
Chapter 12
Modeling and Model Simplification
to Facilitate Biological Insights
and Predictions

Olivia Eriksson and Jesper Tegnér

Abstract Mathematical dynamical models of intracellular signaling networks are
continuously increasing in size and model complexity due in large part to the data
explosion in biology. However, the sheer complexity of the relationship between
state-variables through numerous parameters constitutes a significant barrier against
obtaining insight into which parts of a model govern a certain read-out, and the
uncertainty in model structure and especially model parameters is here a further
complicating factor. To meet these two challenges of complexity and uncertainty,
systematic construction of simplified models from complex models is a central area
of investigation within systems biology as well as for personalized medicine. Model
complexity makes the task of deriving predictions difficult in general and in particu-
lar when different read-outs depend on combinations of parameters, since exhaustive
computer simulations are not sufficient for understanding nor feasible in practice.
Construction of simplifiedmodels is therefore an important complementary approach
to this end, while also facilitating the identifiability of over-parameterized models.
Within this chapter we discuss different methods for model simplification, and we
specifically summarize a recently developed simplification method based on an iter-
ative “tearing, zooming and simplifying” approach. We also look into the modeling
process in general. In the “tearing, zooming and simplifying” approach the original
model is divided into modules (tearing), the modules are considered as input-output
systems (zooming), which then are replaced by simplified transfer functions (sim-
plifying). The idea behind the simplification is to utilize biological features such as
modularity and robustness as well as abundance of typical dynamical behaviors in
biology such as switch-like responses. The methodology is illustrated using a rela-
tively complex model of the cell division cycle, where the resulting simplification
corresponds to a piecewise linear system with delay, facilitating an understanding of
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the underlying core dynamics and enabling the prediction of combinations of para-
meters that can change different model features like the size of the cell. Hence, the
existence of biological organization principles enables a simplified description of
intracellular dynamics.

Keywords Model simplification ·Model reduction · Data integration · Dynamical
models · Ordinary differential equations · Piecewise linear · Delay · Dynamical
modules · Switch-like dynamics · Model decomposition · Lumping · Timescale
separation · Sensitivity analysis · Identifiability · Tearing-zooming-simplifying

12.1 Introduction

The enormous increase in cellular experimental data of the last decades, resulting
from the sequencing of the human genome [76, 81], microarray techniques [63],
the FANTOM projects [43], 1000 genome project [74], ENCODE [75] and other
high-throughput methods such as proteomics and metabolomics, has provided us
with detailed lists on the constituents of the cell as well as their putative interactions.
This has however not yet enabled an understanding of the functionality of the cell on
the full genome-scale level. We have static descriptions on networks of interactions,
in the same way as we have road maps, but still we do not know much about traffic
flow [46]. In order to investigate and describe the dynamical behaviour of the huge
system that a cell constitutes, we do not only need experimental developments but
also improved computational and mathematical methods [9, 21].

The structure and dynamics of cellular networks are inherently complex, contain-
ing a large lattice of redundancy and intertwined feedback loops, where the interac-
tions can be described by detailed biochemical reactions. Imagine the complexity of
a single signaling pathway, such as the cell cycle, and then put together all possible
pathways of the cell and the resulting picture becomes overwhelming. There are
however simplifying circumstances in this complexity. Cells seem to have a modular
organization in space and time, with a sparse number of interactions between con-
stituents. Cells often display quite simple functions (e.g. on/off circuits) and have
a robust behaviour. The key idea of this chapter is that provided that we could use
these simple levels of regulation hidden in the mesh of details, then maybe we could
get a step closer to retrieving descriptions of the functionality of whole cells.

In order to give precise unambiguous descriptions, and quantitative predictions,
mathematically formalized relationships and parameters are needed [39, 77], and
dynamical cellular network models, describing the time evolution of e.g. protein
concentrations, are the focus of this chapter. A few examples of dynamical models
describing different cellular pathways and phenomena include [12, 33, 50, 77, 82].
The size of these models is, on the full genome-scale, quite modest, describing
only a small subset of the proteins or genes of the cell e.g. a signaling pathway or
regulatory module. However, although being relatively small models they display
large complexity, with intertwined feedback-loops and functional redundancy.
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A future vision, which is becoming increasingly realistic [42], is to construct
dynamical models of whole cells. One approach towards this goal is to combine
small mechanistically detailed models into larger and larger contexts. Such com-
bined models tend to have a large number of parameters and complicated rate laws.
Within the emerging complexity of these models it can be a difficult task to figure
out the functional relationships of the model constituents, e.g. which parts that are
essential for a certain read-out. It is therefore challenging to derive predictions on
important features without performing extensive brute-force computer simulations.
This problem becomes even more urgent as most models of biochemical systems
today are highly over-parameterized with respect to available in vivo data [65], i.e.
there exists a very large number of parameter combinations that give an equally good
agreement with the data.

One important tool to deal with larger systems is model simplification or reduc-
tion. Amodel simplification process can illuminate the dynamicalmechanism behind
certain behaviour of the system and identify functional relationships between vari-
ables that are not obvious from inspection of a largemodel. Furthermore, a simplified
model could remove over-parameterization and thereby generate an efficient descrip-
tion of the system with improved identifiability.

In this chapter we review different methods for simplifying complicated models
of intracellular signaling cascades.Wewill also discuss in detail an important biolog-
ical signaling cascade within the cell, namely the network regulating the cell cycle.
This well characterized biological system is a useful test case to develop a model
simplification process based on the identification, characterization and simplification
of dynamical modules, here resulting in a piecewise linear model with delay. Before
we go into model simplification and reduction in general and this specific example
in detail we will first discuss how intracellular models actually are constructed.

12.2 Data Integration, Experimental Setting and Model
Uncertainty

To develop models of intracellular networks data from different sources have to be
integrated. The direction of data integration is often described by a top–down or
bottom–up approach [10]. The top–down approach considers data from the whole
cell and by an iterative cycle between experiments andmodeling retrieves a better and
better model resolution of the system. In contrast the bottom–up approach considers
detailed descriptions of subparts of the cell and combine these into larger and larger
models. The first approach describes the systemmore phenomenologically while the
other line of investigation is geared towards a more mechanistic objective.

The genome sequencing projects [76, 81] and other high-throughput experimen-
tal techniques are examples of a top–down approach. Together with computational
methods within bioinformatics for combining and analyzing several sources of data
these experiments have provided us with a detailed parts-list of genes, proteins and
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other constituents within the cell. We will denote this type of data as genome-scale
data. During the last decades we have witnessed how these parts have been combined
to large static networks of possible interactions, e.g. protein–protein interaction [79],
transcriptional regulation [49] and metabolic reaction [20] networks, retrieved from
experiments or by computational methods. Finally the activity of the parts can also
be recorded by e.g. microarrays [63].

In contrast, bottom–up approaches depend on characterizing the interactions
between individual components of the system and then integrating them into a larger
reaction network [10]. Detailed kinetic and physiochemical properties of the interac-
tions are obtained from experiments, where the experimental setting differ from each
other in their level of simplification as compared to native conditions. At one end
there are test tube experiments with purified components in optimized conditions,
whereas at the other end experiments on living cells.Wewill denote these settings the
dissociated versus the embedded setting, respectively. An example of the dissociated
setting is the estimation of the parameters KM (the Michaelis Menten constant) and
kcat (catalytic rate) of an enzyme, using purified components (e.g. proteins) in a test
tube in optimized conditions for their function [1]. Examples of the embedded set-
ting include themonitoring of time-course data for protein interactionmarkers and/or
morphological cellular features obtained from the living system under perturbation
[62].

Data from several different dissociated characterizations has been combined, in
a bottom–up approach, to try to reconstruct the dynamical behavior of the larger
system. This has shown some success in the case of modeling of the glycolytic
pathway of unicellular organisms like Saccharomyces cerevisiae [66]. The efforts
to model this universally conserved pathway in this way began several years ago
using each enzymes own optimal conditions for its characterization (and thereby
different test tube conditions for different enzymes despite some of them sharing the
same intracellular environment). Just recently standardized conditions that resemble
the intracellular milieu has been used to characterize all enzymes in the pathway
resulting in a more accurate model [1]. While a similar dissociated characterization,
bottom–up, approach has been proposed for components of signaling cascades [41]
there has not been any systematic effort in this direction. Unlike glycolytic enzymes
in unicellular organisms, the components of intracellular signaling cascades have a
higher degree of compartmentalization and more interacting partners so that even an
approximate recreation of physiological conditions in vitro is far more demanding
[32]. Thus, there are relatively few interactions of signaling cascades characterized
with purified components in vitro. Besides the limited physiological relevance of the
experimental conditions used in these characterizations, most of the resulting esti-
mates correspond to steady state conditions and parameters, despite the fact that fast
transient signaling is occurring in many systems. While dissociated characterization
is appropriate for ranking the effects of mutations, as well as developing inhibitors
with pharmaceutical applications, and studying mechanisms of enzyme action, its
usefulness for modeling the dynamics of signaling pathways is limited. The para-
meter values estimated through dissociated characterization should be taken in most
cases as soft constrains [12]. The embedded characterization is becoming prevalent
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with the growing trend in the development of cell-based measurement methods. This
development is driven by progress in protein labelingwith genetically encodedmark-
ers which allows to track interactions and compartmentalization in real time [53],
high-resolution and two photon microscopy which makes it possible to track discrete
events in small cellular compartments with reduced photo damage [84] and high-
content high-throughput techniques which enables monitoring the effect of several
conditions on a few protein markers and second messengers in a single run [27].
Despite all this progress in data acquisition from cell-based experiments, the amount
of available phenotypic data is still far from sufficient for fully constraining themodel
so that every parameter is identified. More information about experimental data for
modeling can be found in [64].

12.3 Cellular Organization and Model Structure

There are different rationales driving modeling approaches. A predictive model is
mainly used to make predictions about the system while a descriptive model stores
knowledge. Within technical applications a predictive model often does not need to
have any structural similarities with the real system as long as it can anticipate the
behavior of the system, thus it is essentially viewed as a black-box with respect to
mechanisms. However, within biology, models are often of amore descriptive nature,
utilized to precisely collect knowledge about the system, and as a picture to discuss
around, even though the final goal may well be predictions. Biological models are
thus constructed to have a structural correspondence with the real system. Before
we go into details on different model formalisms and simplification methods in the
coming sections, we will here first discuss the structural and functional organization
of cellular networks.

As described above, high-throughput genome-scale experiments have provided
huge amounts of data concerning the cellular constituents, like genes and proteins,
which can be organized into different static networks. The topology of such net-
works has been analyzed by graph theoretical methods [7] and intriguing similarities
have been found between different biological systems. Numerous networks display
a power-law distribution in the number of connections (edges) a node can have, i.e.
most nodes have only a few edges to other nodes at the same time as there exist a
few nodes having a large number of edges, denoted hubs. Many networks have also
been found to have a relatively high clustering-coefficient, indicating the existence
of groups of highly interconnected nodes, topological modules. Cellular functions
have long been suggested to be carried out in a highly modular manner [7, 39,
78], where modular refers to a group of molecules, physically and/or functionally
linked together, which perform a distinct function. Most studies so far concern static
topological modules. Identifying topological modules is however a non-trivial task.
The fact that clustering and hubs coexist indicates that topological modules are not
independent and well isolated from each other, but rather that the network has a
hierarchical organization [7]. Since the cell is in fact a dynamical system, dynamical



306 O. Eriksson and J. Tegnér

modules could have a closer correspondence to the functional or biological properties
of the system. Tyson et al [78] have reviewed a set of different dynamical circuits
typical for cellular networks.

There is one specific type of circuit behavior we would like to consider in a
bit more in detail here, namely, switch-like dynamics. This is a recurrent phenom-
enon in cellular networks and we will illustrate how to exploit this feature in the
‘tearing-zooming-simplifying’ example provided at the end of this chapter, effec-
tively defining a simplified model. Switch-like dynamics can been found in many
biological systems [6, 36, 38, 40], and is often modeled using a steep sigmoid func-
tion e.g. a Hill-function with a high Hill coefficient. Biologically, this can be due to
cooperative processes, positive feedback, or enzymes operating near saturation [28].
Two explanations have been suggested by James Ferrell as to why a steep sigmoid
input/output response should be useful for the cell [28]. The resting state of a cell
could be near the upstroke of the input-output curve, or it could be far away. In the
first case a small change in input can give a large change in output, an amplification
of the signal. In the second case the system would filter out small stimuli and allow
the cell to respond decisively to stimuli of a sufficient magnitude. The second case
could therefore support cellular robustness against noise.

12.4 Modeling Formalisms and Choice of Model Detail

An important part in the art of modeling is the decision of modeling formalism. This
choice is strongly influenced by the nature of the question and the data at hand, and
therefore the art in choosing a suitable abstraction or representation of the system at
hand. In order to give precise unambiguous descriptions, and quantitative predictions,
mathematically formalized relationships and parameters are often needed [39, 77].
In this section we will mainly focus on dynamical models, but in the interest of
completeness we will first briefly discuss static models.

12.4.1 Static Models

As described earlier, high-throughput techniques and computational methods have
produced an incredible quantity of biological interaction data. Data that is conve-
niently represented by large networks, or graphs. Such graphs consist of nodes,
representing e.g. genes, proteins or metabolites, connected by edges, representing
interactions or other relationships. These graphs can be directed as in the case of
gene-regulatory networks, where the product of one gene is regulating another gene
or undirected as is the case for protein–protein networks, when only a binding possi-
bility is recorded. Asmentioned earlier, the topology of different biological networks
have been analyzed by graph theoretical methods and similarities between different
types of networks have been discovered. It has, however, become increasingly clear
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that these static networks only describe interaction possibilities, and that not all of the
edges are active at a certain time and in a certain context (cellular location, external
signal) [35, 54]. The data of possible interactions therefore need to be combined with
node activity in order to approach a dynamical description of the cellular network.

12.4.2 Dynamical Models

Depending on the purpose of the modeling, the approximations that can be made on
the system, and the experimental data available, there are several different mathe-
matical formalisms to choose from when it comes to dynamical models of cellular
networks [13, 16]. Examples include Boolean models, non-linear ordinary differen-
tial equations, piecewise linear differential equations, partial differential equations,
delay differential equations, stochastic master equations and rule-based formalism.
We here describe ordinary differential equation (ODE) and piecewise linear (PL)
differential equation models in more detail, and also touch upon delayed differential
equation (DDE) models. We look at ODE models because this is the model formal-
ism most widely used within biochemical modeling, and DDE and PL differential
equation models since the simplified model in the example at the end of this chapter
is a PL model with delay. More information about modeling, and then especially
modeling under uncertainty, can be found in [45].

Non-linear ordinary differential equationsModeling cellular networks by ordi-
nary differential equations (ODE:s) uses non-negative, time-dependent variables to
describe e.g. the concentrations of proteins or other molecules. Interactions between
molecules correspond to functional or differential relations between the variables.
The concentrations are thus described by rate equations, describing the rate of pro-
duction of a component of the system as a function of this and other components of
the system. We use ẋ to denote time-derivative. The rate equations correspond to

ẋi = fi (x, u), 1 ≤ i ≤ n, (12.1)

where x = (x1, . . . , xn) ≥ 0 is a vector of protein or other molecule concentrations
internal to the system, u = (u1, . . . , um) is a vector of external input signals, e.g.
nutrients and fi a function.

The above formalism can be extended with discrete time-delays, xτ = (x(t −
τ1), . . . , x(t −τp)), where τi are positive constants, to deal with e.g. the time required
for transcription and translation. The system is thus transformed into a DDE model.

Piecewise linear differential equations Several cellular networks have been
modelled by piecewise linear differential equations, e.g. [17, 29, 30].We here follow
the notation of Gonçalves [31]. Piecewise linear systems (PLS) are constructed from
a set of affine linear systems,

ẋ = Aαx + Bα (12.2)
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where x ∈ R
n , Aα an n × n matrix, Bα an n × 1 input vector, and α is a switching

rule,

α(x) ∈ {1, . . . , M} (12.3)

which describes when to switch between the linear systems. The switching rule
depends on the present state x(t) andmight also depend on earlier states e.g. x(t −τ).
We denote a switching rule that only depends on the present state as memoryless.
A solution to (12.2)–(12.3) are functions (x, α), satisfying (12.2)–(12.3), where α is
piecewise constant. A switching time of a solution (x, α) is a time t where α(t) is
discontinuous. A trajectory switches at a time t if t is a switching time. Switching
occurs at switching surfaces in the state space of x. If the switching rule ismemoryless
and consists of linear inequalities, then these surfaces are hyperplanes of dimension
n − 1,

S j = {x|C j x + d j = 0} (12.4)

where C j is a 1 × n vector and j ∈ {1, . . . , N }. For a PLS let us define a partition
of the state space, where a separate linear system is used, as

Xi = {x|α(x) = i} (12.5)

for i = {1, . . . , M}. When the switching rule has no memory, Xi ∩ X j = ∅, i �= j ,
and in each partition the dynamics is given by the linear system ẋ = Ai x + Bi .
A phase portrait of a two dimensional piecewise linear system is displayed in
Fig. 12.1.

Switching rule with memory If the switching rule has a memory, i.e. it does
not only depend on x(t), but also earlier states, e.g. x(t − τ), then the intersection
of different Xi might not give the empty set. One example of this is given in [23],
where the switching rule not only depends on the present state but also on a past state
α = α(x(t), x(t − τ)). In [23], at each phase point x, one out of two linear systems
can be used, depending on the value of x(t − τ).

Fig. 12.1 A phase portrait
of a piecewise linear system
consisting of two linear
systems defined in X1 and
X2 respectively. The fixed
points x̂1 and x̂2 of the
respective linear systems are
also indicated. From [23]
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Fig. 12.2 Model detail is determined by system complexity. A single protein interaction can be
modelled in great detail using stochastic models. For larger and thus more complex biological
systems less detailed models are more informative. Dynamical models on a genome scale are not
yet feasible. Modified from [9]

12.4.2.1 Choice of Model Detail

As our focus shifts from modeling single pathways to increasingly complex cellu-
lar networks, the computational methodology and formalism used must be carefully
considered. Extrapolating the traditional ODE model used for modeling single path-
ways to whole-cell systems wouldmake themodel prohibitively complicated. This is
discussed in [9], where it is suggested that finding a “course-grained” level of model
description where the molecular details are left out when possible and focusing on
the system behaviour could be one strategy to solve this problem, see Fig. 12.2. This
theme is also elaborated by de Jong [16] who suggests that whole-cell models could
be organized in a hierarchical manner, based on the inherent modularity of the cell.
On different levels of abstraction different modeling formalisms could be used, thus
on a higher level a more “course-grained” formalism would be appropriate.

12.5 Model Simplification and Reduction

Model simplification and reduction in order to enable analysis is not a new con-
cept within biology. The most famous example is perhaps the Michaelis-Menten
equation were a separation in time-scales justifies a “quasi-steady-state” approxi-
mation. Throughout this chapter, we use the term model simplification as a more
loose description that a model is simplified in some sense, whereas the term model
reduction to describe simplifications where the number of degrees of freedom in the
model is reduced, while the model formalism remains the same.
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Which method to use when simplifying a particular full-scale model depends on
the objective of the simplification process and the equation structure of the full-scale
model. Before a model simplification process is performed it is useful to decide
on which features of the original model to be retained, in [68] named reduction
target and in [65] denoted as reference data. The simplified model must of course
be consistent with at least some aspect of the full-scale model. It can, however, in
most cases, by definition, not reproduce all possible dynamics of the full model
under all possible circumstances. This was investigated in [26], where it was found,
that reduced models that reproduced predictions of the full model for a particular
set of parameters loosed their predictive capacity when parameters were varied over
two-fold ranges.

One can note that the model simplification process, in the same way as ordinary
modeling, is an approach to essentially obtain insights on how the underlying system
works. Model simplification can therefore be seen as the “modeling of an already
existing model”. The proper approximations made during the model simplification
process could therefore be instrumental in learning about the underlying processes.
As was noted earlier, biological systems are sparse and seem to have a modular
structure [39], features that could aid a reduced model description.

There are a number of reducedmodels described for a variety of biological systems
and some early examples include [48, 67, 85]. Themodel reduction procedures often
include ad hoc components, which require that themodeler is intimately familiarwith
the dynamics of the original system. Attempts of more systematic model reduction
approaches have been performed e.g. [34, 47, 65, 68].However, also such approaches
are often only applicable to a small subset of biological systems of a particular
structure (e.g. systems having one ubiquitous variable) and/or dynamical behavior
(e.g. hopf bifurcation). Hence, there is a need for development of more general
methods that would enable systematic simplification and evaluation of complex non-
linear systems.

12.5.1 Model Simplification and Reduction Approaches

We here give examples of some approaches towards model simplification and reduc-
tion. This list is by no means exhaustive. A review can be found in [58]. Some
model simplification strategies include a first step of decomposing the system into
subsystems, whereas others remove or simplify individual parts (e.g. equations or
reactions) one-by-one. As described earlier there is also a difference between meth-
ods that remains within the same formalism andmethods that translate themodel into
a new formalism. Examples of the first case include lumping of variables, separation
of timescales, and removal of variables based on sensitivity analysis or identifiability,
whereas examples of the second case include boolean approximations, introduction
of explicit time delay, and hybrid approaches; as the simplified model described at
the end of this chapter, a delayed piecewise linear approximation of an ordinary
differential model.
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Module based model decomposition Cellular functions have, as was described
earlier, long been suggested to be carried out in amodularmanner [7, 39, 78], and dif-
ferent methodological approaches have tried to utilize this for model decomposition,
in order to retrievemodel subsystems that can be easier analyzed then the original sys-
tem. One example can be found in [60, 61] where the original system is divided into
subsystems or modules of low retroactivity. Loosely defined, retroactivity describes
the phenomenon in which a downstream event affects upstream reactions. This con-
cept emerged in the field of electric engineering. When the output of one electric
unit is connected as input to another electric unit, this can affect the first electric unit
retroactively, for example by draining electrons too fast [4]. A unit would be without
retroactive effects if both input and output are unidirectional. This means that the
behavior of the unit only depends on its input, and that ‘connecting’ it to another unit
does not change its input-output behavior. The behaviour of retroactive-free modules
can be studied uncoupled with the system and analyzed by systems theory’s tools.
Kinetic insulation is another concept related to modularity and a mechanism sug-
gested to increase “isolation” betweenmodules by the use of different timescales [18]
and segregate between different signals that are using common pathway components
[8].

Combining variables, or lumping refers to the process of reducing the number
of dimensions of a system by merging states (e.g. protein concentrations) together.
This approach is well suited for biological of the often occurring modular structure,
and as the remaining states can have a biological meaning, like sums of protein
concentrations. This can be illustrated by the following system

S −→I1 −→ P (12.6)

S −→I2 −→ P (12.7)

where S is a substrate that turns into P through two different intermediates I1 or I2.
The species I1 and I2 can be lumped together to the new pseudo-species I = I1+ I2,
resulting in

S −→ I −→ P. (12.8)

Lumping of variables leads to a simplification in terms of the number of states and
reactions of the systems but this might come to the cost of a higher complexity of
the remaining rate equations. A description of lumping procedures can also be found
in [58]. Lumping can be divided into two categories, in proper lumping each of the
species of the original model contributes only to one of the lumps of the reduced
model, whereas in improper lumping species can contribute to more than one lump.

The choice ofwhichvariables to be lumped together is often decidedon an intuitive
basis corresponding to an understanding of the specifics of the system. An example
of a more systematic method is the use of equivalent potentials [44, 68] used to
reduce neuron models. Here the special structure of these neuron models enabled the
design of an automated method. This method first uses a nonlinear transformation to
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the state variables, in order to find similarities between them. Finally, the variables
are sorted into groups based on these similarities. Next, each group is replaced by
a new variable approximating the function of the original state variables. In [72,
73] the back-translation properties of a reduction process for biochemical models
are emphasized, and they present a method based on lumping of clusters of fast
variables, where it is possible to map from reduced model variables and parameters
back to original model variables and parameters. A systematic method for proper
lumping of the systems state is also described in [19] which is based on a search
through all possible combinations of lumps. The combinatorial complexity of the
problem is bypassed through a heuristic, greedy algorithm.

Separation of timescales, is another method to reduce the complexity of mod-
els. As a rule, biological processes occur over a broad range of time-scales, from
milliseconds (e.g. phosphorylation reactions), minutes (e.g. transcription) to hours
(e.g. cell cycle), days and years, and the principle of time-scale separation has been
widely used within biology. One example is the quasi-steady-state approximation
(QSS), which is used within enzyme kinetics to derive the well known Michalis-
Menten equation. In QSS, the variables x are decomposed into two blocks x f , fast

variables and xs slow variables: d
dt

(
x f

xs

)
=

(
F f (x f , x)

Fs(x f , xs)

)
. The reactions includ-

ing the fast variable x f are approximated as to be instantaneous compared to the
reactions including the slow variable xs . For given fast species we can simply set
dx f
dt = 0, which results in an algebraic relation

F f (x f , xs) = 0.

If the functions F f is nice, the Implicit Function Theorem can be applied, that is,
there is a unique solution x f = G(xs). Substituting it into the original system yields
a lower dimension system dxs

dt = Fs(G(xs), xs). This means that we can study the
lower dimensional system on the slow manifold F f (x f , xs) = 0. The generalization
of this technique is difficult since it is no trivial task to divide variables into fast and
slow. There are also conditions that have to be satisfied for the method to work. In
[37] a nice extension to the QSS is described based on the zero-derivative principle.
For a more detailed description on timescale separation see [58] or [25].

Introduction of explicit time delay, is used in a few studies as a mean to simplify
biological models e.g. [22, 69]. Consecutive interactions in an ODE model often
give rise to a time delay in the system. In the above studies, intermediate variables
are removed and instead represented by an explicit delay, reducing the number of
variables, and turning the system into a system of delayed differential equations
(DDE). It can be noted that DDE systems, however, being infinite dimensional, are
in general harder to analyze than ODE systems.

Aside from model reduction, the question whether to use explicit delay or slow
intermediate variables, when modeling biological systems has been discussed [55].
Oscillations in biological systems are often assumed to be due to a delayed feedback
loop and the delay is often modeled by slow intermediary variables. This may have
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the consequence that processes such as transcription and translation are assumed
to be instantaneous. In [55] it is shown in a model of the oscillatory expression of
Hes1, p53 and NF-κB that no intermediate variables are needed to get oscillations if
an explicit transcriptional delay is introduced. This is a principally important result,
since it is preferable to include an anonymous delay in the system (that of course
could be due to an intermediate variable) than a variable that correspond to a protein
that might not exist. If a truly delayed process is modeled as instantaneous (even
though slow) this can result in erroneous parameter estimates.

Sensitivity analysis based methods A sensitivity analysis (SA) investigates how
the model output depends on the model parameters and can be performed through
a local SA, describing infinitesimal changes around a nominal point in parameter
space, or through a global SA, investigating larger parts of the parameter space, often
by statistical analysis. More information about sensitivity analysis can be found in
[80]. In model reduction SA is often used through two steps. First all parts (e.g.
terms, reactions, variables) of a model are ranked according to their influence on
the model output. In the next step parts that are considered to be unimportant for
the considered behaviour are removed (corresponding to low ranked parts) [11, 58].
This is not a trivial task, however, since individual parts can have a low sensitivity,
but combinations of parts can be crucial. Also for a local sensitivity analysis the
result depend on the nominal parameter value that the sensitivity analysis starts off
from. Therefore, an individual ranking list can only be considered as a guide. Also
notable is that the original model structure must be considered during the removal
of variables, so that the remaining model is biochemically consistent. One example
of model reduction based on SA can be found in [51], where SA together with flux
analysis and principal component analysis is used to reduce a model of epidermal
growth factor (EGF) mediated signaling and trafficking. SA is also used in [5] to
guide the order of removal of parameters in the model.

Identifiability. In [65] the concept of unidentifiability is used to reduce rate
expressions. The rationale is that an unidentifiable rate expression has more than
one parameter set that can describe data equally well and that simpler expressions
therefore could be used. In the systematic method of [65], the rate expressions have
to be in rational form, i.e. a fraction between two polynomials. The reduction is
next performed in a reaction-wise manner, so that the complexity of the individual
rate expressions is reduced, while the structure of the cellular network is conserved.
The reduction is performed in relation to a reference data set, corresponding to
in silico simulations of the original full-scale model, and parts of the reaction rates
that are unidentifiable with respect to this data are removed. By this method terms
of the reaction rates that are less important for the model behaviour, as represented
by the reference data, are removed. This procedure thereby identifies the function-
ally important interactions. Another important study exploits the profile likelihood
to detect structural and practical non-identifiabilities and suggests the use of this
methodology for model reduction [59]. We also refer to [45] where issues related to
identifiablity are discussed.
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Topological filtering and viable parameter spaces.Uncertainties inmodel struc-
ture often makes it necessary to evaluate more than one model topology, where dif-
ferent topologies correspond to different biological hypothesis (see also [70]). In a
recent study [71] a “supermodel” is constructed that incorporates all hypothetical
mechanisms concerning the underlying biological system. This includes the region
of the parameter space of this supermodel that is compatible with the experimental
data, called the viable space. The exploration of such a large multidimensional space
is done by a procedure that combines an initial coarse grained global sampling of the
viable space with a subsequent finer grained exploration [86]. This supermodel is
then reduced to a set of newmodels, with reduced topology, by an iterative procedure
where parameters are eliminated.

Another related study [5] is also based on the exploration of a parameter region
where the model yields some required output, here called admissible region. Based
on the shape of this region, parameters and variables are removed and lumped as
long as the dynamical behavior of some target species are preserved. The authors
further use sensitivity analysis as guidance for ordering the parameters during the
reduction procedure.

Change of modeling formalism. The decision on which modeling formalism to
use when describing a system, includes a decision on model detail [9, 16] and a
decision on which underlying processes that are important to include in a model. A
stochastic model representing all molecules of the system is more detailed than an
ODE model which assumes that molecular concentrations are sufficiently large in
order to be approximated with a continuous and deterministic description. An ODE
model in turn is more detailed than a boolean model. Therefore, as an example, can
a boolean model be seen as a reduction of a certain class of ODE models where the
variables can be described as being on or off. This technique was used by Albert and
co-workers to identify conditions for robustness in a large kinetic ODE model of
the Drosophila segmentation [2], and by Davidich and Bornholdt to reduce an ODE
model of the cell cycle [15]. Other ways to reduce model complexity by a change of
formalism is to transform a nonlinear ODE model to a piecewise linear ODE model
[22] or a hybrid model [34].

12.5.2 “Tearing, Zooming and Simplifying”—an Example
of a Model Simplification Procedure

We close this chapter by describing a specific example of a model simplification
procedure developed in [23]. The core concept is to utilize biological properties
such as modularity in order to identify a simplified description of the system and
secondly to develop this methodology using a well characterized biological system.
Hence, we start off from a medium sized non-linear ODE-model of the cell division
cycle which has been pioneered by the work of Tyson and Novak [57]. The method
effectively produces a smaller (in terms of variables and parameters) model in the
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mathematical form of a delayed piecewise linear (DPL) system. The fact that the
simplified model is piecewise linear facilitates the analysis and enables detailed
predictions on parameter relationships that regulate model output such as the cell
size. The tearing-zooming-simplifying approach consists of three steps:

1. tearing or subdividing the original model into subsystems (modules),
2. zooming out and characterizing the modules by input/output transfer functions
3. replacing the modules by simplified descriptions.

This is an iterative process where e.g. information from the second step can suggest
a new subdivision in the first step. This simplification method is akin to the system
theoretical approach to model large engineering systems by tearing and zooming,
see e.g. [14, 83] . The concept of zooming has also been used recently in [72, 73].

The variables of the cell cycle model correspond to protein concentrations, and
before we go into the details of the tearing-zooming-simplifying approach we will
first shortly describe the cell division cycle.

12.5.2.1 The Cell Division Cycle

Cells reproduce by duplicating their contents and then dividing into two.This process
contains two parts, the chromosomic cycle and the cytoplasmic cycle [3]. The chro-
mosomic cycle consists of the exact duplication of DNA, DNA synthesis, and the
subsequent separation of the two copies, mitosis. In parallel to this process, during
the cytoplasmic cycle, all other constituents are doubled in quantity, the cell grows
and thewhole cell is divided into two cells. There needs to be a coordination between,
and interactive control of, the chromosomic and cytoplasmic cycles. This is achieved
by the cell-cycle genes and proteins. Failure in regulation of the cell cycle can result
in uncontrolled cell growth and the initiation of cancer.

Severalmathematicalmodels have been constructed to account for this system e.g.
the pioneering work encoded in the experimentally constrained models of Novak and
Tyson [77], one of which [57] is used in this model simplification example. During
the eukaryotic cell cycle in fission yeast, the cell grows, DNA is replicated (S-phase),
and divided into two daughter cells (M-phase). Between the S-phase and theM-phase
there are also two gap-phases, referred to as G1 and G2.

12.5.2.2 Tearing or Subdividing the Original Model into Subsystems

The final goal of the simplification procedure is to find more or less isolated units
(modules), with a dynamical behavior that can be replaced by simpler descriptions.
Thefirst step in achieving this consists of dividing the originalmodel into subsystems,
based on the topology of the interactions. These potential modules—in the first
iteration—consists of a subset of original variables, and have a corresponding set
of coupled ODEs. It is important that the coupling between the ODEs within the
module is intact, and not torn apart by the subdivision. Therefore a graph describing
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Fig. 12.3 Graph describing the coupling between ODEs, and subdivision into modules (from [23]).
A node in this graph corresponds to a variable of the original model, and there is an edge from node
j to i if j directly affects i (i.e. is on the right hand side of a differential equation defining i). This
graph was used to divide the system into potential modules. a Full DPL-model, subdivision into
switching modules when M ≥ 0. b Small DPL-model, subdivision into switching modules when
M > 0.8. Some of the variables can be replaced by constant parameters (indicated by crosses),
when M > 0.8

the coupling structure of the ODEs is constructed, see Fig. 12.3. The graph illustrates
how the dynamics of different variables depend (directly) on other variables in the
model. Interestingly, this kind of graphical approach for decomposition was recently
utilized in a study on observability of biochemical systems [52].

Putative modules are chosen so that (i) each module has one output-variable,
and (ii) all nodes within the module are connected to the output by a connected
path. Some of the nodes within a module correspond to ODEs which depend on
variables coming from outside the module, denoted input-variables. In addition to
defining modules, the graph is also useful for representing the coupling relevant
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Fig. 12.4 Steady-state response and step function approximation. a The steady state response of
the output [SK ] (concentration of Starter Kinase) to the inputs M (Mass) and [M P F] (Mitosis
Promoting Factor). b The same function as in a but approximated by the step function Ssk . From
[23], for a colored version see the online version of the book

for elucidating dynamical motifs. In the case of the cell cycle model, the feedback
structure within the network and the central role of the protein complex [M P F] is
made more transparent by our procedures (Fig. 12.3).

12.5.2.3 Zooming Out and Characterizing the Module Dynamics
by Input/output Functions

In the next step the dynamical behavior of the potential modules is analyzed by
investigating the input/output relationship. This is performed for each module in
isolation by two complementary procedures. First by describing the steady-state
response of the output in response to different inputs (for an example see Fig. 12.4),
and secondly to consider the response time, i.e. the time it takes for the module to
reach steady state after a significant change of input.

Based on such a characterization and the additional constraint that we avoid mod-
ules to be overlapping, leads to the final modules being selected so that (including
the earlier defined criteria) (i) each module has one output-variable, (ii) all variables
within the module is connected to the output by a connected path, (iii) the modules
are non-overlapping, and (iv) the output has a switching input/output behaviour. By
switching input/output behaviour wemean a steep, sigmoid-like, response curve (e.g.
Fig. 12.4). Most of the variables in this cell cycle example have a dynamics based on
Michaelis-Menten or Hill kinetics, and modules can therefore readily be identified
which have a steep sigmoid almost step-like steady-state dependency on the input.

During this process we also remove variables for which the signal response curve
are constant or almost constant, by re-defining them into constant parameters. In the
cell cycle example this can be done since some of the variables are not “active” in
the regime we are interested in, i.e. when the cell mass is larger than 0.8 (M > 0.8).
In Fig. 12.3 the final modules are illustrated, and in Fig. 12.4 an example of a input-
output curve can be seen.
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12.5.2.4 Replacing the Modules by Simplified Descriptions

In the final step, the modules are replaced by step functions (Fig. 12.4) and a time
delay corresponding to the measured response time (for details see supplementary
material of [23]). This transforms the original system into a piecewise linear sys-
tem (with delay). Not all variables are included into modules, some are removed as
described in the previous section, and some become state-variables of the new sim-
plified system. It can be noted that it is not obvious that replacing the modules with
step functions would turn the remaining system into a DPL-model. This is possible in
this case due the special form of the remaining ODEs of the original model. Whether
this is true also for other models remains to be explored.

12.5.2.5 Elucidating the Core Dynamics by a Simplified Model
and Making Predictions

The simplified (DPL) model of the cell cycle emphasizes some important features
of the system. In the DPL-model, one normal division of the cell, corresponds to
the subsequent move between four linear subsystems (Fig. 12.5). Interestingly, these

Fig. 12.5 Numerical simulation of the of the DPL-model, showing the time evolution of the cell
mass (M), as well as the concentration of the protein complex [M P F] (Mitosis Promoting Factor).
During different parts of the cell division cycle, different linear systems are used, as indicated on
the time course of the variable [M P F](t) with green, red, blue and magenta. The linear systems
correspond to the four cell cycle phases G1, S/G2, M and EM, where EM is the ending of Mitosis.
Which linear system that is used at a certain time t depends on [M P F](t) and [M P F](t − τ) as
detailed in [24]. From [24]
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subsystems can in turn be directly mapped to different phases of the cell cycle (G1,
S/G2, Mitoses, and ending of Mitoses). This means that during each cell cycle phase
only one (linear) subsystem is active, corresponding to a subpart of the whole system,
and thus, to a subset of system parameters. Therefore, during that phase only a few
of the system parameters are “active”, and can influence the behavior of the cell. The
other parameters are “silent”, and can be changed without changing the behavior,
as long as they are changed back when it is their turn, i.e. when their linear system
is active. This also means that different parameters can only act as system-controls
during specific timings of the cell cycle, there is a separation in time between different
functional modules.

The change between linear system (and thus “active” system parameters), occurs
when the system trajectory (i.e. protein concentrations), passes certain thresholds
(phase space switching lines), either immediately or after a certain delay. Based on
the DPL model it can be calculated when this occurs, and which and how different
parameters can affect this. As an example, the switch between the G1 and the S/G2
phase is important for the final size of the cell, and by the DPL-model it can be
predicted how large the cell will be if there is a change in one or more of the model
parameters. It can also be predicted which parameters that can change the size of the
cell, and which combination should be most effective. Other mechanistic principles
can also be found, like the observation that the length of the G1 phase corresponds
to the time delay of one of the system modules. These predictions are qualitatively,
and semi-quantitatively verified in the original model.

The analysis of the DPL-model is based on the calculation of different impor-
tant dynamical features like stability, fixed points, switching thresholds, eigenvalues
and eigenvectors, and analytical conditions for these. The fact that the DPL-model
consists of linear systems enables this, even though the inclusion of delay is a com-
plicating factor. In the study presented in [23] it is shown that the dynamics of the
DPL-model very well could be approximated by the slow eigenvectors of the differ-
ent linear systems (Fig. 12.6), and this facilitated a proof on the global stability of
the system. Finally, a further interesting feature were observed in the original model
and explained in the simplified model [24]. The effect of different parameter pertur-
bations was explored through two different characteristics; an essential effect of a
perturbation made the system stop working (stop oscillating), whereas a modulatory

Fig. 12.6 Validation of the
simplified DPL-model as
well as the slow eigenvector
approximation. From [23],
for a colored version see the
online version of the book
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effect had a more minor but significant effect (change in cell size). It was noted that
several parameters with no modulatory effect whatsoever for smaller perturbations
could in fact be essential to the system, at larger perturbations.

12.5.2.6 What Is Lost by the Simplification?

Three important assumptions are made in the simplification process described above,
(i) variables have time to get sufficiently close to their steady-state before there is a
significant change of input, and (ii) that the transient behaviour is not important and
(iii) that the exact form of the steady-state is not critical for the system, for example,
a sigmoid function can be substituted by a step-function. If this is not the case then
the simplification will fail. One idea behind this is that biological systems appear
to be robust to many biochemical details [56, 82], and that this can be utilized to
retrieve simplified coarse-grained descriptions.

The simplification of the original model was performed in a nominal point in
the parameter space. In an extended investigation [24] it was analyzed how well the
simplified model reproduced the dynamical behavior of the original model for other
parameter values than the nominal point. It was noted that the models agreed well
for smaller parameter perturbation, but for larger there was a disagreement.

12.6 Conclusions

We have within this chapter described how the huge increase in experimental cel-
lular data of the last decades, and the following increase in the size and number of
dynamical models, has been followed by an increasing need for and development of
methods for model analysis through simplification. Since dynamical cellular mod-
els can consist of several hundreds of parameters, representing interactions between
large numbers of species, connected in a nonlinear way by intertwined feedback-
loops it is difficult to determine which parts of the models are important for different
output. Another complicating factor is the model uncertainty, both when it comes to
parameter values as well as topology. New experimental data are both qualitative,
e.g. describing existence of interactions between species, as well as quantitative, e.g.
describing interaction strength, but there is a mismatch between the amounts of qual-
itative versus quantitative data, resulting in not fully constrained or non-identifiable
models.

Model simplification and reduction has herein been presented as a method to meet
these challenges of complexity and identifiability of large-scale cellular models. The
idea is to retrieve a smaller or in someother sense simplermodel,with increased trans-
parency (easier to understand intuitively), increased identifiability and/or increased
predictability. It must also be possible tomap the parts of the simplifiedmodel back to
the biological entities or features of the original model, for predictions to be relevant.
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Other utilizations of simpler models, which are not discussed somuch in this chapter,
are reduced computational times, as well as ameans to comparemodels to each other.

Many different approaches have been taken towards simplification and reduction
of models. There are ‘horizontal’ approaches, working on the same scale or level in
the system hierarchy, for example lumping entities of the same kind together, like
proteins or reactions, or decomposing the system into subsystems and then simpli-
fying or analyzing these separately. Other ‘vertical’ approaches are approximating
features on other scales than the one considered; like approximating a stochastic
model by the average number of species to receive an ODEmodel; or approximating
continuous functions with discrete functions, when transforming an ODEmodel to a
Boolean or piecewise linearmodel; or the common themeof reducing variableswork-
ing on faster time-scales. The different approaches differ in methodology, where, for
example, horizontal approaches use model topology, sensitivity, identifiability, etc.,
vertical approaches often use approximations of different kinds, like averages.

It can also be noted that there is a difference between “local” and “global model
simplification” approaches, i.e. some approaches are performing the simplification
at a specific point in parameter space (e.g. time scale separation), whereas others are
taking into account the full (or parts of the full) admissible parameter space, i.e. the
parameter values for which the model output is consistent with experimental data
(e.g. methods based on identifiability).

Traditional means of analyzing nonlinear dynamical models, like bifurcation
analysis, do not suffice in order to understand these new large-scale models, rather
new approaches have to be taken. Here model simplification and reduction have an
important part to play.
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