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10.1 RISE OF BIG DATA, COMPUTING, AND
PREDICTION

Our world has changed dramatically during the last decade. For example, the

rise and embedding of efficient algorithms and computing power in distrib-

uted technologies, such as computers, smartphones, sensors, and the Internet,

have fundamentally transformed our way of living. Large amounts of data,

often referred to as Big Data, are being produced and citizens have access to

an unprecedented amount of data and the challenge is to make sense and use

of this data. Conceptually, such utilization requires an analysis within each

data type as well as across different data types. Effectively, the task of mak-

ing such data useful requires an analysis to address which parts of the data 175
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correlate with each other, which combination of data parts can predict other

parts of a high-dimensional data cube. In its generality, this is a very chal-

lenging task but “simple” examples are abundant. For example, the “Like”

button at Facebook can reveal and predict a surprising amount of information

about the user. The algorithms behind it could predict gender, political opi-

nions, and religious beliefs in close to 90% of cases and to some lesser extent

smoking and drug habits [1]. Importantly, medicine and healthcare are cur-

rently on the verge of a similar revolution. Drivers in this development

include new technologies for molecular profiling and a systems analysis of

disease, which has set the scene for altering medicine and healthcare from

being a reactive art to becoming a preventive science. The sequencing of the

human genome a decade ago and the following postgenomic acceleration of

the development of technology have created a situation of immense large-

scale data production [2]. Especially, the explosion in the last years of next-

generation sequencing (NGS) applications and their continuing drop in price

makes genome-wide, system-oriented approaches in biomedical research

increasingly affordable for many molecular biology labs. Such data produc-

tion at the peta/exabyte level generates enormous challenges with respect to

data management, computing, security, and data analysis [3,4]. The pace of

the technology development and data production has relentlessly accelerated

during the last decade and will continue to do so over the next decade as

genomics enters the clinic. The next step is without a doubt the application of

powerful algorithms on top of these data in order to identify predictive pat-

terns within and across different data sets.

Big Data, computing, and prediction are becoming personal. Ever since

the sequencing of the human genome the notion of a personalized under-

standing of health and disease has been an important primus motor of the

field. In particular, Leroy Hood has been an avid articulator of this ongoing

transformation using the concept of P4 medicine, referring to a Personalized,

Predictive, Preventive, Participatory medicine [5]. Through an integrative

genomics approach, there is a promise to predict and prevent disease and to

benefit from the participation of citizens and patients. Clearly, potential bene-

fits of the concept of P4 medicine include early detection of disease, stratifi-

cation of patients into subgroups that enables the selection of optimal

therapy, early assessment of individual drug responses thus reducing adverse

drug reactions, improvement of clinical trials by reduction of exposure time

and failure rate, and development of tools enabling the clinician to shift the

emphasis from treatment to prevention and from disease to wellness. Yet, to

make progress towards such a vision we need powerful tools for producing,

analyzing, integrating, and modeling large amounts of heterogeneous data

[6,7] and to crystalize this data to personalized knowledge supporting deci-

sions and actions. Hence, the underlying computational challenges in medi-

cine and healthcare and the emerging amounts of data are closing in on the

current situation we already can witness in other domains in our society deal-

ing with Big Data and their analysis.

176 Network Biology and Interactions



10.2 USING GENETIC VARIANTS AS INDEPENDENT
FEATURES IS NOT SUFFICIENT FOR REALIZING
P4 MEDICINE

During the first decade after the sequencing of the human genome, the studies

of genetic variants in the DNA have been at the forefront of research. The

underlying belief, early on, was that by charting single nucleotide polymorph-

isms (SNPs), we would be able to better understand molecular mechanisms

of complex diseases and thereby improve our capability to predict disease

and estimate risk of disease. Thus, large volumes of genome-wide association

studies (GWAS) data have been produced during the last decade and repre-

sent a potential goldmine in conjunction with phenotype information to

unravel mechanisms of complex diseases. To date, thousands of genetic var-

iants (SNPs) have been associated to different diseases and disease-related

phenotypes. It has, however, become increasingly clear that univariate SNP

analyses are not sufficient for either risk prediction or for realizing a P4 med-

icine program. In part due to that in the aftermath of the human genome proj-

ect, several layers of molecular mechanisms have been uncovered which are

important for regulating the activity of genes, thus rendering the task of

understanding mechanisms of disease more challenging than previously

thought. Moreover, it remains unclear why the effect sizes of the genetic var-

iants are as a rule tiny, as discussed elsewhere in this book. In particular why

are the effect sizes small even for a phenotype such as height, despite the fact

that it is known that there is strong genetic component? Consequently, there

is still a vivid debate about how to find what has been referred to as the

“missing heritability of complex diseases” [8]. It is a complex subject and

some assumptions such as the quantitative degree of genetic component for a

given phenotype might be disputed and deserve reinvestigation. Yet, this is a

remaining bottleneck and we are still lacking appropriate computational tools

to fully capitalize on existing GWAS data, specifically the statistical capabil-

ity to analyze GWAS data benefits, and therefore it is limited by the assump-

tion that SNPs are independent. The advantage is the assumption of

independence, which increases the statistical power when testing each SNP

against the phenotype (disease). Yet the limitation is that the very same

assumption forces our analysis to be less comprehensible as genetic interac-

tions will not be detectable by such design. The core problem motivating the

rationale of avoiding an analysis of interactions during this first decade of

genetic analysis is the effective explosion of hypotheses to be tested when

searching for higher order correlations. Such an analysis investigating pair-

wise interactions, for example, requires correction for multiple testing which

unfortunately effectively abolishes the statistical significance [9]. Yet, suc-

cessful analysis of Big Data hinges upon the ability to discover predictive

patterns by pooling and testing parts in the data cube, as in the Facebook

example above. Furthermore, there are strong biological mechanistic justifi-

cations and medical pragmatic reasons for having a statistical framework
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enabling an investigation of higher order statistical interactions. Genes do not

act in isolation and there has to be a physical basis for the observed interac-

tions. From a clinical point of view, interactions between lifestyle/environ-

mental factors and genes are key to understand their effects on the phenotype

(disease). Such an understanding of interactions has the potential to provide

clinical decision support to the physician.

In the current chapter, we address how to interpret higher order statistical

interactions in terms of underlying biological processes purportedly generat-

ing such dependencies. Therefore, we specifically review how biological net-

works, such as those generated from systems biological approaches, could

possibly facilitate the interpretation of observed interactions between genes

or the interactions between genes and environment. In this part, we also

include and explore to what extent epigenetics could mediate and support dif-

ferent kind of interactions beyond linear correlations between the gene tran-

scripts. In the following section in this chapter, we consider how to represent

the problem of discovering interactions as a feature selection problem. Our

rationale is to precisely understand why the problem of interactions is mathe-

matically hard and how we could potentially empower algorithms to detect

interactions. In this section, we end up essentially identifying three major chal-

lenges: (a) how to identify relevant variables (interactions) in high-dimensional

data, (b) how to incorporate prior knowledge, and (c) how to develop robust

methods that do not depend on fine-tuning of method specific parameters. Our

discussion in this second section, emphasizing robustness and prior knowledge,

motivates the final part of this chapter where we revisit biological networks

and discuss how to possibly incorporate prior knowledge derived from systems

biological investigations and thereby possibly increase the statistical power in

the analysis of detecting interactions.

10.3 NETWORK BIOLOGY—A FRAMEWORK FOR
DETECTING AND INTERPRETING GENETIC
INTERACTIONS

10.3.1 Graphs—a Unifying Biological Language

Networks have proven to be the language of choice when we need to under-

stand how to combine large and different types of data in a given biomedical

problem. The usefulness of networks comes from their general capacity of

capturing and representing vastly different structures and processes in the nat-

ural, social, and human sciences in the language of nodes and their connec-

tions (edges). Depending on the specific application in molecular biology

within a cell, the edges can be undirected (binding between molecules),

directed (molecule A has a causal effect on molecule B), and/or have a sign

expressing activation or repressing in the causal action. An early quote from

Laslo Barabasi (www.barabasilab.com), the physicist who has pioneered our

capability of analyzing the world through the lens of networks captures here

the essence of networks in biology and medicine.
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“A key aim of postgenomic biomedical research is to systematically

catalogue all molecules and their interactions within a living cell.

There is a clear need to understand how these molecules and the

interactions between them determine the function of this enormously

complex machinery, both in isolation and when surrounded by other

cells. Rapid advances in network biology indicate that cellular net-

works are governed by universal laws and offer a new conceptual

framework that could potentially revolutionize our view of biology

and disease pathologies in the twenty-first century” [10].

Ever since this remark, almost 10 years ago, it has become evident that it is

a very powerful approach to analyze living matter, such as cells, during health

or disease, as interconnected molecular graphs and relate their structural proper-

ties to appropriate phenotypes where interactions play an important role [3,11].

This has become the major conceptual framework on how to organize and ana-

lyze the Big Molecular Data, which is currently being generated at increasing

pace across biology and medicine. Interestingly, the core concepts of network

biology as a subject have deep roots in discrete and topological branches of

mathematics. In the eighteenth century, Leonhard Euler considered the problem

of crossing bridges in a city in such a manner that every bridge would be crossed

once and only once. This problem—referred to as the seven bridges of

Konigsberg—which was proved by Euler to have no solution required the devel-

opment of what turned out to be the foundation of graph theory, a corner stone

of modern mathematics, and a precursor to topology. Analyzing graphs as dis-

crete entities, rich of statistical and combinatorial enigmas, or as backbones

upon which dynamical processes (equations) develop over time provide a fertile

framework for understanding a surprisingly rich array of phenomena in nature.

Hence, it should come as no surprise that the growing body of molecular data,

which is currently being produced, could be organized and analyzed with the

assistance of graphs. We will therefore first describe the different types of

molecular data (nodes) and their putative interactions (edges).

10.3.2 Nodes

The sequencing of the human genome and the subsequent postgenomic accel-

eration of technological developments have resulted in immense large-scale

data generation thus producing different types of molecular networks. These

technologies have opened new windows into the cellular circuitry beyond the

DNA sequence and individual SNPs as detected by GWAS [2]. One major

achievement has been the explosion of the number of different types of

molecular data that can be generated today. For example, NGS technologies

and other high-throughput techniques produce data on DNA sequence

variants, transcriptomics including different types of RNA molecules, pro-

teins, metabolites, and epigenetic modifications, at a decreasing cost and

increasing molecular resolution as exemplified by the ENCODE project [12].

Specifically, the encyclopedic analysis of genomes reveals a collection of
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molecular entities, such as DNA, SNPs, copy-number variants (CNVs), DNA

methylations, protein coding RNA, noncoding RNA, splice variants, RNA

editing, histone modifications, nucleosome positioning, transcription factors

(TFs), transcription start sites, promoters, chromatin accessible regions,

localization of proteins, protein modifications (these are numerous), and

metabolites. All this molecular variety creates formidable bioinformatics

challenges, which essentially come in two parts—extracting the nodes and

identifying their interactions. The task of extracting these nodes refers to the

challenge of extracting a reliable statistically significant signal from each of

these data types. This task, which requires deep expertise, is very data

dependent and there is rapid progress in the field where rather mature “bioinfor-

matics pipelines” are being produced and made publically available (bioconduc-

tor) enabling the analysis of different types of omics data, such as

transcriptomics, proteomics, metabolomics, and the novel “-seq” approaches:

RNA-seq, ChIP-seq, and Methyl-seq [13�15]. Yet, whereas the analysis of

SNPs or RNA-seq data is comparatively mature, the bioinformatics for analyz-

ing DNA methylations as captured using an array-based platform like the

Illumina 450k array is less well understood [16,17]. To summarize, conceptually

we can represent these different molecular entities as nodes in a graph. At this

juncture, it is important to appreciate that the quality or reliability (false posi-

tives) of the nodes depends on the data type as well as on the specific bioinfor-

matics pipelines which have been used to extract a set of nodes from a given

data type, thus also affecting the amount of false negatives, or nodes which

remain undetected. Interactions are therefore either an empirical or model-

dependent phenomena—depending on viewpoint—which in any case effec-

tively connects a node or a set of nodes with another set of nodes when consid-

ering gene�gene interactions. As for the gene�environmental interactions we

will interpret or search for a corresponding physical trace between a molecular

node or set of molecular nodes and an environmental factor. Therefore, it is

essential to ask, how could we possibly find the edges connecting the nodes

and/or the environment and the nodes? This is the second major bioinformatics

challenge, which relatively speaking has been less developed as of today.

10.3.3 Edges

From a mathematical point, we have nodes with different colors correspond-

ing to the different data types. In principle, every node having color A could

be connected to another node with the same color. Moreover, an edge could

theoretically be drawn between any two nodes regardless of the color. All in

all, this becomes potentially a very large number of edges, thus a very com-

plex graph including nodes of different colors. Here we will basically con-

sider two conceptually different approaches on how to detect edges. The first

idea is to observe or extract the edges directly from biological databases. We

will discuss some of the major approaches and then we will discuss the evi-

dence supporting the view that such edges can effectively become rewired in
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the presence of epigenetic modifications. Following this we review some of

the major network motifs and structures, which have thus far been identified

in large-scale networks. In contrast, to reverse engineer the edges directly

from observational data, corresponding to observing the nodes over time or

during different conditions, represents the second idea with origins from engi-

neering on how to perform system identification. We close this first section

of the chapter by discussing how biological networks as defined and identi-

fied as above could provide a physical or associative basis for interpreting

detected genetic or environmental interactions.

Available biological knowledge and databases now provide a rich source of

putative edges. For example, there are DNA binding sites, transcription start

sites, promoters, protein�protein interactions, and DNA binding proteins, thus

defining special properties for a given data type as well as possible edges

between the molecular nodes (Figure 10.1). Since there are over 1400 well-

curated public databases [18], it is not clear how to systematically extract reli-

able edges from these rich resources. Moreover, there is still the challenge of

how to integrate different data types, such as metabolomics, proteomics, and

transcriptomics, which is relevant here to interpret genetic interactions. It is evi-

dent that we need to integrate these different molecular data types in order to

understand the putative biological basis mediating such interactions as identified

by the methods described in the current book. To proceed beyond genetics and

interactions between only molecular nodes in order to address how to integrate

different molecular data layers with external environmental factors, the concept

of epigenetics is central. Epigenetics refer to the modification of DNA and/or

related proteins (the nodes) without altering the nucleotide sequence.

G x G G x E

Transcriptional network

Protein–protein interaction

Epigenetic regulation

Metabolic network

FIGURE 10.1 Schematic illustration of different kinds of networks, which can be
reconstructed from different data types.
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DNA methylation is currently the most studied and the best understood

epigenetic modification and has been established as an additional mechanism

for gene inactivation in different cell types. However, while all cell types

share nearly the same genome sequence, the regulation of gene expression is

not only at the level of TFs and the transcription factor binding sites (TFBS)

but also at some levels where the DNA sequence is not modified, such as his-

tone modifications or DNA methylation. Histone modification profiles have

been studied at a genome-wide level and their association with gene expres-

sion has been demonstrated at promoter regions [19,20]. Furthermore, predic-

tive computational models of gene expression on the basis of histone

modifications profiles have been built [21]. Recent work has clearly shown

that DNA methylation patterns differentiate among cell types therefore

encoding cell and tissue-specific transcriptional programs [22�24], thus

effective rewiring the graph by modifying the properties of the nodes, thereby

altering the edges. Yet the precise regulatory mechanism that involves meth-

ylation is still not clear [25]. Hence, to improve the understanding the func-

tions of DNA methylation it is useful to evaluate its distribution across the

genome into CpG-rich regions known as CpG islands. Interestingly, half of

the genes in vertebrates contain CpG islands, defining almost a bimodal dis-

tribution in the transcription start sites [26] and this observation suggested an

association between DNA methylation and gene transcription. However, there

are still numerous genomic elements, which have not been uncovered and

present serious challenges. First, the definition of CpG islands is a controver-

sial topic [27], which affects the identification of regulatory regions [28].

Second, in addition to promoter regions [29], satellite repeats [30] and CpG

shores [28] have been considered to be regulatory. Third, from these consid-

erations it follows that the characteristics of differentially methylated regions

(DMRs) are not clearly defined, thus rendering the question of whether a

unique CpG is regulatory or what constitutes the minimum size of a CpG reg-

ulatory region unresolved. Finally, several studies are currently investigating

the mechanisms and putative functions of DNA methylation and DNA

demethylation. For instance the relation of 5-methylcytosine with a recently

associated modification 5-hydroxymethylcytosine [31] has been associated to

both age and neurodegenerative disorders. Hence, there is still much to learn

about which nodes or areas of the genome are altered by DNA methylation.

The relevance of DNA methylation as regulatory mechanism is well established

and may very well serve as one of possible mediators of genetic interactions.

Deregulation of DNA methylation has been associated with cancers with gene

body DNA methylation in tumor suppressor genes, such as TP53 [32], DNA

methylation of tumor suppressors TSSs, or deregulation of DNA methylation

machinery. DNA methylation can be used as a marker for several type of can-

cers, i.e., identification of respiratory tract cancers [33], bladder cancer [34], and

solid cancer diagnostics [35]. In addition, the intensity of DNA methylation has

been associated also to complex diseases, such as rheumatoid arthritis (RA)

[36], chronic obstructive pulmonary disease [37], and multiple sclerosis [38]
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and natural processes like aging [39,40]. These observations suggest that when

gene�gene interactions are identified and correlated to diseases, it is not

unlikely that DNA methylation could operate as a mechanistic mediator of the

observed gene�gene interaction.

10.3.4 From Individual Edges to Networks

To integrate these different nodes (molecular data types) and their epigenetic

modifications (edges), it is useful to represent this information in terms of

biological networks. There has been a large number of studies, published dur-

ing the last decade, defining methods for integration into networks. Here we

summarize some of the major strategies to reconstruct integrated biological

networks. Instead of considering a system as a set of nonrelated elements, a

network summarizes the system by enumerating its relevant elements (nodes)

and the interactions (edges) between the nodes [41]. Most cellular functions

are organized in network-structured sets of genes and/or proteins and/or

metabolites communicating through biochemical and physical interactions

[10,42]. The network analysis allows the study of a system in a simplified

but systematic manner capitalizing upon progress in mathematics and compu-

tational tools for analyzing graphs. Initially networks were used to study the

interaction (relation) on single types of entities, such as transcript�transcript

interactions and protein�protein interactions [43], but their use have been

extended recently to include a wide range from different molecular elements,

to even representing different diseases as nodes in a graph where the edges

represent relative risk for example [11]. Interestingly, most biological net-

works have properties in their graphs effectively associating to being nonran-

dom networks, where one of the most important properties is that they have a

scale-free distribution of their edges. The meaning behind a scale-free net-

work is that the number of links or edges per node follows a power law distri-

bution. Indeed, what has been observed in a number of biological networks is

that most nodes have few connections, while a smaller number of nodes have

a large number of connections, thus suggesting that such nodes are key ele-

ments in the network and whose deregulation will significantly affect the

entire network [44]. The relevance of such a discovery is twofold: first it

describes the necessity of identifying those highly connected nodes [45],

which are candidates to operate as master regulators. Second, it provides

insights into evolution as it follows that a novel connection is more likely to

happen with those elements that are already highly connected. Additional

properties which have been investigated include the average length of the

path linking any pair of nodes among others and interestingly, biological net-

works turn out to have a small diameter in the sense that the distance between

any two nodes is as a rule very short.

Moreover, networks do not necessarily need to be defined for a single

type of element. Networks with heterogeneous node types are indeed possi-

ble, as long as the nature or semantics of the different interactions (edges) in
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the networks are properly defined [46]. For example, bipartite networks with

two types of nodes A and B and interactions between the two types of nodes

allow the construction of two types of networks. Two nodes of the type A

(A1 and A2) are connected if there is a path from A1 via a B node to A2. For

example, a bipartite graph which contains diseases (node A) and genetic var-

iants (node B) and the connections are based from GWAS studies and the

corresponding ICD codes (disease). The study of such bipartite graphs allows

the identification of highly connected diseases by observing the genes shared

[47], by employing the logic outlined above on how to interconnect nodes of

one type (diseases) by using a mapping (ICD) via the other nodes (genetic

variants). Following these ideas, several investigators have recently published

papers addressing the generation of networks that combine mRNA and epige-

netic information. EpiRegNet [48] is a tool that allows the identification of

possible epigenetic marks associated to genome-wide changes of gene

expression. Here the authors constructed a bipartite network of histone�gene

associations and this network was used to identify histone marks associated

to a subset of genes and importantly, their methodology was validated in the

analysis of an embryonic stem cell differentiation. Furthermore, the authors

provide information of TF regulation by using the publically available ChIP-

Seq data. Overall, explorative network based analysis of systems at the tran-

scriptomics and epigenetic level is evidently becoming increasingly useful.

As an additional example, we have the analysis performed by Ciofano et al.

[49] where they identified a global Th17 transcriptional regulatory network

by combining genome-wide TF occupancy data obtained from ChIP-Seq

experiments, and mRNA expression of TF mutants and time series of Th17

differentiation into a biological network. Their computational analysis of the

data enabled the identification of master regulators, the relevant modules

(groups of genes), and the interactions (edges) between the genes and mod-

ules defining the differentiation of naı̈ve CD41 T cells into Th17 cells. A

recent paper [50] increased the temporal resolution of the Th17 network by

identifying several transcriptional waves during differentiation. This clearly

demonstrates the feasibility and power of a network biology approach to

identify the edges between different and similar nodes. Hence, using such

biological networks as a backbone to interpret the mechanistic basis underly-

ing discovered genetic interactions promises to be a powerful methodology,

potentially providing a biological basis for the observed statistical interaction.

Thus far we have considered approaches that essentially collect and inte-

grate different data sources in order to represent them as biological networks

on the basis of some rules for how to connect the data sets. Another comple-

mentary conceptual idea to identify biological networks hinges upon the

insight that using a computational model it is possible to identify a biological

network directly from omics measurements without depending upon current

knowledge. Such an approach increases the likelihood of detecting novel

edges not yet captured in current databases. The problem of identifying a sys-

tem from its behavior is referred to as reverse engineering and it has been
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widely used to uncover regulatory metabolic or transcriptomics networks.

Many different methodologies have been developed and applied during the

last decade. These include regression models (including several types of

Lasso models [51]), mutual information (i.e., ARACNE [52]), correlation-

based approaches, Bayesian networks, random forest algorithms, and (most

recently) a combination of several different methods [53]. A recent compari-

son between the different methodologies made it clear that each methodology

is able to capture different sets of edges of a network. The study concluded

that it is more robust to use different types of information, therefore the com-

bination of heterogeneous data types is able to uncover most efficiently the

associations and minimizes the amount of false positives [53]. Despite the

promising results and tools available, very few methods have been developed

for integrative network analysis of heterogeneous data sets. In addition, the

problem of visualizing heterogeneous networks with complex associations for

explorative analysis remains an open problem despite development of state-

of-the-art tools, including Cytoscape [54] and Gephi [55]. On the one hand,

motif network analysis allowed the identification of small-size mechanistic

relations between entities that provides properties (such as a robustness) to a

system [42]. On the other hand, even though computational biology is a very

active research area, much remains to be explored where for example epige-

netic regulation and data have not yet been incorporated into current system

identification algorithms.

In part due to these shortcomings of integrating several data types into an

unbiased framework based on directly identifying biological networks

directly from data, integrative bioinformatics techniques have remained use-

ful. For example, the identification of the genetic background corresponding

to epigenetic changes which correlate with a disease phenotype have recently

gained momentum as a next step following the wave of pure GWAS analysis

during the last 5 years. Deciphering such an additional layer of epigenetic

complexity will eventually contribute to the understanding of the causal path-

way from genetic variation to disease etiology, assuming that part of the heri-

tability may be mediated by epigenetic modifications, which in turn may

entail effects on the transcriptional regulation. One of the major differences

between the two data types consists in the spatial and temporal variability of

the marks. Whereas SNPs do not change across tissues and cannot therefore

be interpreted as a consequence of a particular disease, CpG methylation is

subject to spatial (tissue- or cell-specific methylation) and/or temporal vari-

ability (age-dependent, disease-associated, or environmental-mediated differ-

ential methylation). Moreover, while GWAS studies as a rule measure

polymorphisms on DNA extracted from whole blood, the design of epigenetic

studies is complicated by the fact that the tissue implicated in the disease

pathogenesis may not be easily accessible in clinical specimens and therefore

alternative tissues must be used. However, such a procedure may be still

appropriate provided that the epigenetic mark is stable and has been estab-

lished during developmental stages. Nevertheless, for certain disease classes,
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blood-derived DNA is highly relevant due to the direct involvement of

immune cells, as in the case of autoimmune diseases or liquid cancers.

However, even in those latter cases, tissue heterogeneity may still represent

an obstacle because (a) a specific CpG methylation may be altered only in

one cell subtype, (b) the cellular composition may differ between cases and

controls, and (c) the differentially methylated positions (DMPs) may be

altered by the disease instead of being a direct cause. Notwithstanding the

above cautions, it has been suggested that genotype�epigenotype relations

exist and may contribute to the disease pathogenesis, thereby mediating the

genetic risk or modulating the penetrance [56,57]. At one extreme, imprinted

genes represent a straightforward example of an epigenetic mediation of the

disease-predisposing variants.

One recent example where such an analysis has been performed is the iden-

tification of genotype-specific DNA methylation patterns, involved the integra-

tion of GWAS data and DNA methylation profiling from patients suffering

from RA [58]. The study attempted to mitigate the gap of missed heritability in

RA by identifying genotype-dependent methylated loci that represented a poten-

tial mediator of the genetic risk for this autoimmune disease. The analysis

involved multiple correction and filtering stages to account for the different cel-

lular composition in cases versus controls [59] and to filter-in only DMPs being

genotype dependent thus being candidates for mediating the genetic risk. The

latter was accomplished using a causal inference test [60] that was previously

shown to compare favorably with Bayesian network reconstruction.

Interestingly, this study utilized a special case of an inference or reverse-

engineering driven approach to discover that DNA methylation, as an epigenetic

process, could mediate a gene�environmental interaction. As the authors

pointed out, however, the strategy and study design resulted in a list of potential

mediators of the genetic risk in RA, although causal relationship cannot conclu-

sively be obtained from case�control studies alone. However, if we do not

require causality, and combine inference methods with those that use available

databases it is clear that we can find a rich biological network amenable to fur-

ther detailed analysis. Specifically, given a list of gene�gene interactions or

gene�environmental interaction, we can investigate the network and extract

putative paths in the graph which may serve as a biological mediator explaining

the observed interactions. At least at one end of this complexity we can be sure

about causality, since genetic markers in germline DNA are heritable and not a

function of epigenetic or environmental influence.

10.4 INFERRING GENETIC INTERACTIONS OR EDGES
FROM DATA IS A SPECIAL CASE OF A
FEATURE SELECTION PROBLEM

Prior to the challenge of understanding and interpreting genetic interactions

using biological networks we are faced with the problem of how to detect

genetic interactions or epistasis from experimental data. The current book
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summarizes state-of-the-art methods of how to actually statistically detect

such interactions. The previous section discussed the opportunities and chal-

lenges in interpreting genetic interactions in terms of the cellular circuitry,

which in part is due to our partial understanding of how a cell is working as

a dynamic entity in space and time. Importantly, the task of detecting genetic

interactions is a difficult statistical problem thus rendering few candidate

interactions to be interpreted using a network approach. It would be useful if

we could empower the detection of interactions and thereby use a large list of

“pairs” which then could be probed and interpreted in terms of the underlying

biological networks. Such an approach may even give us a more robust read-

out in terms of putative subnetworks mediating relations between genes.

Therefore, in this section we discuss why the detection problem is so difficult

from a mathematical perspective and given this analysis we conclude that we

need useful priors in order to empower the statistics for detecting genetic

interactions or gene�environmental interactions. Our analysis will then bring

us back to network biology while being equipped with the idea of using such

networks not primarily as vehicles for interpretation of interactions but as

providing statistical priors for detecting genetic interactions.

A key challenge in statistics, data mining, and machine learning is the

problem of how to select variables or features that are collectively the most

informative for an outcome of interest. This is known as the variable selec-

tion problem. Here we consider the discovery of genetic interactions—that

we defined as edges—as a special case of feature selection. We should define

separately how strongly this definition aligns with different approaches to

interaction that have been discussed in the methodological part of this book.

Variable selection allows predictions based on a minimal number of measure-

ments and simplifies construction of predictive models based on the selected

variables and the features provide insight as to the quantities that are involved

in predicting a genetic interaction. Feature selection is particularly difficult

when searching for high-order statistical patterns such as in the case of

genetic interactions since the problem is high dimensional due to the large

number of possible relations. Of note is that several features could be infor-

mative for the outcome and important features (genetic variants) that are not

informative individually may be informative in the context of other genetic

variants, i.e., genetic interactions. This characteristic makes the problem of

selecting the smallest, most-informative subset of variables computationally

hard. Currently, there exist hundreds or thousands of variable selection

algorithms [61]. However, most of them cannot scale up to the number of

putative edges that we encounter here.

We have recently performed a detailed mathematical treatment of the var-

iable selection problem [36,62,63]. In brief, our analysis settled an over

30-year-old consensus in the field since the classical result from 1977 by

Cover and van Campenhout on the intractability of this feature selection

problem. The consensus belief was that it was necessary to perform an

exhaustive search of all possible combinations in order to enumerate all
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relevant features for a given outcome, thus rendering the problem NP hard.

Our key insight was to recast this problem into a statistical machine learning

problem instead of working in a deterministic setting. In some detail we

developed a statistical framework, which allows clear definitions of different

types of feature sets and thereby enables us to define a rigorous separation

between finding the minimal set of features for the prediction of the target

T versus finding all the features that are relevant for T. This formulation made

it possible to prove that for any strictly positive distribution a feature is strongly

relevant if and only if it is in the Markov boundary of the target variable. This

result gives a polytime algorithmic complexity for estimating the posterior.

This allows us to prove that every Bayes-relevant feature is strongly relevant.

However we can also prove that the opposite is false since there exist strictly

positive distributions where even strongly relevant features are not relevant to

the Bayes classifier. Hence, we have a mathematical basis for feature selection,

which we have applied to problems in discovering features from transcrip-

tomics data [64,65]. These techniques can also be used in the context detecting

of interactions. This is a significant and central theoretical result setting the

stage for progress. However, it is clear that despite the successful mathematical

analysis there is an urgent need to construct suitable priors, in order to perform

rigorous feature selection. Hence, to apply this reasoning to the challenge of

detecting interactions we need to use rich molecular data and a network biol-

ogy approach to inform mathematical algorithms for feature selection.

10.5 NETWORK BIOLOGY—A FRAMEWORK FOR
DETECTING GENETIC INTERACTIONS

How to incorporate prior knowledge in a general statistical framework is still

an unsolved problem. For most parts of data analysis, prior knowledge is dif-

ficult to include in a principled manner. As a rule, learning methods, both

supervised and unsupervised, therefore commonly ignore prior knowledge.

Typically, any prior knowledge is incorporated ad hoc by the human analyst

in the form of selecting a suitable learning method, or a suitable version of

the method. For example, an expert analyst will select an appropriate kernel

when using a support vector machine or the appropriate distance function

when selecting a K-Means clustering algorithm. Bayesian statisticians may

claim that prior knowledge can be incorporated by an appropriate selection of

priors; however, this is more easily said than done as there is no general way

that can determine the prior function for many types of useful prior knowl-

edge. Yet, it is not obvious how this type of knowledge can be incorporated

in a support vector machine for example. To incorporate this knowledge in a

search-n-score algorithm for Bayesian Networks, one would have to dictate

higher priors to all structures where a path creating an association exists

between two variables known to have association by some other study.

However, how to specify such a function in a practical manner is currently

unknown. Hence, in a machine learning setting it is more common to use prior
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knowledge to determine which method to use or to select a subset of the output

from any given method rather than directly incorporating prior knowledge in

the inference procedure itself. Yet, it remains unclear how to incorporate in

analysis vast public knowledge, such as the 1500 curated molecular databases

[66], in a principled manner which sheds light on the problem of detecting

interaction, be it purely genetic or gene�environmental interactions. Hence,

given this situation we may inspect individual data types and try to assess if

they could constrain or simplify the problem of identifying interactions from

data. Alternatively, cellular networks could be used to reduce the number of

tested interactions. Let us illustrate the first idea by asking whether chromo-

some�chromosome maps could suggest interactions within the genome.

A common textbook illustration captures the genome as a linear sequence

of nucleotides. However, the genome is indeed a 3D structure. By the profil-

ing of histone marks using ChIP-Seq experiments, information regarding the

histone modifications and their well-known association to chromatin organi-

zation can be obtained and they show how the chromatin is open or closed

but unfortunately do not provide information regarding long-range cis or

trans interactions. Enhancers may be open or closed but no clear rules have

yet been identified which can associate enhancers to genes, and it has been

shown that the basic rule-of-thumb associating the enhancer to the closest

gene is not correct most of the time. GWAS studies, where SNPs may be

identified at the enhancers, would benefit from such mapping, as they would

allow a deeper mechanistic understanding of a disease. One important tech-

nology is the analysis of chromatin conformation (CC) data, which aims to

capture chromosome�chromosome and intra-chromosomal interactions in 3D

space. Initially experimental identification of CC was performed on specific

loci using the chromosome conformation capture (3C) technique, which uses

spatially constrained ligation followed by locus-specific polymerase chain

reaction [67]. Extensions of 3C were then developed to account for quantify-

ing the contacts of one locus versus the entire genome [68]. Those techniques

were limited to uncover contacts of one predetermined genomic regions with

all potential interactions. ChIA-PET combines ChIP-based methods and 3C to

find genome-wide interactions regulated by selected TFs. Recently the HighC

method [69] was designed to probe interactions caught by incorporating biotin

into the ends of the digested DNA before ligation, and then carrying out physi-

cal selection of these fragments. The Hi-C technology has been designed to

enable the detection of all pairwise physical associations of DNA in the

genome and provide quantification of contact probabilities between loci.

Hence, such data could strongly suggest paths in the genome by which interac-

tions could occur. Here we would like to remark that such a conceptual

approach, illustrated by the example of Hi-C technology, assumes a physical

interpretation of the notion of interaction, which is not necessarily justified

since it could simply be a statistical correlation without a straightforward phys-

ical correspondence or it may represent a physical link without an interaction

effect. Moreover, the analysis of the data provided by Hi-C requires that the
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biases in the data must be measured, since the experimental procedures have

inherent biases and experimental artifacts [70]. Several specific examples of

functional interaction studies are described in Chapter 8 of this book.

As an alternative to identifying a single data type, which could serve as a

direct mediator of interaction, we may ask whether cellular networks could

be used to reduce the number of tests. The core idea would be to group sev-

eral genetic variants on the basis of their positions in a cellular network. This

would substantially reduce the required number of hypotheses (interactions)

to be tested, thus reducing the multiple testing and thereby improving the sta-

tistical power. Here we may ask which networks, and how to group the

genetic variants? Pathway information, from public databases, could be used

to only test a representative genetic variant against other representative

genetic variants. Other kinds of cellular networks, either originating from bio-

informatics integration or computationally inferred, as discussed earlier in

this chapter, could be used in a similar manner as illustrated schematically in

Figure 10.2. A more straightforward approach for genome-wide interaction

studies is described elsewhere in this book. Hence, a systems biology

approach integrating networks into the problem of detecting interactions

promises to empower its discovery. However, we are still in the infancy of

developing tools enabling such a discovery, and we are far away from

G
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G

Protein–protein interaction
transcriptional networks

FIGURE 10.2 Schematic illustration of how putative gene�gene interactions or gen-

e�environmental interactions could be mediated through the different types of molecu-
lar networks.
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making use of this information at a personalized level in accordance with a

P4 vision of medicine. Conceptually, the circle of analysis is then closed.

The regulatory networks, which actually encode dependencies among genes,

thus representing interactions, should definitely be exploited to efficiently

detect this important feature of the genome [71].
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