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Abstract

Networks are abundant in biological systems.
Small sized over-represented network motifs
have been discovered, and it has been sug-
gested that these constitute functional build-
ing blocks. We ask whether larger dynam-
ical network motifs exist in biological net-
works, thus contributing to the higher-order
organization of a network. To end this, we
introduce a gradient descent machine learn-
ing (ML) approach and genetic algorithms to
learn larger functional motifs in contrast to
an (unfeasible) exhaustive search. We use
the French Flag (FF) and Switch functional
motif as case studies motivated from biol-
ogy. While our algorithm successfully learns
large functional motifs, we identify a thresh-
old size of approximately 20 nodes beyond
which learning breaks down. Therefore we in-
vestigate the stability of the motifs. We find
that the size of the real negative eigenvalues
of the Jacobian decreases with increasing sys-
tem size, thus conferring instability. Finally,
without imposing learning an input-output
for all the components of the network, we ob-
serve that unconstrained middle components
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of the network still learn the desired function,
a form of homogeneous team learning. We
conclude that the size limitation of learnabil-
ity, most likely due to stability constraints,
impose a definite requirement for modular-
ity in networked systems while enabling team
learning within unconstrained parts of the
module. Thus, the observation that commu-
nity structures and modularity are abundant
in biological networks could be accounted for
by a computational compositional network
structure.

1. Introduction

The structure of networks has been investigated ex-
tensively using global metrics such as distributions
of links and nodes, and local structures such as net-
work motifs and graphlets. Learning algorithms, on
the other hand, produce for example large deep lay-
ered structures with powerful pattern detection capa-
bilities. In contrast, designed engineered systems are
as a rule built from dynamical computational motifs
or gates, producing a specific input-output function.
However, due to combinatorial complexity only up to
small three node functional motifs have been inves-
tigated. Network motifs (Milo et al., 2002) are the
local features which are statistically over represented
in networks. Investigators have designed computa-
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tional searching methods to detect of over-represented
motifs (Cussat-Blanc et al., 2011). However, statis-
tical approaches include Monte Carlo methods and
Bayesian models (Xing & Karp, 2004) are still com-
putationally exhaustive and rely on existing quanti-
tative data. GeneNet (Hiscock, 2017) is a developed
neural network algorithm for gene circuit design with-
out requiring prior data, which reinforce random initial
networks to learn desired output functions by com-
puting arbitrary functions (e.g., detect vibration of
specified duration) and manipulating motifs behaviors
(e.g., count pulses) in short computing time (e.g., 28.5
sec.) The previous results from GeneNet has shown
its relevance on existing FF and Switch motifs studies
(e.g., the classical FF motif from (Cotterell & Sharpe,
2010)) In this paper, we further investigate the connec-
tivity and stability of GeneNet on high-ordered net-
work components, as from 3 x 3 to 18 x 18 matrix.
Through the regularization, genetic searching and sta-
bility mapping, we verified the reproducibility of this
method as generative models on learnable networks as
a functional multi-agent learning process. In contrast
to exhaustive search, our approach is not limited to the
identification of only small network motifs but more on
the stability analysis with the high-ordered functional
bio-motifs.

Functional gene circuit such as FF (Cotterell &
Sharpe, 2010) and Switch (Gardner et al., 2000) have
been further investigated on the modeling to analysis
on in vitro. The previous (Joachimczak & Wrdbel,
2009; Chavoya & Duthen, 2008) works on functional
gene circuit design have been widely explored the FF
model on three dimensional by physical simulation and
genetic algorithm on a dynamic system. However,
those approaches demand larger computing time and
barely cover the feasibility of algorithm-based high-
ordered gene circuit design.

Higher-ordered structures in networks (Lu et al., 2009)
have become increasingly important since its appli-
cations and potential on understanding dynamically
probing biological systems (Mutalik et al., 2013). En-
gineering of artificial gene networks (Ellis et al., 2009)
has used control engineering principles to guide pre-
dictable gene network construction in silico. However,
these engineered transcriptions (Khalil & Collins,
2010) factors have not yet been fully characterized, and
if they are to be used as building blocks for complex
gene networks. Instead of knowledge-based exclusive
searching models, recent progress on ML-based tech-
niques provides available software, etc. PyTorch and
Tensorflow, tools to develop learning-based algorithms
(Bengio et al., 2013) to describe and analyze the bio-
system (Grover & Leskovec, 2016) in a high-ordered
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Figure 1. An example of a gene-circuit motifs which com-
putes the French-Flag input-output function. The interac-
tions between the units define the adjacency matrix.

network. learning-based method for high-ordered bio-
network would serve to investigate deeper on the in
vivo kinetics and input-output transfer functions for
synthetic biology (Wu et al., 2016).

Contributions.

e Based on existing ODE-based motifs learning
method, we further expand the ML-based gene
circuit design in a large network and propose a
modified version of GeneNet, ES-GeneNet by evo-
lutionary searching.

e We conduct adaptation behaviors on both homo-
geneous and heterogeneous team-learning among
different sizes of a network.

e Finally, we find out the two specific network be-
haviors on size effects and evolving dynamics by
the addressing stability analysis of multi-agent
learning in bio-system.

2. Methods
2.1. Model of Gene Circuits

Dynamic gene network models (Reil, 1999) describe
the time-dependent evolution of gene expression. Each
node in the network receives input from the other
nodes (De Jong, 2002). We follow the formulation
of the gene network in (Hiscock, 2017; Cotterell &
Sharpe, 2010):

dy;
i ¢(; Wijy;) +Li —yi (1)

where the y; denotes the concentrations of ith gene,
where ¢ = 1...N for an N-node network. Wj;; is a
matrix, W € R"™ "™, correspond to network weight:
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Figure 2. Learning larger network motifs. Both gradient descent (GeneNet) and genetic algorithms (ES-GeneNet) can
learn functional network motifs larger than 3 nodes as discovered previously. Two examples with 4 and 16 nodes are
illustrated for the cases of FF and the switch function. At a larger size of 16, the learnable gene circuits perform for FF
on (a) and (b) and Switch on (c) and (d). For the smaller size of 4, the learnable gene circuits perform for FF on (e) and

(f) and Switch on (g) and (h).

W;; > 0 means that ¢-th activate the j-th gene, and
Wi;; < 0 means that i-th deactivate the j-th gene. For
manipulating desired input and the output function,
yi = F(x) , where we define y; = = and y, = y (for
output at the final node.) I; is the prescribed impulse,
we give to the gene-network system. The ¢(z) is a
nonlinear function, ensuring that transcription rate to
be activated. We choose the sigmoid function as ¢(x)
for activating neuron computing unit as

1

P(z) = Fp—

(2)

Genes expression and logic components could describe
the initial condition (weight) of the first node and final
output of the last node. Previous work (Hiscock, 2017)
of GeneNet focused on 3-nodes system, which auto-
matically learn the desired function to design a proper
network computing the prescribed input-output func-
tion. We use this approach to train models for the
French-Flag (FF) (Miller, 2004) and a switch function.

2.2. Learning parameters using Gradient
Descent

The ordinary differential equation (ODE) model of
GeneNet in the equation (1) shares similarities with
the underlying neural network model on the matrix
computing by considering I; (prescribed impulse) as
bias b;. The basic form of the simplified classical
neural network would be:

yi = d)(z Wijxj + bi)

(2]

3)

By giving desired output function of the network at g,
such as FF model, we minimize cost between the train-
ing output and the desired function by Adam (Kingma
& Ba, 2014), an effective gradient descent algorithm
for this problem. In this paper, we use mean squared
error as the cost function lessened by gradient descent
in TensorFlow 1.7 module. The mean squared error
(MSE) cost function has been defined as:

arg min [|(y(z) - Nz @

We use the GeneNet framework with the modified
learning rate for the higher-ordered network exper-
iments in this paper. In contrast to the current
BP gradient descent technique as implemented in
GeneNet, our proposed ES-GeneNet, an evolutionary
optimization for cost minimization would be discussed
in section 3.3.

2.3. LASSO Regularization

To avoid over-fitting on the generated solutions,
LASSO (least absolute shrinkage and selection oper-
ator, LASSO) has been used as a regression analysis
method that performs both variable selection and reg-
ularization (Lim & Hastie, 2015) to enhance the pre-
diction accuracy and interpretability of the statistical
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Table 1. L1 Regularization with different coefficients
Coeff. 0 2x107T 2x 1072 2x10°3
Strength -2.51  0.001 0.34 0.02

model it produces. We modify the existing MSE cost
function as :

Cost(x) =~ ly(x) ~ 913 + A Wyl (5)

i,J

With different L1 coefficients, we calculate the
strength of genes by Zi,j |W; ;|. Where X represents
the regularization coefficients, after testifying the the
value among 2 x 1073 —2 x 10~ ! and the under-fitting
occur at 2 x 107! with an failure case on desired func-
tional motifs. We use L1 coefficients 2 x 10~2 for the
regularized GeneNet experiments in Figure 3, 4, 6, and
5.

2.4. Learning parameters using an Genetic
Algorithm

Using gradient descent only a limited number of net-
works motifs is discovered that computed the FF func-
tion. We, therefore, explored whether an evolutionary
approach finds other solutions compared to a gradient
descent search, i.e., Equation (1).

An evolutionary algorithm (Fonseca et al., 1993) gen-
erate many diverse solutions among global searching
domain. By relying on bio-inspired operators such
as mutation, crossover, and selection, the modified
weight from ES-GeneNet has more considerable diver-
sity compared to the single pathway based on gradient
descent from GeneNet. We implement the evolution-
ary algorithms to replace each iteration of the updat-
ing gradient to generations. We arrange 20 different
updating gradients, like children in an evolutionary al-
gorithm for each generation. The time of computation
is 2.22 times faster than the result from GeneNet at
three-nodes components searching.

2.4.1. CROSSOVER

First, we use a crossover rate of (60%) to enable the
different weights matrices to share their learned fea-
tures during the process of cost minimization. The
crossover action ensures the cost function to be con-
vex in a large search space where the search of the
desired weights correspond to the network motifs.

2.4.2. MUTATION

Mutation is a genetic operator used to preserve genetic
diversity from one generation of a population of evo-

Algorithm 1 Evolutionary Search

Input: desired_target_function Y
Initialize population = randomized_children().
for g = 1 to max_possible_generations do
costs = calculate_cost(population,Y)
survived_parents = select(population, costs)
elite = survived_parents|0]
if is_desired_function(elite,Y) then
Break loop
else
population = repopulate(survived_parents)
population = mutate(population)
end if
end for
Output

GeneNet Success Rate

Non-Reg.
- Reg.
04 Pruned

Success Ratio

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Nodes

Figure 3. This figure illustrates the learnability of GeneNet
on French-Flag function with increasing network size. The
GeneNet algorithm is repeated 100 times and we calculate
the ratio of successful learning of the FF function out of
the 100 trials. Note the sharp drop around 16-18 nodes.
This behaviour is consistent regardless of the degree of reg-
ularization (L1 or pruning, red and yellow respectively)

lutionary algorithm chromosomes to the next. We use
mutation in two different ways in modified versions of
GeneNet (1). The gradient computation is performed
but with a mutation rate %> (2) while doing with-
out the backpropagation algorithm and secondly, to
use random mutation and crossover to minimize the

cost. Algorithm 1 shows an example.

2.5. Numerical Implementation

We run our code by Tensorflow 1.7.0 on a work-
station with an Intel(R) Xeon(R) CPU E5-2680 v4
2.40GHz and a 32 GB Hynix DIMM Synchronous
2133 MHz. The code of ES-GeneNet is availble at
github.com/huckiyang/ES_ GeneNet.
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Figure 4. This figure visualizes the network interaction of learnable gene regulatory network in different gene strength
on the LASSO (L1) regularization. At the network size of 7 (a) GeneNet without regularization, (b) GeneNet with L1
regularization, and (c) GeneNet with pruned L1 regularization.

3. Results and Discussion

3.1. Identification of larger (N > 3) Networks
Motifs

First, we ask whether the gradient descent search and
the genetic algorithm could find larger motifs to com-
pute a given input-output function. The French-Flag
(FF) model, is one of the most important and frequent
models for gene-gene regulatory (Miller, 2004). By
given desired function as ¢ from the equation (4), we
search for FF circuits larger than three nodes. For ex-
ample, weusey =1 forx > 052 < 15elsey=0asa
FF gene expression Model. We discover both 16-genes
and 4-genes circuit motifs computing the FF functions,
as illustrated in Figure 2 (a), (b), (e), and (f).

We also design a gene-circuit with functional Switch
model. As a crucial regulatory network model, the
switch is constructed from any two repressible promot-
ers arranged in a mutually inhibitory network. This
functional gene circuit is flipped between thermal in-
duction and exhibits a nearly ideal controlled thresh-
old or stable states using a transient chemical. This
function is parametrized as y =1 for z > 1 else y = 0
and also here we find larger circuits, as illustrated
by the 16-gene and 4-gene circuit motif of Figure 2

(¢),(d),(g), and (h).

Parametrizing the FF model, using y = 1 for x > 1 else
y = 0 as a FF gene expression Model in 4-genes and 16-
genes circuit as illustrated in Figure 2 (¢), produced on
average a speed-up of the computation by factors 2.73
and 7.73 respectively as compared to GeneNet. Also,
we empower the Switch model, as y = 1 for z > 1
else y = 0 as a FF gene expression Model in 4-genes
and 16-genes circuit of Figure 2 (d) with a average
of 2.52 and 5.52 times faster than the computation of
GeneNet.

In mathematics and computer science, connectivity

(Harris & Stephens, 1988) asks for the minimum num-
ber of elements (nodes or edges) that need to be re-
moved to disconnect the remaining nodes from each
other. We calculate the undirected edge-connectivity
(Nagamochi & Ibaraki, 1992) from the generate ma-
trix size from 3 x 3 up to the largest size we learn
from the random generate 18 x 18 in Table 3. With
identical desired training function, the result showed
the more extensive network is represented by specific
regularization motifs network to present the dynamic
performance.

The nodes size of the network represents the strength
in a gene regulatory circuit. Here we visualize nodes
size by the value of >, . |[W;;|. With stronger
strength, the node would have a bigger size, which im-
plies a dominant gene in the regulatory network. With
fixed size of learned gene regulatory network from the
Figure 4, the value of >, . |[W; ;| would decreasing as a
much neat network interaction without trivial nodes.
As a input-output system, we also visualize the sum
of system feedback, >, . W; ;, with a color bar. For
instance, as Figure 4 (dﬁ, the 1st node with a green
and the 2nd node with a blue represent as a sum of
feedback with positive and negative response in a gene
regulatory network.

Moreover, we also feature the learned network as a
tool to show the activate and deactivate relationship
in an extensive system as gene regulatory network.
As part of the result in Figure 4 (c), in a visualized
pruned-network, we efficiently investigate the dynam-
ics of both positive and negative impacts for each node
as each gene.
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3.2. There is a threshold of the size of the
network motif computing an input-output
function

We asked whether there is any limitation on the size
of network motifs computing an input-output function.
To quantify this, we use the ratio between the number
of successful trials computing the function and the to-
tal number of attempts to compute the input-output
function. This experiment is performed both for the
FF and switch function. Surprisingly, we find a sharp
drop at around 18 nodes as illustrated in Figure 3.
Now, why did this drop occur? On the one hand, it is
a consequence that the search space simply became too
large at a certain point and that the algorithms were
unable to identify appropriate solutions. Alternative
the ratio of the proper solution decreases rapidly due
to the exponential increase in search space. However,
several observations suggest that this is not the reason.
First, we observed the same threshold, regardless if we
use a gradient descent search or a genetic algorithm.
Secondly, the threshold is very similar for both the FF
and the switch function. To further examine this we
visualize the network at the transition from being able
to compute the function over to the case when the net-
work failed. Figure 6 illustrates that the sign of edges
in the network gradually shift from being negative (a)
to become positive (¢). Hence, it appears that the
negative feedback regulation in the network vanishes
at the threshold. This suggests that the stability of
the network is affected.

3.3. Stability analysis of the Network

To investigate the stability we estimate the size of the
negative real eigenvalues as a function of the network
size. In general, a fixed-point for a network is stable
if the real part of the eigenvalue is negative. Using
Equation(1), the adjacency matrix from the GeneNet
has been activation by a non-linear equation. We take
a Jacobian transformation of a learned adjacency ma-
trix on the fixed point mapping. From the Figure 6, as
the orange arrow illustration, the following size effects
gradually bring the stability from saddle points to sta-
ble point at the second quadrant, then at the size of 18
- the system closed to the zero-point as a threshold of
stability. The regularized results among networks as
4', 5, 6’ in a small network and 16’, 17/, 18’ in a large
network are echoed to the stability hypothesis on the
fixed point theory.

3.4. Adaptation on Multi-Agent Learning

The previous study of GeneNet (Hiscock, 2017) on
learning functional motifs has succeeded in initializ-

ing random 3-nodes genes circuits. However, higher-
ordered network learning on functional gene-circuits
has not yet been explored using the neural network
generative model. When analyzing larger learned net-
work motifs opens up the question if and how the other
elements in the system contributes to the learned in-
put output function. This has been referred to as the
team learning problem (Panait & Luke, 2005). In brief,
there is positive and negative feedback in such circum-
stances, which originates from the adaptation of the el-
ements supporting team learning in order to compute
the desired function. As our definition in Equation
(1), we only supervise the last node, as y, = y, and
minimize its MSE during the learning processing. In-
terestingly, with an increasing size effect, we observed
that the agents nodes in our case tend to perform
two types of Team Learning behaviors.

3.5. Homogeneous Team Learning

Team learning is an easy approach to multi-agent
learning because its single learned can use standard
single-agent machine learning techniques. However, a
major problem with team learning is the large state
space for the learning process with large dynamic
with two opposite behavior homogeneous and hetero-
geneous team learning. With systematic feedback re-
sults, we can observe the homogeneous learning behav-
iors on desired FF functional circuit for different size of
the networks. Homogeneous Team-Learning is an ef-
fect of a multi-agent system tend to learn the same as
given desired function, even without supervised. This
homogeneous learning is positive for supporting our
higher-ordered gene-circuit to learn band-pass perfor-
mance in FF model. The amplitude of the targeted
red FF signal, y,, = v, slightly increase 5.1% and 4.3%
from (a) to (b) and from (c) to (d). Meanwhile, a se-
ries of un-supervised agents keep increasing their am-
plitude among the band-pass performing range.

3.6. Heterogeneous Team Learning

We find it to be different from previous observations
as small as 9. Negative feedback after the size attains
a large size at 16 as a Heterogeneous Team Learning
effect. And, the un-supervised agents are pulled back
away from the desired features of the supervised agent.
Meanwhile, our multi-agent network is gradually losing
its learnability and abruptly crashed down at the size
of 18 x 18 with a corresponding low successful learning
rate at 9% in 3. The amplitude of the targeted red
FF signal, y, = y, dramatically drop 12.1% and 9.3%
from (d) to (e) and from (e) to (f).
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Figure 5. At the threshold of learnability there is a shift in the weight distribution from negative to positive weights.
From a most negative weights at (a) nodes = 16, the shifting weights to near zero points at (b) nodes = 17, and finally
most of the weights became positive at (c) nodes = 18. This shift in the weight distribution is in accordance with the

stability map of eigenvalues as displayed in Figure 6
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Figure 6. This figure show stability map of Jacobian matri-
ces from bio-motifs. The process shows stability by rout-
ing different network size and evolutionary process on the
map.

3.7. Summary of the observed Team Learning

In summary, we found positive feedback from the un-
supervised agents, i.e. the other nodes in the net-
work motifs, echoes in their learned profiled the over-
all learned function in the network motif. Note, that
this is unexpected as the supervised training is only
conferred to the last node given the input to the first
node, as the behaviour of all other nodes and interac-
tions were left unconstrained. Note that the learned
network motif input output function is only imposed
on the system as a whole. This effect is functionally
useful for learning in a complex system like the gene
regulatory network. The homogeneous team learning
turn to drag down the third agent from the band-pass
performance and lead an unstable system. Also, note

that the positive-feedback turn to opposite after the
network size becomes too large. The un-supervised
agent is drawn down the desired features from the su-
pervised agent. Meanwhile, our multi-agent network
is gradually losing its learnability and suddenly crash
down at the size of 18 x 18 with a successful learning
rate less than 9%, see Figure 3.

Original Pruned

Regulated

Figure 7. This figure shows an changing system feedback
from a homogeneous team learning to a heterogeneous
team-learning effect at the network size/agent numbers =
17 with (a) original (b) regulated (c¢) pruned functional
French-Flag gene-circuit

4. Conclusion

In summary, we demonstrated the existence of larger
functional input output network motifs in contrast of
what have previously been described. To achieve this
we had to adapt an ML approach to design and search
for functional high-order gene regulatory network mo-
tifs. The rational is that an exhaustive search for
larger network motifs does not scale due to the combi-
natorial complexity in the search space with increasing
size of the network motifs. To this end we use both
gradient descent and genetic algorithms. The observed
threshold in learning that we observed is most likely
due to loss of stability with increasing size. This effect
requires further investigation as it would most likely
have to with the specific structure of the Jacobian ma-
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trix as the system size grows. Hence, the elements
which are not directly constrained in the learning, i.e.
the nodes in between the input and output have to
organize themselves in such a manner that stability is
preserved for as large system as possible. However, for
some reason this does not apparently scale indefinitely.
We conjecture that this phenomena has to do with the
observed adaptive learning ¢n vivo multi-agent behav-
ior that we observed in the network motifs. Our pro-
posed novel evolutionary algorithm framework to solve
the ODE system without being trapped by local min-
imum with a single phenotype of FF-motifs hold the
promise to be used for massive large-scale explorations.
Both crossover mutation actions increase the diversity
of the search space to find more diverse motifs-weight
compared to the previous gradient descent method.
This opens the possibility to not only identify mul-
tiple motifs of a given size for an input-output func-
tion. It could also explore higher-ordered motifs with
adaptive team-learning in dynamic bio-system. Thus,
our further work will focus on investigating biological
properties and the analyze the high frequent motifs
in the learned dynamic networks from GeneNet and
ES-GeneNet.
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