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Abstract

Environmental exposures filtered through the genetic make-up of each individual alter the transcriptional repertoire in organs
central to metabolic homeostasis, thereby affecting arterial lipid accumulation, inflammation, and the development of coronary
artery disease (CAD). The primary aim of the Stockholm Atherosclerosis Gene Expression (STAGE) study was to determine whether
there are functionally associated genes (rather than individual genes) important for CAD development. To this end, two-way
clustering was used on 278 transcriptional profiles of liver, skeletal muscle, and visceral fat (n = 66/tissue) and atherosclerotic and
unaffected arterial wall (n = 40/tissue) isolated from CAD patients during coronary artery bypass surgery. The first step, across all
mRNA signals (n = 15,042/12,621 RefSeqs/genes) in each tissue, resulted in a total of 60 tissue clusters (n = 3958 genes). In the
second step (performed within tissue clusters), one atherosclerotic lesion (n = 49/48) and one visceral fat (n = 59) cluster segregated
the patients into two groups that differed in the extent of coronary stenosis (P = 0.008 and P = 0.00015). The associations of these
clusters with coronary atherosclerosis were validated by analyzing carotid atherosclerosis expression profiles. Remarkably, in one
cluster (n = 55/54) relating to carotid stenosis (P = 0.04), 27 genes in the two clusters relating to coronary stenosis were confirmed
(n = 16/17, P,10227and230). Genes in the transendothelial migration of leukocytes (TEML) pathway were overrepresented in all three
clusters, referred to as the atherosclerosis module (A-module). In a second validation step, using three independent cohorts, the A-
module was found to be genetically enriched with CAD risk by 1.8-fold (P,0.004). The transcription co-factor LIM domain binding 2
(LDB2) was identified as a potential high-hierarchy regulator of the A-module, a notion supported by subnetwork analysis, by
cellular and lesion expression of LDB2, and by the expression of 13 TEML genes in Ldb2–deficient arterial wall. Thus, the A-module
appears to be important for atherosclerosis development and, together with LDB2, merits further attention in CAD research.
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Introduction

The mapping of the human genome resulted in new

technologies for studying complex diseases such as coronary

artery disease (CAD) from a functional genomic perspective. By

revealing comprehensive repertoires of molecular activities, these

technologies combined with systems biology analyses will pave the

way for a more detailed understanding of the complexity

underlying common disorders—a prerequisite to advance molec-

ular diagnostics for early identification of disease and to identify

central disease pathways for therapies tailored to specific disease

mechanisms [1–3].

The aim of the Stockholm Atherosclerosis Gene Expression

(STAGE) study was to identify functionally associated genes

important for CAD using whole-genome expression profiles from

multiple organs. To this end, we used a modified version of a two-

way clustering approach [4–6]. In the first step, the algorithm

processed all mRNA signals within one organ to define a number

of tissue clusters. The individual genes of the tissue clusters are

defined by the level of associations between mRNA signals across

all patients. In the second step, the patients are clustered according

to the mRNA signals within each tissue cluster to identify signals

related to clinical phenotypes. In this study, the clinical endpoint

was the extent of coronary atherosclerotic lesions as judged from

the degree of coronary stenosis, measured by quantitative

coronary angiography (QCA). A secondary hypothesis was to

reveal the extent to which any tissue cluster related to coronary

stenosis acts in isolation in one organ or across several organs.

A multi-organ biopsy approach is primarily motivated by the

nature of CAD development: atherosclerotic diseases are believed

to start in adolescence and develop throughout life [7]. The pace

of development depends on genetic and environmental risk factors.

Of particular importance are metabolic disturbances (e.g.

overweight, diabetes and dyslipidemias) that originate in organs

central to energy metabolism, including liver, skeletal muscle, and

fat deposits. Thus, molecular activities (mirrored by mRNA levels)

distant from the actual site of CAD are likely to influence the

progression and extent of coronary atherosclerosis.

The STAGE study comprises 114 carefully characterized

patients, including a compendium of 278 global gene-expression

profiles from five CAD-relevant tissues isolated during coronary

artery bypass grafting (CABG). Using a two-way clustering

approach, we analyzed this compendium to test our main

hypothesis that there are groups of functionally associated genes

(rather than individual genes) of importance for CAD and to

determine whether those groups of genes act in isolation in each

tissue or across several tissues.

Results

Exploratory Clustering of Gene-Expression Profiles in the
STAGE Cohort

To test the main hypothesis of the study we explored the gene

expression profiles of the STAGE cohort. Gene expression profiles

could not be obtained from all tissues in all patients of the STAGE

cohort (n = 114). Therefore, it was important to examine whether

the two subgroups of patients in which gene expression profiles

were obtained—66 patients with gene expression profile from

visceral fat, liver, and skeletal muscle and 40 in whom expression

profiles were also obtained from atherosclerotic and unaffected

arterial wall—had similar clinical phenotypes. Indeed, this

appeared to be the case (Table 1).

In the first step of the two-way clustering analysis, mRNA signals

of 15,042 Reference Sequence transcripts (RefSeq) were examined

in each tissue (Figure 1, Text S1, Figure S1). Importantly, the first

step was performed without preconceptions about the extent of

coronary atherosclerosis in the CABG patients. Instead, tissue-

specific mRNA signals across the patients were analyzed solely to

determine whether or not a given RefSeq belonged to a group of

functionally associated genes in a tissue cluster. The first clustering

step generated 60 tissue clusters representing 4007 RefSeqs/3958

genes (Table S1). Thus, 73% of the RefSeqs or 11,035 RefSeqs

(8663 genes) were excluded from further analysis (i.e., the second

clustering step). Of these 60 tissue clusters, 15 were identified from

the liver gene expression profiles, 11 from skeletal muscle profiles,

20 from visceral fat profiles, and 14 from gene expression profiles of

the atherosclerotic arterial wall (Table S1). To assess the

repeatability and reliability of these clusters, resampling using

Jackknife analysis was performed (Table S1).

In the second step of clustering, the mRNA signals within each

of the 60 tissue clusters were used to cluster the patients. The

extent of coronary stenosis, determined by QCA, was then

compared in the resulting patient groups. Two of the 60 tissue

clusters (n = 49 RefSeqs/48 genes, Table S2, (90% CI: 28–49) and

n = 59 RefSeqs/genes, Table S3, (90% CI: 38–59), respectively)

segregated the patients into groups according to the extent of

coronary stenosis: one cluster in atherosclerotic arterial wall and

one in visceral fat (P = 0.008 (Figure 2) and P = 0.00015 (Figure 3),

respectively).

To determine whether the identified tissue clusters relating to

coronary atherosclerosis are tissue-specific or present in several

tissues, we assessed the gene overlap between the atherosclerosis-

related clusters in atherosclerotic arterial wall and visceral fat.

Seven genes (12%, 14% respectively) were present in both tissue

clusters. Although this overlap may appear small, the statistical

likelihood of observing an overlap of this size by chance was less

than 10210. Thus, this overlap indicates atherosclerosis-related

gene activity common to both visceral fat and atherosclerotic

arterial wall.

Author Summary

The WHO predicts that coronary artery disease (CAD) will
become the leading cause of death worldwide in 2010.
Currently, major research efforts are focused on under-
standing the genetics of CAD through multi-center,
genome-wide association studies of tens of thousands of
patients and controls. Such studies can identify common
variants of general importance throughout the entire
population, which are likely relatively few. The number of
rare genetic variants and variants that act in the context of
environmental risk factors for CAD is probably much
higher. We performed whole-genome expression analyses
in several organs to identify functionally associated genes
important for CAD development. We found an atheroscle-
rosis module (A-module) consisting of 128 genes, enriched
with genetic risk for CAD, involving transendothelial
migration of leukocytes (TEML) and LIM domain binding
2 (LDB2) as its high-hierarchy regulator. Our study design
represents a novel way of understanding the molecular
underpinnings of CAD, focusing on genome-wide expres-
sion sensing both environmental and genetic influences.
Investigating the relative enrichment of genetic CAD risk in
functional groups (modules and networks) is an alternative
approach to extract additional relevant information from
genome-wide association studies. The A-module and LDB2
are attractive targets for treatments to modulate TEML and
atherosclerosis development.

Atherosclerosis Module
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Confirmatory Clustering of Gene-Expression Profiles of
Carotid Lesions

The molecular underpinnings of atherosclerosis are believed to

be very similar in all major arteries [7]. Accordingly, if the two

atherosclerosis-related tissue clusters identified in the STAGE

cohort are of general importance for atherosclerosis, they should

be possible to confirm, at least in part, in another atherosclerotic

tissue sample. To this end, total RNA samples from atherosclerotic

carotid lesions were isolated from patients undergoing carotid

stenosis surgery (Figure 1 and Table 1). Both the gene expression

profiling and the subsequent two-way clustering analysis were

performed exactly according to the protocol used for the STAGE

cohort. A well-established surrogate measure of the extent of

carotid atherosclerosis [8], the intima-media thickness (IMT), was

determined preoperatively using ultrasound. The first clustering

step generated a total of eight tissue clusters (Table S1)

Table 1. Basic characteristics of the STAGE cohort.

Characteristics STAGE Carotid patients

Entire cohort
Metabolic
expression profiles p-Value

Complete
expression profiles p-Value expression profiles

n (% of total) 114 (100) 66 (58) 40 (35) 25 (100)

Age, y (mean6SD) 6668 6668 6668 69611

Male, n (%) 102 (89) 59 (89) 37 (93) 15 (60)

Body-mass index, kg/m2 (mean6SD) 26.663.7 26.463.9 26.363.9 25.363.2

Waist-to-hip ratio (mean6SD) 0.9460.06 0.9360.06 0.9360.06 0.9160.07

Blood pressure, mm Hg (mean6SD)

Systolic 141619 140619 135618 150619

Diastolic 8069 80610 7868 7769

Insulin, pmol/L (mean6SD) 62647 59649 61653 44616

Proinsulin, pmol/L (mean6SD) 5.665.7 5.165.7 5.566.9 4.662.4

HbA1c, % (mean6SD) 5.261.3 5.060.7 5.060.6 4.860.4

Cholesterol, mmol/L (mean6SD)

Total 4.0861.01 3.9761.08 3.8361.02 4.7461.21

VLDL 0.3260.25 0.2960.25 0.2660.25 0.2260.17

LDL 2.0960.79 2.0160.84 1.8760.76 2.6060.90

HDL 1.4960.29 1.5160.33 1.5460.39 1.7460.48

Triglycerides, mmol/L (mean6SD)

Total 1.4160.73 1.3660.70 1.4160.76 1.2360.49

VLDL 1.0460.67 0.9760.64 0.9860.68 0.7960.42

LDL 0.2660.09 0.2760.09 0.2860.09 0.2960.09

HDL 0.1660.05 0.1760.05 0.1960.06 ,0.01 0.2060.08

Current smoker, n (%) 8 (7) 4 (6) 2 (5) 1 (4)

Former smoker, n (%) 70 (61) 42 (64) 25 (63) 18 (67)

Alcohol consumption, g/week (mean6SD) 120696 117689 124682 1176106

Stenosis score (mean6SD) - 5.0662.41 5.3762.43 NA

IMT, mm (mean6SD) NA NA NA 1.2460.24

Diabetes mellitus, n (%) 24 (21) 11 (17) 5 (13) ,0.05 2 (8)

Insulin-requiring 23 (20) 9 (14) 5 (13) 1 (4)

Hyperlipidemia, n (%) 84 (74) 49 (74) 27 (68) 13 (52)

Statins 101 (89) 61 (92) 37 (93) 15 (60)

Hypertension, n (%) 72 (63) 43 (65) 25 (63) 16 (64)

Betablocker 103 (90) 62 (94) 38 (95) 11 (44)

ACE inhibitors 42 (37) 25 (38) 15 (38) 5 (20)

Thiazide diuretics 0 (0) 0 (0) 0 (0) 1 (4)

Loop diuretics 26 (23) 13 (20) 10 (25) 3 (12)

Calcium-channel blockers 15 (13) 7 (11) 4 (10) 5 (20)

p-Values were calculated using unpaired t-tests comparing subgroups in STAGE with the entire STAGE cohort (n = 114). Subgroups are included in the entire cohort.
NA indicates not available. HbA1c, glycated haemoglobin; VLDL, very low density lipoprotein; LDL, low density lipoprotein; HDL, high density lipoprotein; IMT, intima-
media thickness; ACE, angiotensin-converting enzyme.
doi:10.1371/journal.pgen.1000754.t001

Atherosclerosis Module
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representing 904 RefSeqs/894 genes. In the second clustering

step, one of the eight tissue clusters (n = 55 RefSeqs/54 genes,

Table S4, (90% CI: 32–55)) segregated the patients into two

groups according to IMT score (P = 0.039, Figure 4). Remarkably,

16 of the 55 RefSeqs overlapped with genes in the visceral fat

cluster (P = 10227), and 17 with genes in the atherosclerotic arterial

wall cluster (P = 10230) (Figure 5A). Six RefSeqs (representing the

genes encoding C-type lectin domain family-14, cadherin-5,

chromosome 20 open reading frame-160, endothelial differentia-

tion sphingolipid G-protein-coupled receptor-1, G protein-coupled

receptor-116, and LIM domain binding 2 (LDB2)) were in all three

clusters (P = 10223); the union of the clusters contained 129

RefSeqs/128 genes (Figure 5A, Table S5).

Network and Bioinformatic Analyses of the
Atherosclerosis Module

The highly significant overlaps between the three clusters in the

atherosclerotic arterial wall, visceral fat and carotid stenosis

suggest that the union of all genes may represent a module

harboring biological activity important for human atherosclerosis

(referred to as the A-module). To investigate interactions between

genes in the A-module, gene expression profiles from these tissues

were reused to infer a total of three gene networks (Text S1). In

Figure 5B, a network supported by nodes and edges in at least two

of the three networks is shown. The network of A-module genes

consisted of 49 nodes (genes) interacting with a total of 55 edges, of

which LDB2 had 19 edges and BCL6B had 14 edges.

To learn more about the functional representation of the A-

module, bioinformatic analysis using Gene Ontology (GO) and

KEGG pathway was performed (Table S6). Thirty-one of the 128

genes had previously been related to atherosclerosis (Table S9), 40

had no GO annotation, and six participated in regulatory activity

(Text S1). Only 39 of the 128 genes had annotation in KEGG

pathways. Twenty-three of these 39 genes (,60%) were associated

with the transendothelial migration of leukocyte (TEML) pathway

with a statistical significant enrichment score [9] (P = 6.661025,

FDR = 0.01; Figure 5C).

Enrichment of Genetic Risk for CAD in the Atherosclerosis
Module

If gene activity in the A-module is casually important for

atherosclerosis development (and not merely reactive marker for

the extent of atherosclerosis), functionally associated single

nucleotide polymorphisms (SNPs) in the vicinity of the 128 A-

module genes should be enriched for CAD risk. In addition, such

enrichment would further strengthen our notion that the A-

module genes as being important in atherogenesis. To investigate

this, we first identified SNPs in the A-module that were

significantly associated with gene expression (eSNPs, indicating a

functional relation between the SNP allele distribution and gene

expression (Text S1)) using two genetics of gene expression (GGE)

studies [10]. Next, to test whether the identified eSNPs also were

enriched for association with CAD, we assembled results from a

recent genome-wide association study (GWAS), the Wellcome

Figure 1. Analytical scheme of multi-organ clustering steps in the STAGE study. Sixty-six gene profiles (15,042 RefSeqs each) from liver,
skeletal muscle, and visceral fat and 40 from atherosclerotic aortic wall were clustered by a coupled two-way approach. First, the RefSeqs were
clustered according to their average probe signal values on the chip (mRNA level, see figure ‘‘clustering’’) resulting in 11 skeletal muscle, 20 visceral
fat, 15 liver, and 14 atherosclerotic arterial wall clusters together representing 4007 RefSeqs/3958 genes. Second, clustering within each tissue cluster
was performed to sort patients by mRNA levels. Clusters that sorted the patients according to extent of coronary stenosis were considered further. To
validate these atherosclerosis-related clusters, we performed cluster analysis of 25 gene-expression profiles of carotid atherosclerosis lesions. Of eight
clusters representing 903 RefSeqs/894 genes, one segregated patients according to IMT. The extent of overlap between this cluster relating to carotid
atherosclerosis and the two clusters relating to coronary atherosclerosis was used as the confirmatory measure. Genetic enrichment and functional
gene classifications were then assessed by bioinformatic and TRANSFAC analyses. Animal and cell models were used for functional validation of
individual genes.
doi:10.1371/journal.pgen.1000754.g001

Atherosclerosis Module
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Figure 2. Heat map of an atherosclerotic arterial wall cluster related to coronary stenosis. The cluster was defined by related mRNA levels
(indicated by average probe signals on the arrays) and identified as one of fourteen atherosclerotic arterial wall clusters by the second step of
coupled two-way clustering of mRNA profiles from STAGE patients (Text S1). Columns represent individual patients, and rows individual RefSeqs with
corresponding gene symbols and mRNA ratios of the two patient groups. Above heat map: individual patient numbers, below heat map: bars
indicating individual stenosis score together with means 6 SD and average ratios in each group and P-values for comparing groups. EVA1 is
represented by two RefSeqs.
doi:10.1371/journal.pgen.1000754.g002

Atherosclerosis Module
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Figure 3. Heat map of a visceral fat cluster related to coronary stenosis. The cluster was defined by related mRNA levels (indicated by
average probe signals on the arrays) and identified as one of 20 visceral fat clusters by the second step of coupled two-way clustering of mRNA
profiles from STAGE patients (Text S1). Columns represent individual patients, and rows individual RefSeqs with corresponding gene symbols and
mRNA ratios of the two patient groups. Above heat map: individual patient numbers, below heat map: bars indicating individual stenosis score
together with means 6 SD and average ratios in each group and P-values for comparing groups. Red highlighting indicates genes also found in the
cluster in Figure 2.
doi:10.1371/journal.pgen.1000754.g003

Atherosclerosis Module
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Trust Case Control Cohort (WTCCC) study [11]. Since the GGE

and WTCCC studies used different SNP-microarray platforms,

strong linkage disequilibrium (LD) (R.0.84) was used to confer

matches between eSNPs and WTCCC SNPs resulting in a set of

484 eSNPs. The distribution of P-values for CAD associations

according to the WTCCC study for these 484 eSNPs is shown in

Figure 5D. To determine whether this distribution was signifi-

cantly enriched for CAD risk, we empirically estimated the null

distribution of 100,000 random sets of 484 WTCCC eSNPs.

10.3% of the 484 eSNPs in the A-module had a significant

association to CAD (P,0.05), compared to an average of 5.8% of

the eSNPs (95% CI: 2.5%–9.2%) in the random sets (Z = 2.64;

P = 0.004), representing a 1.8-fold enrichment of CAD risk in the

A-module. When instead all SNPs were considered, the enrich-

ment of CAD risk in the A-module was 1.4-fold (Z = 2.71;

P = 0.003).

Identifying a Putative Regulator of the Atherosclerosis
Module

Of the six genes in the intersection of all three clusters making

up the A-module (Figure 5A), LDB2 was the only transcriptional

regulator. The re-occurrence of this transcriptional co-factor in

three separate genome-wide analyses suggested a regulatory role of

the A-module genes. A notion supported by the interconnectivity

of LDB2 in the network analysis (Figure 5B). To investigate this

possibility further, we first identified seven transcription factors

(TFs) (ISL-1alpha, Lmo2, Lhx3a, Lhx3b, LHX2, LHX4, and

BRCA1) having LIM-binding domains [12] or otherwise previ-

ously been shown to interact with LDB2 [13]. We then performed

in silico sequence matching for 161 promoters (Ensembl) found in

122 of the 128 A-module genes using TRANSFAC (v11.2) [14].

Of these 161 promoters (target promoters), 81% had binding site(s)

for at least one of the seven TFs, suggesting that LDB2 could

regulate the A-module via these TFs. In relation to a background

of 10,255 human promoters covering a [-600,-1] region relative to

transcription start sites, binding to the target promoters was

enriched 1.2- to 5-fold (Text S1, Table S10). The enrichment for

the entire family of 7 TFs was statistically significant (P = 0.011).

Functional Validation of LDB2 in Atherosclerosis
Next, we investigated the possible role of LDB2 in atheroscle-

rosis in vitro in three major atherosclerosis cell types as well as in vivo

in atherosclerosis-free arterial wall and in early and late

atherosclerotic lesions in atherosclerosis-prone Ldlr2/2Apob100/100

mice [15]. The presence of LDB2 in the arterial endothelium was

first assessed by co-localization of LDB2 with the endothelial

marker von Willebrand factor (VWF). LDB2 expression was most

obvious in the endothelium before an atherosclerotic lesion had

developed and generally co-localized with VWF (Figure 6A, 406).

In late and early lesions, LDB2 endothelial expression was patchy

and subtler, and the co-localization with VWF was less clear

except in the endothelium of lesion-free areas (e.g., cusps;

Figure 6A). LDB2 expression in endothelial cells was confirmed

by RT-PCR analyses in a human endothelial cell line (EAHY926)

and in human umbilical vein endothelial cells (HUVECs)

(Figure 6B). In accordance with the immunohistochemical results,

the mRNA levels were higher in noninduced than in induced

EAHY926 cells (Figure 6B).

To investigate LDB2 protein expression in other atherosclerosis

cell types, CD68 was used as a marker of lesion macrophage/foam

cells and SM22 (transgelin) as a marker of lesion smooth muscle cells

(SMCs). In early lesions, LDB2 staining was subtle (but clearly

present compared to control) and appeared to co-localize with both

CD68 and SM22 (Figure 6C). In late lesions, LDB2 staining was

marked, and in all locations of LDB2 staining there was also CD68

staining. In this sense, there was co-localization of LDB2 and CD68.

However, the CD68 staining was generally stronger, and some areas

with CD68 staining had little or no LDB2 staining. LDB2 also co-

localized with SM22, but some areas with marked LDB2 staining

had no SM22 staining (Figure 6B, ovals). LDB2 was also expressed

in macrophages/foam cells in human carotid lesions (Figure S2).

Figure 4. Heat map of a carotid stenosis cluster related to IMT.
The cluster was defined by related mRNA levels (indicated by average
probe signals on the arrays) and identified as one of eight carotid
stenosis clusters by the second step of coupled two-way clustering of
mRNA profiles from Carotid Stenosis patients (Text S1). Columns
represent individual patients, and rows individual RefSeqs with
corresponding gene symbols and mRNA ratios of the two patient
groups. Below heat map: bars indicating individual IMT together with
means 6 SD and average ratios in each group and P-values for
comparing groups. Red highlighting indicates genes also identified in
the clusters in Figure 2 and Figure 3. EVA1 is represented by two
RefSeqs.
doi:10.1371/journal.pgen.1000754.g004

Atherosclerosis Module
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The immunohistochemical results were largely confirmed by

RT-PCR analyses of primary SMCs and macrophages and a

human monocytic cell line (THP-1) (Figure 6D). Consistent with

the higher protein expression in late lesions than in early lesions,

LDB2 mRNA levels increased with differentiation of THP-1

monocytes to macrophages and foam cells (panel 1). The

expression of LDB2 in THP-1 was also confirmed in primary

macrophages (panel 2). In primary SMCs isolated from human

pulmonary artery, there was also clear expression of LDB2, which

in comparison with the immunohistochemical results was

surprisingly high (panel 3).

In summary, LDB2 was expressed by all three major

atherosclerosis cell types; before lesion formation and in early

lesions primarily in the endothelium and in late lesions, mainly in

macrophages/foam cells but also in SMCs. The generally higher

LDB2 expression in late lesions was confirmed by RT-PCR of

total RNA from early and late lesions isolated from mouse aortic

arch samples (Figure 6E).

Last, we examined mRNA levels of 20 genes central to TEML

in the arterial wall of 6-week-old Ldb22/2 mice. Our goal was to

investigate a possible role of LDB2 as a regulator of TEML genes

in general and specifically as a regulator of A-module genes. All 20

genes had higher levels of expression in Ldb22/2 than in wild-type

mice whereof 13 was significantly higher (Table 2). Eight of these

13 genes were specific to the A-module, and five were not. Of

note, five of the investigated genes have previously been targeted

in mouse models of atherosclerosis and found to be affecting lesion

development [16–20].

Figure 5. Intersection, network and bioinformatic analyses of the A-module. (A) Venn diagrams showing overlaps of genes in the A-module
(three clusters related to extent of atherosclerosis) (Figure 2, Figure 3, Figure 4). Seven genes were found in both the atherosclerotic arterial wall and
visceral fat clusters (P = 10210), 17 in the atherosclerotic arterial wall and carotid stenosis clusters (P = 10230), and 16 in the visceral and carotid
stenosis clusters (P = 10227). Six genes were found in all three clusters (P = 10223). The union of all three clusters represented 128 genes. (B) A gene
regulatory network inferred by co-expression of A-module genes using genome-wide expression data from the atherosclerotic arterial wall, carotid
stenosis tissue, and visceral fat. Network edges are supported by at least two of the datasets, resulting in a total of 49 nodes. Marked in black are
nodes (genes) with known regulatory activity, which are prioritized by the algorithm (Text S1). Marked as diamonds are 24 genes present in
intersections between at least two of the clusters in Figure 5A (n = 27). (C) The TEML pathway. Marked in red are eight genes in the A-module that
perfectly matched genes in the TEML pathway (P = 6.661025). Marked in blue are 15 genes in the A-module that were associated with the TEML
pathway according to Panther family annotation in DAVID. For a list of all genes in the TEML pathway and Panther families see Table S7 and Table S8,
respectively. (D) The P-value distribution of 484 eSNPs (SNPs with allele distribution affecting gene expression) in the A-module indicating association
with CAD according to a recent GWAS, the WCTTT study [10].
doi:10.1371/journal.pgen.1000754.g005
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Taken together, the functional validation supports a role for

LDB2 in TEML and atherosclerosis development. Particularly,

since endothelial LDB2 seems to regulate TEML already before

microscopic evidence of lesion formation.

Discussion

In the STAGE study, we profiled five CAD-relevant tissues to

identify functionally associated genes with potential importance in

Figure 6. LDB2 expression in atherosclerotic lesions and cultured lesion cell types. Total RNA was isolated from cell cultures and
mouse aortic arch (third rib to aortic root). Consecutive mouse aortic root sections were incubated with goat anti-LDB2, rat monoclonal anti-
mouse CD68, rabbit polyclonal anti-mouse SM22 alpha, or rabbit polyclonal anti-human VWF at 4uC overnight and counterstained with
hematoxylin. RT–PCR was performed on total RNA isolated from human pulmonary artery SMCs, THP-1 monocytes, THP-1 macrophages
generated with phorbol 12-myristate 13-acetate, THP-1 foam cells cultured from THP-1 macrophages incubated with acetylated low density
lipoproteins, primary macrophages differentiated from primary monocytes isolated from human blood with AB serum, cultured EAHY926
cells, EAHY926 cells induced with 20-ng/ml human recombinant TNF-a, and HUVECs isolated with collagenase. (A) Mouse LDB2 and VWF
protein expression in serial sections of aortic roots from Ldlr2/2Apob100/100 mice at 10 weeks (arterial wall without visual atherosclerosis,
‘‘non-atherosclerotic’’), 20 weeks (early lesions, fatty streaks), and 50 weeks (late lesion, plaques). Ovals indicate areas of overlapping LDB2
and VWF staining in relation to negative controls. (B) LDB2 mRNA levels in EAHY926 cells, induced EAHY926 cells, and HUVECs (n = 4 per cell
type; scales on Y-axes are comparable because the RT-PCR was performed in one single run). (C) Mouse LDB2, CD68, and SM22 alpha protein
expression in serial sections of aortic roots from Ldlr2/2Apob100/100 mice at 20 and 50 weeks. (D) LDB2 mRNA levels in primary human SMCs,
THP-1 monocytes, THP-1 monocytes differentiated into THP-1 macrophages, THP-1 foam cells, and primary human monocytes differentiated
into macrophages (n = 4 per experiment). Ovals indicate areas of overlap between LDB2 and CD68 but no or very subtle SM22 staining in
relation to negative controls. (E) mRNA levels measured by real-time PCR from late (40 weeks, plaques, n = 5) and early (20 weeks, fatty
streaks, n = 5; lesions from the aortic arch in Ldlr2/2Apob100/100 mice.
doi:10.1371/journal.pgen.1000754.g006
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coronary atherosclerosis. This analysis revealed 128 genes that

were strongly associated with atherosclerosis severity (A-module).

The A-module was found to be enriched with genetic risk for CAD

and involve the TEML pathway. Parts of the A-module were

active in both atherosclerotic arterial wall and visceral fat. The

latter may be a local source of inflammation contributing to

coronary atherosclerosis. We also identified a putative high-

hierarchy regulator of the A-module, LDB2, which was robustly

expressed in all major lesion cell types both in lesion-free and in

late atherosclerosis lesions. Interestingly, key genes in the TEML

pathway were differentially regulated in the arterial wall of Ldb2-

deficient mice. Our findings suggest that the A-module, including

LDB2, is important in the regulation of TEML and in

atherosclerosis development.

TEML is an established pathway in atherosclerosis and

other inflammatory diseases [21]. Transendothelial migration

of monocytes is essential for foam-cell formation and for early

phases of atherogenesis, and transendothelial migration of T-

cells may be central in later phases [22]. Indeed, leukocyte

migration has been suggested as a therapeutic target [23]. The

identified module was enriched in genes involved in TEML

and thus may be causally involved in the development of

clinically significant atherosclerotic lesions (as indicated by the

extent of coronary stenosis and IMT). However, most of the

identified A-module genes lack pathway annotations but may

in future studies be proven important to leukocyte migration or

its regulation.

The STAGE study was designed as a ‘‘top-down’’ systems

biological approach to identify gene networks or groups of

otherwise functionally associated genes (modules) of importance

for disease severity [3]. The term ‘‘top-down’’ refers to our belief

that these modules must first be identified in clinical studies as the

most disease relevant and then be consecutively detailed by studies

in animal and cellular models to reveal high-resolution networks

[24]. In contrast, ‘‘bottom-up’’ systems biology approaches first

identify full biological networks in prokaryotic or yeast cells and

then examine their roles in more disease-relevant systems. Systems

biological approaches have advantages over traditional gene-

expression profiling studies, which usually focus on identifying

individual genes differentially expressed as a result of disease. Such

gene-by-gene analyses generate many false positives due to a vast

‘‘multiple testing’’ problem. In contrast, the two-way clustering

approach first focuses on identifying functionally associated genes

(which in the current study reduced the number of genes from

12,621 to 3958 represented in 60 tissue clusters) and then

investigate whether the generated clusters (not individual genes)

are related to a given disease phenotype.

Using a multi-organ approach [3], we hypothesized the liver,

skeletal muscle, or fat deposits would harbour functionally related

genes (e.g., clusters, modules, networks) reflecting molecular

processes in those organs affecting the levels of inflammatory

mediators, blood lipids, glucose or unknown blood constituents

that contribute to coronary atherosclerosis development. There

were no clusters relating to the extent of coronary atherosclerosis

Table 2. mRNA levels measured by real-time PCR from the aortic arch of 6-week-old mice deficient in Ldb2 (Ldb22/2) and
littermate wild-type controls (Ldb2wt/wt).

Category Gene Symbol Ldb2wt/wt Ldb22/2 p-Value

A-module genes associated to TEML

Claudin 5 Cldn5 3076108 3976271 0.47

Phospholipase C gamma 2 Plcg2 461665 7266219 0.019

Cadherin 5 Cdh5 3526114 6036179 0.011

Chemokine (C-X-C motif) ligand 12 Cxcl12 4986103 7156168 0.015

Platelat/endothelial cell adhesion molecule Pecam1 3456122 5646157 0.016

Angiotensin II receptor-like 1 Aplnr 4356253 8466404 0.069

Kinase insert domain receptor Kdr 3866224 9646555 0.043

Protocadherin 12 Pcdh12 4916188 7856339 0.10

Protein Kinase N3 Pkn3 4106193 10766697 0.050

Protein kinase C eta Prkch 5476199 10456369 0.019

Protein tyrosine phosphatase receptor type B Ptprb 4866167 11156575 0.030

Tek tyrosine kinase (endothelial) Tek 4306122 10686551 0.021

Tyrosine kinase with immunoglobulin-like and EGF-like domains 1 Tie1 5246170 8956374 0.056

Other TEML genes

Intercellular adhesion molecule 1 Icam1 405654 533673 0.0042

F11 receptor F11r 388659 6146151 0.0037

Junction adhesion molecule 2 Jam2 452670 6166137 0.018

Junction adhesion molecule 3 Jam3 567653 7416163 0.022

Vascular cell adhesion molecule 1 Vcam1 492683 7306134 0.0025

Thymus cell antigen 1 Thy1 5566158 7076264 0.23

CDC42 effector protein (Rho GTPase binding) 5 Cdc42ep5 5406127 6226119 0.26

Values are mean 6 SD. p-Values are calculated with unpaired t-test.
Values are normalized to acidic ribosomal phosphoprotien P0 and TATA box binding protein.
Ldb22/2, n = 5–6; Ldb2wt/wt, n = 6–7.
doi:10.1371/journal.pgen.1000754.t002
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in the liver and skeletal muscle. This was surprising given the

importance of these organs for CAD risk factors, such as plasma

cholesterol and diabetes. However, therapies to reduce plasma

lipid and glucose levels (Table 1) might have normalized disease-

promoting activities in CAD-modules in these organs. In contrast,

we identified one part of the A-module in visceral fat that

segregated patients according to the degree of coronary stenosis.

Although the relation of visceral fat to CAD risk factors in blood is

less clear, a high waist-hip ratio—an indicator of increased visceral

fat mass in the abdomen—is a strong predictor of CAD [25]. An

interesting aspect of the visceral fat in the mediastinum is its

anatomic location and the possibility that it is a source of local

macrophages releasing inflammatory mediators [26]. Another

possible cellular source for the presence of the TEML-enriched

atherosclerosis module in visceral fat may be endothelial cells,

which are relatively enriched in this tissue. Although our study

does not directly address the subcellular origin of the A-module in

visceral fat or how it contributes to atherosclerosis, it might be a

local source of inflammatory mediators that increase the rate of

atherosclerosis progression [27].

In all, 60 tissue clusters were identified, two of which—one in

atherosclerotic lesion and one in visceral fat—related to the extent

of coronary atherosclerosis. This might appear to be a small

fraction (2/60, ,3%). However, since the first clustering step takes

no phenotypic data into consideration but is entirely based on the

mRNA signals in each tissue, these 60 clusters may relate to tissue

physiology or subtraits of CABG patients (Table 1). Examining the

latter possibility, we found that as many as 41 of the tissue clusters

(besides the two related to extent of coronary atherosclerosis)

segregated the patients into groups with significant difference in

the levels of subtraits (not shown).

The gene expression clustering was done with the absolute value

of Spearman rank correlation as distance measure. Thus, we also

included inverse correlated genes which could be implicated in the

same pathway and functionally related. Moreover, Spearman rank

correlation is a non-parametric measure stable against outliers and

in this sense a better distance measure than commonly used

Euclidean and Manhattan distances, where the magnitude in

expression levels are important. Of note, a clustering algorithm

could produce different clusters depending on the distance

measure used and the A-module could therefore have been

different or even lost by other metric clustering choices.

We used atherosclerotic aortic wall/internal mammary artery

(IMA) ratios to highlight atherosclerosis gene expression in the

aortic wall because both aortic wall and IMA samples contain

normal wall gene expression. Unlike the aortic wall, however, the

IMA has no atherosclerosis [28]. This notion was supported by

macro- and microscopic examinations of randomly chosen sets of

aortic wall and IMA samples. Moreover, two-way clustering of

mRNA signals from the aortic wall samples alone did not generate

any cluster that segregated patients by stenosis scores (not shown),

which may be due to a relative large portion of normal vascular

wall gene expression in this tissue. However, we cannot entirely

exclude the possibility that using the aortic wall/IMA ratios

resulted in some false-positive genes (nonatherosclerosis genes

related to normal vascular wall gene expression) that should have

been excluded from the A-module or false-negative genes that

otherwise should have been included.

We decided to use two different atherosclerosis cohorts—

coronary for the exploration and carotid for the confirmatory step.

In doing so, we added more credibility to the confirmatory step

that would have been lost if we instead had used identical cohort

for exploration and confirmation. The validation in the carotid

cohort indicates a general importance of the A-module in

atherosclerosis and at the same time rules out the possible risk

that any of the tissue clusters identified in the STAGE cohort was a

result of the exploratory study design (e.g. choice of sample

locations and/or using ratios instead of straight expression) rather

than related to atherosclerosis. The extents of coronary and

carotid atherosclerosis (as judge from the surrogate measurements

of stenosis score and IMT [8,29]) have repeatedly been shown to

be highly correlated [30]. This observation is not entirely

surprising since atherosclerosis development and the principal

molecular processes underlying this development have been found

to be very similar in all major arteries, regardless of location [7].

Currently, GWAS are given much attention in leading scientific

journals. However, such studies have some limitations, since they

are primarily designed to identify the relatively few DNA variants

that influence the risk of developing complex diseases, like CAD,

independently of other risk factors [31]. In the current study, we

used a recently published GWAS [11] to further validate the A-

module genes by calculating the relative enrichment of genetic

CAD risk in the module. Unlike today’s GWAS, which link DNA

variation directly to clinical phenotypes, future studies that also

include intermediate expression phenotypes have the potential to

extract much more disease-relevant information on DNA variation

that contributes to the development of complex diseases. For now,

this information remains hidden in the data generated by GWAS.

Genes encoding LIM domain-binding factors such as LDB2

were initially isolated in a screen for proteins that physically

interact with the LIM domains of nuclear proteins. These proteins

bind to a variety of TFs and are likely to function as enhancers,

bringing together diverse TFs to form higher-order activation

complexes [32–33]. Our screen of LDB2-associated TFs identified

ISL-1alpha, Lmo2, Lhx3a, Lhx3b, LHX2, LHX4, and BRCA1.

ISL-1alpha enhances HNF4 activity and thus insulin signaling

[34–35]. Lmo2 is involved in angiogenesis [36–37]. Lhx3 and

Lhx4 regulate proliferation and differentiation of pituitary-specific

cell lineages [38] and are expressed in subsets of lymphocytes [39]

and thymocyte tumor cell lines [40]. BRCA1 is associated with a

selective deficiency in spontaneous and LPS-induced production of

tumor necrosis factor (TNF)-a and of TNF-alpha-induced

expression of intercellular adhesion molecule-1 (ICAM1) on

peripheral blood monocytes [41] and in controlling the life cycle

of T-lymphocytes [42]. LDB2 has not previously been related to

CAD or atherosclerosis. Because of its high-hierarchy regulatory

role and involvement in diverse biological processes, LDB2 is an

interesting target for further evaluation in complex diseases.

Being the only transcriptional regulator among the six genes

relating to severity of atherosclerosis present in all three tissue

clusters (Figure 6A), LDB2 was chosen for functional validation in

atherosclerosis. However, despite the fact that none of the other

five genes were transcriptional regulators, they might still be of

functional importance for atherosclerosis development, which

remains to be determined. In nonatherosclerotic arterial wall and

in early lesions, LDB2 was mainly expressed by the endothelium.

In late lesions, LDB2 expression was more intense and mainly seen

in macrophages/foam cells but also in SMCs. The TEML

pathway has been implicated in both early and late atherosclerosis

[23]. This pathway is also active in lesion SMCs accompanying

endothelial cells in recruiting monocytes from the blood to the

atherosclerotic plaque [43–44]. The pattern of LDB2 expression

seen in early and late lesions has been observed for other key

TEML genes (Vcam1, Icam1, Cxcl1, -14, and -16, and Cdc20) [45].

The notion that LDB2 is an important regulator of TEML is

further supported by the fact that 13 key genes in TEML were

differentially expressed in the arterial wall of Ldb22/2 mice

already at 6 weeks of age. Five of those genes have previously been
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shown to affect atherosclerosis in mouse model studies [16–20]. In

addition, a very recent study demonstrated that LDB2 regulates

cell migration both in vitro and in vivo [46]. However, the final

verdict on LDB2 as an important regulator of atherosclerosis

development remains to be determined.

Although it cannot be excluded that the A-module also will be

of importance for early stage of atherosclerosis (e.g., by promoting

early lesion development through activating TEML in the

atherosclerosis-free endothelium), the current study mainly

supports a role of the A-module in late stages of coronary

atherosclerosis. If the activity of this cassette of genes is mirrored,

at least in part, by gene expression in blood (i.e., in leukocytes) or

by plasma protein levels, the A-module may be helpful as a

complement to semi-invasive investigations (e.g., angiography) as

markers of degree of coronary and carotid stenosis.

In conclusion, by adopting a new strategy for functional analysis

of expression profiles isolated from multiple CAD-relevant organs,

we identified a module that is genetically enriched with CAD

risk and important for TEML and atherosclerosis development.

The clinical usefulness, and exact role in CAD of this module

and its high-hierarchy regulator [32–33] LDB2, merit further

investigation.

Methods

Study Patients, Biopsy Collection, and Follow-Up
The STAGE study enrolled 124 patients undergoing CABG at

Karolinska University Hospital, Solna. Forty-two patients under-

going carotid surgery at Stockholm Söder Hospital were recruited

as a confirmatory cohort. The studies were approved by the Ethics

Committee of Karolinska University Hospital. All patients gave

written informed consent.

Tissue samples from the distal IMA, wall of the ascending aorta

(aortic root) at the site of proximal vein anastomosis, anterior

hepatic edge (liver), skeletal muscle, and visceral fat in the

mediastinum were preserved in RNAlater (Qiagen) and frozen at

280uC. Lesions in aortic wall samples [47–48] and the absence of

lesions in the IMA [28] were confirmed by macroscopic and

microscopic examinations (not shown). Carotid plaques were

embedded in OCT (Histolab Products), frozen in liquid isopentane

and dry ice, and stored at 280uC.

One hundred fourteen CABG and 39 carotid stenosis patients

came to a 3-month follow-up visit. Using a standard questionnaire,

a research nurse obtained a medical history and lifestyle

information (e.g., smoking, alcohol consumption, and physical

activity). A physical examination was performed including venous

blood sampling (Text S1).

Coronary and Carotid Atherosclerosis Measurements
All CABG patients underwent preoperative biplane coronary

angiography (Judkins technique). Angiograms were evaluated with

QCA techniques (Medis). The left and right coronary arteries and

their branches were divided into segments [49]. Each segment was

measured during end-diastole. A stenosis score was calculated

from all major lesions in the coronary arteries (1 point, 20–50%

luminal obstruction; 2 points .50% obstruction). In some

patients, right coronary artery occlusion prohibited QCA

evaluation. Before surgery, carotid arteries were examined with

B-mode ultrasound. The far wall of the common carotid artery

was used to measure IMT from the endarterectomy side [50].

RNA Isolation and Expression Profiling
We performed gene expression profiling on three tissues (liver,

skeletal muscle, visceral fat) in 66 of 114 STAGE patients, and also

in 40 of these 66 patients, on atherosclerotic arterial wall and IMA.

In the validation cohort, 25 carotid lesions from 39 patients were

randomly selected for RNA isolation and gene expression

profiling. Aortic arches (third rib to aortic root) were isolated in

RNA later (Ambion) from 6-week-old mice deficient in Ldb2

(Ldb22/2; Mutant Mouse Regional Resource Center, University

of California, Davis), heterozygous and wildtype littermates, and

20- and 40-week-old atherosclerosis-prone mice deficient in the

low density lipoprotein receptor and expressing exclusively

apolipoprotein B100 (Ldlr2/2Apob100/100 mice). Total RNA was

isolated from all biopsies with Trizol (BRL-Life Technologies) and

FastPrep (MP Biomedicals) and purified with RNeasy Mini kit

using DNase1 treatment (Qiagen). Sample quality was assessed

with an Agilent Bioanalyzer 2100. cRNA yield was assessed with a

spectrophotometer (ND-1000, NanoDrop Technologies) before

hybridization to HG-U133 Plus 2.0 arrays (Affymetrix). The

arrays were processed with a Fluidics Station 450, scanned with a

GeneArray Scanner 3000, and analyzed with GeneChip Opera-

tional Software 2.0.

Immunohistochemistry
Mouse aortic roots (aortic valve level) and human carotid lesions

were isolated and frozen in liquid nitrogen, embedded in OCT

compound (Histolab Products), cryosectioned (5 mm), and fixed in

acetone. Endogenous peroxidase activity was quenched with 0.3%

hydrogen peroxide/0.01% NaN3 in water for 10 minutes, and

sections were incubated with 5% blocking serum. Consecutive

sections were incubated with goat anti-LDB2 (Santa Cruz

Biotechnology) [51], rat monoclonal anti-mouse CD68 (Serotec),

mouse monoclonal anti-human CD68 (Novocastra Laboratories),

rabbit polyclonal anti-mouse SM22 alpha (transgelin, Abcam), or

rabbit polyclonal anti-human VWF (DakoCytomation) at 4uC
overnight. In negative controls, primary antibody was replaced

with serum. After rinsing in Tris-buffered saline, sections were

incubated with secondary biotinylated bovine anti-goat, anti-

mouse, or anti-rat (Vector Laboratories) or anti-rabbit IgG

(DakoCytomation). Avidin-biotin peroxidase complexes (Vectas-

tain ABC Elite, Vector Laboratories) were added followed by

visualization with DAB (Vector Laboratories). All sections were

counterstained with Gill hematoxylin (Histolab Products).

Cell Cultures
THP-1 monocytes were plated in 10% fetal calf serum/

RPMI-1640 with L-glutamine (2 mM) and HEPES buffer

(25 mM) (Gibco-Invitrogen) supplemented with penicillin

(100 U/ml) and streptomycin (100 mg/ml) and differentiated

into macrophages with phorbol 12-myristate 13-acetate

(50 ng/ml) (Sigma) for 72 hours. To generate foam cells,

macrophages were incubated with acetylated low density

lipoproteins (50 mg/ml) for 48 hours. Human monocytes were

isolated from blood with Ficoll/Hypaque as described [52],

placed in six-well dishes, and allowed to adhere overnight in

RPMI-1640 supplemented with penicillin (100 U/ml), strep-

tomycin (100 mg/ml), and 10% pooled human AB serum. After

washing, fresh serum-containing medium was added, and cells

were cultured for 6 days and harvested. EAHY926 cells were

cultured in DMEM containing high glucose, penicillin (100 U/

ml), streptomycin (100 mg/ml), 10% fetal calf serum, hypo-

xanthine (100 mmol/l), aminopterin (0.4 mmol/l), and thymi-

dine (16 mmol/l). HUVECs were obtained by collagenase

treatment, cultivated, and identified as described [53]. SMCs

from human pulmonary artery (Clonetics) were cultured in

SmGm2 medium containing growth factors (Clonetics) as

described [54].
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Real-Time PCR
Total RNA (0.15 mg) was reverse transcribed with Superscript

III (Invitrogen). After threefold dilution, cDNA (3 ml) was

amplified by real-time PCR with 1xTaqMan universal PCR

master mix (Applied Biosystems) on an ABI Prism 7000 (PE

Biosystems) using Assay-On-Demand kits containing correspond-

ing primers and probes (Applied Biosystems). mRNA levels were

normalized to acidic ribosomal phosphoprotein P0 and TATA-

box binding protein. Samples were analyzed in duplicate.

Pre-Processing of Gene Expression Data
Gene-expression values were pre-processed with the robust

multichip average [55] procedure in three steps (background

adjustment, quantile normalization, summarization). Of

604,258 perfect-match Affymetrix probe signals, 423,636 were

mapped to transcripts using RefSeq numbers as identifiers

[56], generating 15,042 RefSeq transcripts corresponding to

12,621 genes. Straight expression values (i.e., mRNA signals

obtained from one microarray) were used for data analyses of

all tissue biopsies (including the carotid lesion biopsy in the

confirmatory cohort) except for the atherosclerotic arterial wall

and IMA. The latter two biopsies were combined in

atherosclerotic arterial wall/IMA mRNA ratios before data

analysis. mRNA signals in the atherosclerotic arterial wall

biopsy reflect gene activity in the atherosclerotic lesion and in

normal arterial wall, whereas mRNA signals in the IMA

mainly reflect normal arterial wall gene activity (the IMA is

almost entirely devoid of atherosclerotic lesions) [28]. Thus,

the use of atherosclerotic arterial wall/IMA ratios highlights

gene activity related to atherosclerotic lesions in arterial wall

and excludes that relating to normal arterial wall.

Two-Way Clustering
Coupled two-way clustering [4–6] was performed to identify

small and stable clusters of related signals of importance for CAD.

In the first step, clusters were defined using superparamagnetic

clustering [4], with the absolute value of Spearman rank

correlation as a distance measure between genes. Spearman rank

is a non-parametric measure which is robust to outliers and by

using absolute values we also put together anti-correlated genes.

The analysis was done without using any predefined conceptions

(i.e., phenotypes of the patients). Genes that did not belong to a

cluster were excluded. Then, in the second step, the identified

clusters were related to coronary atherosclerosis by hierarchical

clustering [57] of the patients, using Manhattan distance and

average linkage as distance measures, based on the mRNA signals

in each of the clusters defined in the first step (Text S1).

To assess the repeatability and reliability of these clusters,

resampling using Jackknife analysis was performed [58] (Text S1).

Genetic Enrichment Analysis
A-module genes were mapped to eSNPs (Text S1) using two

GGE studies [10] and tested for enrichment of association with

CAD using the results from the WTCCC study [11]. Different

SNP panels were used in the GGE and WTCCC studies, therefore

we included eSNPs and all SNPs in strong LD (R.0.84) with the

eSNPs. In the 128 A-module genes, there were 97 eSNPs and 387

LD SNPs of the eSNPs, resulting in an expanded set of 484 eSNPs.

Random sampling strategy was used to assess whether the

expanded eSNP set was more likely to associate with CAD than

randomly selected sets of SNPs of equal number. In each random

sample, 97 SNPs located within 1 megabase of human gene

regions were selected to ensure the location of the random SNP

sets matched that of the eSNP set in the A-module. The randomly

selected SNP sets were then expanded by including SNPs in strong

LD (R.0.84) with any of the randomly identified SNPs. We

required the final size of the expanded random set of SNPs to be

within 610% of the expanded set of eSNPs in the A-module.

Therefore, the random sampling scheme produced sets of SNPs in

which the LD, set size, and location with respect to protein coding

genes matched those of the expanded eSNP sets in the A-module.

The process was repeated 100,000 times. For each random SNP

set, we counted the percentage of SNPs with association P-value to

CAD,0.05, and constructed the null distribution. The enrich-

ment P-value was calculated as the number of times that the

percentage exceeds 10.3% from random sampling divided by

100,000.

Statistical Analysis
Clinical and metabolic characteristics are given as continuous

variables with means 6 SD and as categorical variables with

percentages and numbers of subjects. P-values were calculated

with unpaired t tests; skewed values were log-transformed.

Statistical significances in Venn diagrams were computed using

hypergeometric distributions (Text S1). GO and pathway analyses

were performed with DAVID (Database for Annotation, Visual-

ization and Integration Discovery) software [9]. Mathematica 5.2

or StatView 5.0.1 was used for all other calculations. Text mining

was used to define transcripts previously related to CAD and

atherosclerosis (Text S1, Table S9). For promoter analysis,

TRANSFAC (v11.2) [14] was used (Text S1).

Supporting Information

Figure S1 Principles of the cost function in the SPC algorithm.

The superparamagnetic clustering (SPC) algorithm uses a cost

function with a temperature parameter (T) to assign genes into

different clusters. Genes could belong to many clusters (right) or to

no cluster at all (left). At a certain temperature the clusters are

robust and stable against noise (middle).

Found at: doi:10.1371/journal.pgen.1000754.s001 (1.21 MB EPS)

Figure S2 LDB2 proteins and CD68 staining in serial sections of

human carotid plaques. Consecutive human carotid plaque

sections were incubated with goat anti-LDB2 antibody and rat

monoclonal anti-mouse CD68 at 4uC overnight. LDB2 is co-

localized with CD68.

Found at: doi:10.1371/journal.pgen.1000754.s002 (3.17 MB EPS)

Table S1 Gene expression cluster relation to surrogate mea-

surements of atherosclerosis (QCA and IMT).

Found at: doi:10.1371/journal.pgen.1000754.s003 (0.04 MB

XLS)

Table S2 49 RefSeqs corresponding to 48 genes of the

atherosclerotic arterial wall/IMA cluster in Figure 2.

Found at: doi:10.1371/journal.pgen.1000754.s004 (0.02 MB

XLS)

Table S3 59 RefSeqs/genes of the visceral fat cluster in Figure 3.

Found at: doi:10.1371/journal.pgen.1000754.s005 (0.03 MB

XLS)

Table S4 55 RefSeqs corresponding to 54 genes of the carotid

lesion cluster in Figure 4.

Found at: doi:10.1371/journal.pgen.1000754.s006 (0.02 MB

XLS)

Table S5 129 RefSeqs corresponding to 128 genes in the A-

module.

Atherosclerosis Module

PLoS Genetics | www.plosgenetics.org 13 December 2009 | Volume 5 | Issue 12 | e1000754



Found at: doi:10.1371/journal.pgen.1000754.s007 (0.04 MB

XLS)

Table S6 GO and pathway analysis of the three clusters and the

union of all three clusters.

Found at: doi:10.1371/journal.pgen.1000754.s008 (0.03 MB

XLS)

Table S7 TEML pathway genes in DAVID (n = 117).

Found at: doi:10.1371/journal.pgen.1000754.s009 (0.03 MB

XLS)

Table S8 Panther family classification of genes in TEML and

the atherosclerosis module (http://www.pantherdb.org/).

Found at: doi:10.1371/journal.pgen.1000754.s010 (0.03 MB

XLS)

Table S9 2,832 genes previously associated to CAD.

Found at: doi:10.1371/journal.pgen.1000754.s011 (0.38 MB

XLS)

Table S10 Binding sites of transcription factors related to LDB2

among the upstream sequences of the 128 genes in Table S5 as

compared to a background set of sequences.

Found at: doi:10.1371/journal.pgen.1000754.s012 (0.04 MB

XLS)

Text S1 Supporting methods.

Found at: doi:10.1371/journal.pgen.1000754.s013 (0.04 MB PDF)
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H Zhong, VB Bajic, LM Kaplan, U de Faire, S Rostors, EE Schadt, T Ivert,

J Tegnér, J Björkegren. Performed the experiments: S Hägg, J Skogsberg,
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