added to the
model. To keep it simple, we estimate the probabil-

ity distributions only at the beginning of the greedy

hill-climbing search, i.e. when the model is the
empty graph. This means that we disregard the

complexity of the model in the hypothesis tests.

Furthermore, if all the nodes in the learning data

have the same cardinality, then we only need to

estimate a single probability distribution at the
beginning of the search. This is the case in our

experiments. Specifically, we empirically estimate

the probability distribution for the test statistic

under the null hypothesis from the improvement

in CV scored by 10,000 false positive edge additions

to the empty graph that we obtain as follows. First,

we replace the values in the learning data with uni-

formly drawn values and, then, compute the
improvement in CV for every possible edge addi-

tion to the empty graph. Note that all these edges

are false positive. We repeat this process until we

gather the improvement in CV for 10,000 false po-

sitive edges. We obtain the threshold for rejecting

the null hypothesis by first sorting the 10,000 CV

values in descending order and, then, picking the

(100 Æ a)th percentile where a is the significance
level. We use a = 0.001. As the results below show,

this somewhat crude solution works satisfactorily.

It is out of the scope of this paper to compare dif-

ferent solutions to the overfitting problem of CV.

The version of BD that we use in the experi-

ments is the so-called BDeu with an equivalent

sample size (ESS) of 1 (Friedman et al., 1998;

Heckerman et al., 1995). This is a popular choice
based on the results in (Heckerman et al., 1995).

For the sake of completeness, we also investigate

the effects of increasing ESS. In the experiments,

we always compute ĥ and ĥ
k
as the MAP parame-

ters obtained from D and DnDk, respectively. The

prior probability distribution over the parameters

is always the same as in BD. See Friedman et al.

(1998) and Heckerman et al. (1995) for details.

2.2. Experiments with random DBNs

The first set of experiments involves learning

databases of different sizes sampled from random

DBNs of different complexities. We consider four

model complexities: 20 three-valued nodes with

30 and 50 edges, and 40 three-valued nodes with
60 and 100 edges. We consider learning databases

that consist of S independent and identically dis-

tributed time series, S = 3, 5, 10, 25, 50, 100, 250,
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500, 1000. Each time series is of length 10, i.e. it

specifies values for X0, . . . ,X9. Therefore, we con-

sider learning databases of size 10 Æ S observations

for each node. For each combination of model

complexity and sample size, we generate 100 ran-
dom DBNs. The model of each of these DBNs is

obtained by adding edges to the empty graph such

that each edge links a uniformly drawn pair of

nodes. To keep it simple, all the edges go from X0

to X1. All the parameters are drawn uniformly

from [0, 1]. From each of these DBNs, we sample

a learning database of the corresponding size and

a testing database with 1000 time series of length
10. For each learning database D, we proceed as

follows. We run the greedy hill-climbing search de-

scribed above with CV, BD and BIC as the scoring

criterion. We assess the topological accuracy of

each model learnt G by computing its precision

and recall. Precision is the number of true positive

edges divided by the number of true and false posi-

tive edges, and it represents the purity of G. Recall
is the number of true positive edges divided by the

number of true positive and false negative edges,

and it represents the completeness of G. We assess
Fig. 1. Results of the experiments with the random
the generalization ability of G as log pðD0jG; ĥÞ,
whereD 0 is the testing database paired withD. This

quantity divided by the number of time series inD 0,

also known as log-loss, is commonly used as an

approximation of E½log pðDSþ1jG; ĥÞ�. For each
combination of model complexity and sample size,

we report the following performance measures. We

report the average difference in generalization abil-

ity between the 100 models learnt via CV and the

100 induced via BD (BIC). We denote these values

by CV�BD and CV�BIC. Positive values indicate

that CV is superior. We also report the average pre-

cision and recall of the models learnt via CV, BD
and BIC. We denote the precision values by p

CV, p BD and p BIC, and the recall values by r

CV, r BD and r BIC. Finally, we also report

whether the differences in the results of CV and

BD (BIC) are statistically significant or not. For

this purpose, we use the Wilcoxon test at a signifi-

cance level of 0.001. We denote statistical signifi-

cance by the symbol
p
.

Figs. 1–4 present the results of the experiments

for the four model complexities considered. The

table in each figure shows average and standard
DBNs of 20 three-valued nodes and 30 edges.



Fig. 2. Results of the experiments with the random DBNs of 20 three-valued nodes and 50 edges.

Fig. 3. Results of the experiments with the random DBNs of 40 three-valued nodes and 60 edges.

2300 J.M. Peña et al. / Pattern Recognition Letters 26 (2005) 2295–2308



Fig. 4. Results of the experiments with the random DBNs of 40 three-valued nodes and 100 edges.
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deviation values, while the graphs only show aver-

age values to help visualization. We exclude from

the graphs the sample sizes 30 and 50 because

some of their average values are too large to be

plotted without making the rest unreadable.

Clearly, the models learnt via CV generalize better

than those induced via BD and BIC. Specifically,

CV significantly outperforms BD (BIC) in 32
(33) of the 36 combinations of model complexity

and sample size in the evaluation, while BD

(BIC) significantly outperforms CV in only one

(zero). The precision and recall values clearly indi-

cate that CV, BD and BIC lead to very different

models. For the sample sizes smaller than 100,

the models learnt via CV score similar low preci-

sion but lower recall than those induced by BD
and BIC. This means that all the models learnt

contain a considerable number of false positive

edges, particularly those obtained by BD and

BIC. These edges harm generalization, particularly

for the models obtained by BD and BIC because

they contain more false positive edges than those

induced via CV. It is certain that the precision

and recall values reported for the sample sizes
smaller than 100 also mean that the models learnt

by BD and BIC contain more true positive edges

than those obtained via CV. However, these edges

confer a limited advantage regarding generaliza-

tion because the corresponding parameters cannot

be estimated accurately from such small sample

sizes. For the sample sizes larger than 100, the

models learnt via CV score similar high precision
but higher recall than those induced by BD and

BIC. This means that the models learnt hardly

contain false positive edges, and that the models

obtained by CV contain more true positive edges

than those obtained via BD and BIC. This confers

advantage regarding generalization to the models

learnt via CV. All these observations together lead

us to conclude that the models selected by CV are
very different from those selected via BD and BIC,

though all of them must be supported by the learn-

ing databases, otherwise they would not have been

selected. Thus, the reason why BD and BIC do not

lead to the same models as CV, though they are

supported by the learning databases and generalize

better, is because there is a mismatch between

learning and testing in the case of BD and BIC,
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i.e. the scoring criterion in the learning phase is not

fully in line with the scoring criterion in the testing

phase. This confirms our hypothesis in Section 1,

namely that CV complies better than BD and

BIC with our interpretation of generalization.
Some other conclusions that we obtain from

Figs. 1–4 follow. Increasing the ratio of the num-

ber of edges to the number of nodes in the model

sampled affects the results of CV, BD and BIC

more noticeably than increasing the number of

nodes while keeping the ratio constant. This is

not surprising because the higher the ratio, the

more complex the model sampled is. We note that
the performance of CV degrades less than that of

BD and BIC when the ratio is increased (compare

Fig. 1 with Figs. 2 and 3 with Fig. 4). It is also

worth mentioning that our results for BD and

BIC agree with those in (Moral, 2004): Both scor-

ing criteria produce a considerable number of false

positive edges for sample sizes smaller than 100,

while they produce a considerable number of false
negative edges for sample sizes larger than 100.

Finally, we note that BD and BIC should always

lead to the true models in our experiments in the

large sample limit (Chickering, 2002). Therefore,

CV cannot beat BD and BIC in the large sample

limit. Our experiments show that this theoretical

result can be of limited importance in practice:

CV outperforms BD and BIC for a wide range
of sample sizes. Reducing the amount of learning

data required to converge to the true model is very

important if gathering new data is expensive.

2.3. Experiments with yeast DBNs

We complement the previous section with some

experiments that involve a real-world DBN model.
A brief introduction to this model follows.

Much of a cell�s complex behavior can be ex-

plained through the concerted activity of genes

and gene products. This concerted activity is typi-

cally represented as a network of interacting genes

and gene products that we call regulatory network.

Identifying this network is crucial for understand-

ing the behavior of the cell which, in turn, can lead
to better diagnosis and treatment of diseases. This

is one of the most exciting challenges in computa-

tional biology. For the last few years, there has
been an increasing interest in learning DBN mod-

els of regulatory networks from data (Friedman

et al., 1998; Husmeier, 2003; Kim et al., 2003;

Murphy and Mian, 1999; Ong et al., 2002; Perrin

et al., 2003; Zou and Conzen, 2005). It is worth
mentioning that there also exist other models of

regulatory networks in the computational biology

literature, some are more coarse than DBN mod-

els, e.g. Boolean network models, and some are

less coarse, e.g. differential equation models. See

D�haeseleer et al. (2000) and Wessels et al. (2001)

for a review. All in all, the references above prove

that DBN models can provide valuable insight
into regulatory networks.

The second set of experiments in this paper in-

volves learning databases of different sizes sampled

from a partial model of the transcriptional regu-

latory network of Saccharomyces cerevisiae, i.e.

baker�s yeast. Yeast is typically the testing ground

for new algorithms in computational biology.

Specifically, we simulate the model in (Kauffman
et al., 2003), which is based on the findings in

(Lee et al., 2002). The model involves 30 transcrip-

tion factors and 56 interactions between them.

See Fig. 5 for a graphical representation of the

model. The nodes represent the transcription fac-

tors and the edges the interactions. An edge

Xi ! Xj should be read as X 0
i ! X 1

j in the lan-

guage of DBN models. At first glance, this model
seems to be of intermediate complexity compared

to the random DBNs in the previous section: All

the edges go from X0 to X1 as in the random

DBNs, it has 30 nodes while the random DBNs

had 20 and 40, and the ratio of the number of

edges to the number of nodes is 1.9 while it was

1.5 and 2.5 for the random DBNs. A closer look

reveals that the complexity of this model is in
the fact that some transcription factors have

many regulators, i.e. parents (up to 11 for

YAP6). Nodes with many parents were unlikely

to occur in the random DBNs. However, this is a

characteristic of many regulatory networks (Lee

et al., 2002).

We consider learning databases that consist of

S independent and identically distributed time ser-
ies, S = 3, 5, 10, 25, 50, 100, 250, 500, 1000. Each

time series is of length 10. Therefore, we consider

learning databases of size 10 Æ S measurements of
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Fig. 5. Partial model of the yeast transcriptional regulatory network. An edge Xi ! Xj should be read as X 0
i ! X 1

j in the language of

DBN models.
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the expression level of each of the 30 genes in the

model. For each sample size, we generate 100 yeast

DBNs. The model of each of these DBNs is the

one in Fig. 5. We assume that each node in the

model can take three possible values, correspond-

ing to the gene being up-regulated, down-regulated

and unchanged with respect to its expression level

in some control population, e.g. the previous time
point or the initial time point. All the parameters

are drawn uniformly from [0,1]. We note that

the true parameters are unknown in (Kauffman

et al., 2003; Lee et al., 2002), hence the sampling.

From each of these DBNs, we sample a learning

database of the corresponding size and a testing

database with 1000 time series of length 10. For

each learning database, we proceed as in the previ-
ous section. For each sample size, we report the
same performance measures as in the previous sec-

tion. We note that these experiments are not com-

pletely realistic, e.g. all the samples are free of

measurement noise and some are too large given

the present cost of the measurement technology.

In this paper, we aim to reach some general

conclusions. Thus, we disregard these domain-

specific issues which may, otherwise, bias our
conclusions.

Fig. 6 summarizes the results of the experi-

ments. They lead us to the same conclusions as

those in the previous section, namely that the mod-

els learnt via CV generalize better than those in-

duced via BD and BIC and that CV behaves

very differently from BD and BIC. Specifically,

CV significantly outperforms BD (BIC) in eight
(seven) of the nine sample sizes in the evaluation,



Fig. 6. Results of the experiments with the yeast DBNs when ESS is 1.
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while BD and BIC never outperform CV signifi-

cantly. This again confirms our hypothesis in

Section 1, namely that there is a mismatch bet-
ween learning and testing in the case of BD and

BIC.

We now study the effects of increasing ESS. Fig.

7 shows the results of the experiments when ESS

takes value 10. This is another commonly used

value based on the results in (Heckerman et al.,

1995). The most important observation that can

be made from the figure is that CV outperforms
both BD and BIC in this scenario as well. Specifi-

cally, CV significantly outperforms BD (BIC) in

nine (eight) of the nine sample sizes in the evalua-

tion, while BD (BIC) significantly outperforms CV

in zero (one). The behavior of BIC relative to CV

is consistent with that observed for ESS equal to 1.

However, the behavior of BD relative to CV

changes considerably from that of ESS equal to
1. The explanation is that increasing ESS reduces

the model regularization implicit in BD and, thus,

allows more edges to be added to the model (Steck

and Jaakkola, 2003) (compare the precision and

recall values of BD in Fig. 6 with those in Fig.
7). In our experiments, this degrades generaliza-

tion for the sample sizes smaller than 500 and im-

proves it for the rest, which suggests that BD has
an optimal ESS associated with each sample size.

This has been previously noticed in (Heckerman

et al., 1995; Steck and Jaakkola, 2003). We elabo-

rate on this issue with the help of Fig. 8, which

summarizes the results of the experiments for the

sample size 1000 when increasing ESS. The figure

reports the average generalization ability of the

models induced via CV and BD instead of the
average differences. We denote these values simply

by CV and BD. For this sample size, increasing

ESS up to 50 leads BD to models that generalize

better. Therefore, the optimal ESS for BD for this

sample size seems to be around 50. However, CV

significantly outperforms BD for this ESS too.

We believe that, even if the optimal ESS were

known in advance for any sample size, BD would
not beat CV because the argument of the mis-

match between learning and testing still applies

to BD. Moreover, our results warn that, while

increasing ESS can lead BD to models that gener-

alize better, these models can be very imprecise.



Fig. 8. Results of the experiments with the yeast DBNs when increasing ESS. The size of the learning data is 1000.

Fig. 7. Results of the experiments with the yeast DBNs when ESS is 10.
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Therefore, the assessment of ESS for BD remains

a sensitive issue. Note, on the other hand, the
robustness of CV in terms of precision and recall

across all the values of ESS considered.
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3. Discussion

BSC is probably the most commonly used scor-

ing criterion for learning DBN models from data.

Typically, BSC is regarded as scoring the likeli-
hood of a model having generated the learning

data. Alternatively, BSC can be seen as scoring

the accuracy of the model as a sequential predictor

of the learning data. This alternative view is inter-

esting because it reflects that BSC scores some sort

of generalization. In this paper, we are concerned

with a different interpretation of generalization,

namely the expected accuracy of the model for
the next time series after plugging the ML or

MAP parameters into the model. Therefore, BSC

is not fully in line with our interpretation of gener-

alization, though it is a popular one. This means

that the common practice of learning a model via

BSC, plugging the ML or MAP parameters into

it and, then, using it to predict the next time series

to be seen involves a mismatch between the pur-
pose the model was learnt for and the use that is

made of it. This can have negative consequences

for performance. In this paper, we propose cor-

recting this mismatch via CV. As the experimental

results reported show, this is an effective way of

solving the problem for a wide range of sample

sizes: CV leads to models that generalize better

than those induced by BSC (BD and BIC imple-
mentations). Furthermore, the models obtained

by CV are topologically more accurate than those

obtained by BSC for a wide range of sample sizes.

Therefore, if the goal is to maximize topological

accuracy rather than generalization ability, then

CV may still be preferred over BSC. Finally, it is

worth mentioning that we expect similar results

as the ones in this paper for learning (static) Bayes-
ian network (BN) models that generalize well

under our interpretation of generalization, because

our arguments for preferring CV over BSC apply

to that task as well.

Our work is inspired by Chickering and Hecker-

man (2000). In that work, the authors aim to learn

BN models that generalize well, where the general-

ization ability of a model G is interpreted as the
expected predictive accuracy for the next instance,

i.e. E½log pðDSþ1jD;GÞ�. The authors compare two

scoring criteria for learning BN models that gener-
alize well. First, BSC (BD implementation), which

the authors call the scientific criterion. Second, the

exact computation of E½log pðDSþ1jD;GÞ�, which

the authors call the engineering criterion, that is

E½logpðDSþ1jD;GÞ�
¼
X
DSþ1

pðDSþ1jDÞ logpðDSþ1jD;GÞ

¼
X
DSþ1

X
G

pðGjDÞpðDSþ1jD;GÞ
" #

logpðDSþ1jD;GÞ.

ð6Þ

The experimental results in (Chickering and

Heckerman, 2000) show that the engineering crite-

rion outperforms the scientific criterion. There are

two differences between our work and Chickering

and Heckerman (2000) that are worth mentioning.

First, our interpretation of the generalization
ability of a model G, i.e. E½log pðDSþ1jG; ĥÞ�, dif-
fers slightly from that in (Chickering and Hecker-

man, 2000), i.e. E½log pðDSþ1jD;GÞ�, because we are
interested in using the ML or MAP parameters

rather than in averaging over all the parameters.

Second and more important, the engineering

criterion is computationally unfeasible in all but

small domains, because it implies summing over
all DS+1 and all G (see Eq. (6)). As a matter of fact,

the experiments in (Chickering and Heckerman,

2000) do not involve domains with more than six

random variables. We recall that the exact evalua-

tion of our interpretation of generalization is com-

putationally unfeasible for the same reasons (see

Eq. (4)). This is our main motivation for proposing

CV as a scoring criterion for learning DBN models
that generalize well: It aims to estimate the gener-

alization ability of a model while being computa-

tionally feasible. A line of further research may

be the evaluation of CV under the interpretation

of generalization in (Chickering and Heckerman,

2000).

There exist several papers that use CV for learn-

ing BN models for classification tasks (e.g. Keogh
and Pazzani, 2002; Pazzani, 1995). However, to

our knowledge (VanAllen and Greiner, 2000) is

the only study of CV for learning BN models for

general purposes. In (Cowell et al., 1999), the

authors mention the possibility of using CV for
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learning BN models for general purposes but they

do not pursue it further. In (VanAllen and

Greiner, 2000), the authors aim to learn BN

models that minimize the cross-entropy which, as

discussed in Section 1, agrees with our interpreta-
tion of generalization. They experimentally com-

pare CV, BIC and Akaike�s information criterion

(AIC) (Akaike, 1974), and conclude that CV per-

forms the best because AIC and particularly BIC

overpenalize the model complexity and, thus, lead

to underfitted models. We note that they neither

include BD in the comparison nor carry out a

search in the space of models. Instead, they gener-
ate a set of nested models from the simplest to the

most complex passing through the true one and,

then, compare how the different scoring criteria be-

have for that set of models. These issues apart, the

main difference between VanAllen and Greiner

(2000) and our work is in the explanation of why

CV does the best: The authors of VanAllen and

Greiner (2000) argue that BIC and AIC overpenal-
ize the model complexity, while we argue that BD

and BIC do not fully match the ultimate goal,

namely generalization. Therefore, we provide an

alternative explanation to that in (VanAllen and

Greiner, 2000). A criticism of the explanation in

(VanAllen and Greiner, 2000) is that it is not valid

for all sample sizes: Our results and those in

(Moral, 2004) show that BIC underpenalizes the
model complexity for samples sizes smaller than

100. This is not detected in (VanAllen and Greiner,

2000) because all the databases considered are of

size 200 or larger. The explanation in (VanAllen

and Greiner, 2000) does not seem to apply to

BD either: In the small ESS limit, BD leads to

the complete graph for small sample sizes (Steck

and Jaakkola, 2003). We are currently studying
the connection between the mismatch and the

under and overpenalization. We hope that this

paper contributes to a better understanding of

the behavior of the different scoring criteria for

learning BN and DBN models from data.
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