
Chapter 16
Neuroswarm: A Methodology to Explore
the Constraints that Function Imposes
on Simulation Parameters in Large-Scale
Networks of Biological Neurons

David Gomez-Cabrero, Salva Ardid, Maria Cano-Colino,
Jesper Tegnér and Albert Compte

Abstract Candidate mechanisms of brain function can potentially be identified
using biologically detailed computational models. A critical question that arises
from the construction and analysis of such models is whether a particular set of
parameters is unique or whether multiple different solutions exist, each capable of
reproducing some relevant phenomenology. Addressing this issue is difficult, and
systematic procedures have been proposed only recently, targeting small systems
such as single neurons or small neural circuits [16] (Marder and Taylor, Nat Neu-
rosci 14:133–138, 2011), [1] (Achard and De Schutter, PLoS Comput Biol 2:e94,
2006). However, how to develop a methodology to address the problem of non-
uniqueness of parameters in large-scale biological networks is yet to be developed.
Here, we describe a computational strategy to explicitly approach this issue on large-
scale neural network models, which has been successfully applied to computational
models of workingmemory (WM) and selective attention [2] (Ardid, J Neurosci Off J
Soc Neurosci 30:2856–2870, 2010), [3] (Cano-Colino et al., Cereb Cortex 24:2449–
2463, 2014). To illustrate the approach, we show in this chapter how our strategy
applies to the problem of identifying different mechanisms underlying visuospatial
WM. We use a well-established biological neural circuit model in the literature [6]
(Compte et al., Cereb. Cortex 10:910–923, 2000) as a reference point, which we then
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perturb by using the Swarm Optimization Algorithm. This algorithm explores the
space of biologically unconstrained parameters in the model under the constraint of
preserving a solution defined here as a network in which the activity of model neu-
rons mimics the properties of neurons in the dorsolateral prefrontal cortex (dlPFC) of
monkeys performing a visuospatial WM task [7] (Funahashi et al., J Neurophysiol
61:331–349, 1989). The results are: (1) identification of a set of model solutions,
composed of alternative and, in principle, feasible and sufficient mechanisms gener-
atingWM function in a cortical network. In particular, we found that the dynamics of
interneurons play a main role in distinguishing among potential circuit candidates.
Secondly we uncovered compensatory mechanisms in a subset of the parameters in
the model. In essence, the compensatory mechanisms we observe in the different
solutions are based on correlations between sets of parameters that shift the local
Excitatory/Inhibitory balance in opposite directions. In summary, our approach is
able to identify distinct mechanisms underlying a same function, as well as to pro-
pose a dynamic solution to the problem of fine-tuning. Our results from the proposed
workflowwould be strengthened by additional biological experiments aimed to refine
the validity of the results.

Keywords Prefrontal cortex · Workflow · Ensemble analysis · Working memory
model · Neuroscience · Computational biology

16.1 Introduction

A branch of Computational Biology makes use of mathematical modelling (such as
differential ordinary equation systems) to understand better the mechanisms of the
biological system of interest. In those cases, models are tools to test and generate
hypotheses, to then validate experimentally. But the use of models is not trivial and
requires robust methodologies of data analysis, model generation [14, 22], parame-
ter estimation [4, 23], and experimental design [27]. A particularly crucial decision
in this process is how complexity and uncertainty are being considered during the
modelling [11, 13, 15]. However, themajor challenge in using computational models
under uncertainty is the generation of relevant hypotheses that are not exclusively
dependent on choices duringmodelling (such as parameter selection). In this chapter,
we provide a methodology for robust hypothesis generation in the context of Neu-
roscience and under parameter uncertainty; relevant work in the book addressing
similar challenges are described in [5, 15].

Mechanistic aspects of brain function can be studied with the use of biologically
detailed computational models. Those models detail relations and/or interactions
between entities through mathematical formulations that depend on a set of parame-
ter values. The first major success in modelling was the classical model of Hodgkin
and Huxley ([10] HHM) of the action potential. HHM was developed to provide
a mechanistically unified system description by mathematically organizing exper-
imental observations. Interestingly, HHM not only described known facts but also
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allowed to generate predictions that only many years later, when technical develop-
ment allowed, were experimentally validated [9]. The success of the model started
what is known nowadays as computational biology. Typically, a general approach for
modelling-based studies has three phases: (1) the collection of relevant experimental
facts and expert knowledge to be considered, (2) the mathematical description of
the system, and (3) the fine-tuning of the parameters to reproduce the “expected”
behaviours.

A critical question that arises from that approach is to what extent conclusions
depend on particular simulation parameters (see [5, 15]). However, to demonstrate
whether a model is unique in reproducing some relevant phenomenology can be
a tall order. Interestingly, the questions when more than one solution (parameter
set) reproduce expected experimental behaviours (which we will term “solution”
parameter sets), uncovermanyother critical questions such as: (1) are those parameter
sets providing different biological mechanisms or predictions? [5], (2) do parameter
sets group into families of solutions or do they provide a continuum of solutions?
Following these questions [16] proposed the need to investigate in populations of
parameter sets in order to discover compensatory mechanisms in neurons or circuits.

In the context of single neurons and small neural networks this problem has
been addressed by constructing and analysing databases of models compatible with
biological function [1, 20, 21]. Small networks of three interconnected cells could
reproduce the rhythmic patterns of activity in the crustacean stomatogastric ganglion
for millions of different, disparate parameter combinations [21]. In the analysis of
a cerebellar Purkinje cell models authors found 20 different solution models (i.e.
parameter sets compatible with experimental data) [1]. Furthermore, by studying the
parameter landscape created by the good models it was found that the parameter
space of good models could be defined by a set of “loosely connected hyperplanes”
[1].

In the present chapter we present a computational strategy to explicitly explore,
group and characterize parameter-sets on large-scale neural network models. This
strategy is similar to that described in [16], but adapted to deal with the complexity
and computational cost of large-scale neural simulations. We applied this strategy to
study a specific cognitive function, visuospatial workingmemory, which can bemod-
elled with a biological neural network [6] that mimics the properties and dynamics
of neurons in the dorsolateral prefrontal cortex (PFC) of monkeys engaged in ocu-
lomotor delayed response tasks [7]. In such tasks, the monkey is required to retain
the location of a visual cue during a delay period between the cue stimulus and the
memory-guided saccadic response, and PFC neurons reflect this memorized infor-
mation through selective persistent activation in the delay period [7].

The typical experimental design is depicted in Fig. 16.1a. The trial starts with a
blank screen containing just a central cross on which the monkey fixates its gaze to
initiate the trial (“pre-stimulus”). While fixating, a stimulus cue appears briefly in
one of eight possible locations equidistant from the fixation point (“stimulus”). After
cue presentation a delay period of a few seconds follows during which the monkey
needs to remember the location of the previously presented cue (“delay period”). At
the end of the delay period, the fixation cross disappears and the monkey makes a
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(a)

(b) (c) (d)

Fig. 16.1 The experiment, the model and the simulation results explained. a Three stages of the
experiment. In a first stage there is no stimulus and a blank screen is observed. In a second Stage a
visual stimulus is briefly flashed in one of 8 possible locations; finally in a third stage the stimulus
disappears but it must be remembered during few seconds. The task consists in reporting the location
of the briefly flashed stimulus after a delay of a few seconds and it thus require memorising this
location. c Topology of the neuronal network used tomodel neural activity during this task. Neurons
have a 1-D ring topology, and their position in the ring is associated to the possible location of the
stimulus. There are two concentric rings, a ring of pyramidal (excitatory) neurons (in blue) and a ring
of interneurons (inhibitory neurons, in red). The position of the two rings denotes the selectivity
of excitatory and inhibitory neurons. Neurons are connected according to their relative angular
distance on the ring. b Spontaneous firing pattern of the neurons over time. A point denotes a given
neuron (y-axis) firing in a given time (x-axis). d Persistent firing pattern of the neurons associated
with the location of the presented stimulus

saccadic eye movement to the location where he remembers the cue was presented.
In experiments, PFC neurons show tuned persistent activity in the delay period of
this behavioural protocol [7]. This experimental design can also be simulated using
a network model of excitatory and inhibitory neurons [6]. By arranging neurons
according to spatial selectivity (Fig. 16.1c), connectivity parameters can be tuned
so that strong local excitation and strong global feedback inhibition combine to
produce neuronal responses in line with experimental data. Figure16.1b, d shows in
rastergrams the activity of model pyramidal neurons in one tuned network (see next
section) during the pre-stimulus and delay period epochs, respectively [6]. Notably,
activity in the pre-stimulus epoch appears uniform and at low firing rates, and we
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term this condition “spontaneous activity”, and network activity in the delay period
is tuned and sustained, and we call this “tuned persistent activity”.

The methodology proposed here is similar to the one described in [8], which was
used to analyse a computational model of atherosclerosis. We update the necessary
steps to apply it in Neuroscience, in particular for the analysis of the PFC model
(see also [2, 3]). Interestingly our approach is able to identify: (1) compensatory
mechanisms, (2) characteristics of inhibitory neurons firing patterns that allow the
grouping of solutions, and (3) significant opposite compensatory mechanisms in
some of the groups identified. Therefore, our computational approach that explores
the “solution space” identifies relevantmechanisms to be further tested by appropriate
experimental designs.

Section16.2 of the chapter presents a review of the PFC model. Section16.3
details how feasible parameter sets are searched. The following section, Sect. 16.4,
summarizes the integrative analysis of the parameter sets that are considered to
be correct based on the experimental data. The final section, Sect. 16.5, presents
the conclusions regarding the utility of the proposed approach and summarizes the
biological results associated to PFC.

16.2 PFC-Working Memory Model

We used the PFC network model described in [6]. We refer the reader to this pub-
lication for a thorough account of the computational model and we provide here
only a succinct description. The network contains 1,024 excitatory neurons and
256 inhibitory neurons modelled according to the leaky integrate-and-fire formalism
[24]. Model neurons are arranged according to their preferred cue directions in a ring
topology as shown in Fig. 16.1c and they are interconnected via conductance-based
synapses with dynamics consistent with AMPA, NMDA andGABAA receptor medi-
ated synaptic transmission in the cortex. Specifically, AMPA and GABAA synaptic
conductances jump instantaneously when a pre-synaptic spike occurs and decay
exponentially with time constant 2 ms for AMPA and 10 ms for GABAA.

NMDA conductances are voltage dependent and their dynamics are defined by a
rise time (set to 2 ms), a decay time (set to 100 ms) and a saturation term such that
they become insensitive to high presynaptic firing rates.

ds

dt
= − 1

τs
s + αs x(1 − s)

dx

dt
= − 1

τx
x +

∑

i

δ(t − ti )

While the parameters defining these time dynamics are relatively well constrained
by experimental data, the strength of the conductances are much more unconstrained
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(a) Parameter Description

(b) Structured connectivity of the model.

Fig. 16.2 Parameters selected to vary in the PFC-model. a Parameter names, description and lower
and upper bounds are included. (∗) cross- and isodirectional components of these connections were
equally strong (i.e. J+ = 1; in this case, the value of σ is irrelevant; see panel b). (∗∗) corrected
from [6]. b Structured connectivity of the model. The synaptic connection strength decreases with
the difference in the preferred cues of two neurons, with strong interactions between neighboring
neurons and weak interactions between more distant neurons

and need to be tuned to achieve the required function. We impose however a topo-
graphical constraint, so that the strength of synaptic conductances is a function of
the difference in the preferred cues of the presynaptic and postsynaptic neurons. We
specified this function to be a Gaussian, defined by three parameters (see Fig. 16.2b):
thewidthσ , the tuning parameter J+, and the overall strength g. It has been shown that
if excitatory connections among excitatory neurons are such that synaptic strength
decreases with the difference in the preferred cues of two neurons, with strong inter-
actions between neighbouring neurons and weak interactions between more distant
neurons, the network has regimes of operation compatible with working memory
physiology: tuned persistent delay period activity (Fig. 16.1d) bi-stable with a low-
rate, unstructured spontaneous activity (Fig. 16.1b).

For a given set of parameters the model is simulated for 5 s in repeated trials.
Some trials are run without any phasic external stimulation to test for the stability
of the spontaneous activity (Fig. 16.1b). In other trial simulations (persistent activity
trials), a stimulus is applied by transiently injecting current to a subset of neurons
after the first second of simulation. Every time a model is run a numerical seed is
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(a)

(b)

Fig. 16.3 Evaluation functions in plots. a Expected firing rate for spontaneous activity. The max-
imum firing rate is limited to 8 sp/s, but penalized if more than 5 sp/s. Also there is a penalty
for the fraction of pyramidal neurons that are silent. b Expected firing rate pattern for persistent
activity. The maximum firing rate is limited to 100 sp/s, and penalized if it is more than 80 sp/s.
The minimum firing rate is 10 sp/s, and penalized if it is less than 30 sp/s

randomly selected that controls the timing of nonspecific external Poisson spiking
activity that depolarizes the network neurons and set a general random background
activity in the network. The output of the model for a given random seed is the
timing of the spiking events for all the neurons included in the model (rastergram);
examples of rastergramswith the desired patterns of activity are presented in Fig. 16.1
for persistent activity (Fig. 16.1d) and for spontaneous activity trials (Fig. 16.1b).
The stationary patterns in these rastergrams can be summarized with firing rates
(measures in spikes per second) computed in a final 4 s window of the simulation.
Firing rate plots are shown in Fig. 16.3. For the same parameter set the rastergram
and firing rates may differ between different trial simulations depending on the initial
numerical seeds selected.
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16.3 Neuroswarm: A Tool to Explore the Parameter Space

While the network solution of Compte et al. [6] (Fig. 16.1b, d) had qualitative features
consistent with experimental data, some aspects of model function did not match
quantitatively: themodel displayed a largegapbetweenpersistent activity to preferred
and non-preferred stimuli (>20 sp/s) while experimentally this is a narrower gap
(<10 sp/s); themodel required averyprecise symmetry in the translationally invariant
connectivity; connectivity parameters required a significant degree of fine tuning; and
neuronal activity in the persistent state was more stable in the model than observed
experimentally. These discrepancies could mark fundamental flaws in the model or
some of them could be specific of the dynamical regime ensuing from our particular
choice of parameters and could be alleviated in a different parameter regime. Here,
we will design a protocol to address this question by exploring network behaviour
in very different parameter configurations. The model has over 100 parameters, and
we selected 16 that we considered to be unconstrained by experimental data and
relevant candidates to regulate the expected behaviour of the model. The name of the
parameters, their ranges and their lower and upper bounds are detailed in Fig. 16.2a;
Fig. 16.2a includes also the values originally considered in [6].

A likely hypothesis is that there is no unique but several combination of these
parameters that are able to produce network activity as in Fig. 16.1b, d, in qualitative
agreement with experimental data [7]. To test this hypothesis we need to find dif-
ferent parameter sets that are in agreement with the observed experimental results.
To this end, we need to define two major elements: (1) a method to evaluate the
correspondence of network function with the expected dynamics (Fig. 16.1b, d) for
each parameter set, and (2) a method to explore the parameter space to search effi-
ciently for parameter sets that match the required function optimally. In addition,
and considering the computational costs implicated in the exploration of this high-
dimensional parameter space, we designed a heuristic approach to extend the search
by exploring the linear relations between good candidate solutions. We termed our
implementation of this procedure “Neuroswarm” because it used a Particle Swarm
algorithm to search for optimal solutions, but it can be readily extended to other
optimization procedures. In the following we describe each of the steps involved.

16.3.1 Evaluating a Parameter Set

We defined a set of network activity properties expected from a “feasible” parameter
set, and we specified each such property in a mathematical fitness function of the
simulated network activity. Thus, after each simulation we could compute one fit-
ness value for each of the expected network activity properties so that we could then
compute a single evaluation value for each parameter set as a weighted sum of all
these fitness values. The overall evaluation function is a cornerstone in the search-
ing process as it defines the landscape and therefore it is largely associated to the
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difficulty of the search. Evaluations are designed to have linear components to allow
the optimization over gradients. Fitness functions were computed from the spiking
times of only excitatory neurons in each simulation where for every parameter set
we ran five simulations with different initial random seeds. The five fitness functions
that we employed were the following:

• FF1. Maximum firing rate in spontaneous activity: a maximum firing rate of
8 sp/s in spontaneous activity. A linear fitness function taking values from 0 to 1
starts penalizing maximum firing rates of 5 sp/s (penalization of 0) and penalizes
with a maximum value of 1 firing rates of 8 sp/s and above. We ran 5 different
network simulations with different random seeds and took the largest penalization
as fitness value here. See Fig. 16.3a.

• FF2.Percentage of silent neurons in spontaneous activity: the amount of excitatory
neurons being silent (firing rate of 0 sp/s) during spontaneous activity is penalized.
The fitness function takes the fraction of silent excitatory neurons. The maximum
fraction computed from5 simulations is taken as theFF2 evaluation. SeeFig. 16.3a.

• FF3. Maximum and minimum firing rate in persistent activity: for excitatory cells
targeted by the stimulus in persistent activity trials, the preferred peak firing rate
is in the range 30 sp/s to 80 sp/s. A linear fitness function starts penalizing max-
imum firing rates of 80 sp/s (penalization of 0) up to 100 sp/s (penalization of
1). Similarly, the linear fitness function starts penalizing minimum firing rates of
30 sp/s (penalization of 0) up to 10 sp/s (penalization of 1). See Fig. 16.3b. The
penalization is computed for 5 simulations and the maximum is selected.

• FF4. Asynchronous activity: parameter sets that generate extremely synchronized
activity patterns during spontaneous and/or persistent activity are also penalized.
For 5 simulations of each type we compute the average binary Pearson correlation
between all pairs of neurons computed over windows of 4 ms. The maximum
among the 5 values is selected as FF4. In Fig. 16.4 we provide examples of what
we consider asynchronous activity (upper panel) and synchronized activity (lower
panel).

• FF5. Homogeneity: we run five simulations with different random seed for each
of the two conditions of interest: spontaneous activity (Fig. 16.1b) and persistent
activity (Fig. 16.1d), and we penalize networks that did not provide stable results
across these five simulations in each case. The penalization is computed by sub-
tracting to 1 the average of the p-values computed from comparing the firing rate
distributions across pairs of simulations by the Kolmogorov-Smirnov test; a value
close to 0 denoted highly correlated distributions.

Finally, each fitness function had an associated weight to compute the total fitness
evaluation value (TFEV) as its weighted average. We found that it was necessary to
assign the highest weights to FF3 (5×103) and FF2 (103) fitness functions described
above in order to find satisfactory solutions; the weights assigned to other fitness
function were 102, 102 and 100, respectively for FF1, FF4 and FF5. Thus, for each
parameter set, 5 simulations were run in each condition (spontaneous activity and
persistent activity), one fitness value was obtained by evaluating the ensuing spik-
ing activity for each of 5 fitness function and this was all combined in one single
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Fig. 16.4 Asynchronous
versus Synchronized neuron
activity. Rastergrams
showing examples of what
we consider a asynchronous
and b synchronized activity

(a)

(b)

evaluation value (TFEV) that characterized how well activity for this parameter set
matched the required working memory function depicted in Fig. 16.1. The objective
was then to find those parameter sets that yielded the lowest TFEV.

16.3.2 Exploring the Parameter Space

We sampled the parameter space in order to find parameter sets which yielded sim-
ulations with stable spontaneous activity and tuned persistent activity as illustrated
in Fig. 16.1 (we denote these sets as feasible parameter sets, FPS). We assessed
network function for each parameter set using the fitness functions defined above.
Because of non-linearities both in the model and in the parameter set evaluation,
no exact algorithm can be used to find the parameters that minimize the evaluation
value. We used instead a heuristic algorithm to search for FPS: the Particle Swarm
Optimization Algorithm (PSO; [12]). As a black-box optimization algorithm, the
PSO can operate with any fitness function and it was originally designed to search
optimally in a hyperspace of real numbers [12]. More detailed description of the
algorithm is provided in [4] elsewhere in this volume. In brief, each model instan-
tiation defined by a particular choice of the values of 16 parameters (Fig. 16.2a)
represents one particle in a 16-dimensional space in the PSO. We run simulations
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for each network model (particle) and compute the TFEV value for that particle. By
working simultaneously with a large number of particles, PSO establishes parameter
updates that move all particles towards the particle with the best TFEV value, while
also attracting each particle towards its previous best evaluation. This optimization
process has been shown to be effective in several applications [19] and the authors
of this chapter have shown its usefulness in several cases in Neuroscience [2, 3].

Due to the high computational demands (in our equipment each network simula-
tion ran for approximately 15min and each iteration of the PSO algorithm required
500 simulations, for near 50 iterations in total), we executed all simulations in parallel
in a computational facility with 200 available CPUs and with a modified parallelised
code (Grid-SuperScalar technology at Barcelona Supercomputing Center—Centro
Nacional de Supercomputacion for which we adapted the code).

To sample among the FPS we ran PSO 31 times, in each run we considered 50
particles, with a maximum of 50 iterations. An earlier stop was considered if the
method was not finding a better-evaluated solution for more than 15 iterations. To
define the working FPS we (1) first selected for each PSO run the best evaluated
parameter set; then (2) we discarded 2 parameter sets because they were poorly
evaluated (PSO did not find good solutions). Finally (3) non-filtered best solutions
were used to define thresholds for the fitness functions (considering themaximum for
each fitness function). Those thresholds (defined as 110% of the maximum values)
were used to define the selection criteria that defined FPS from all the parameter
sets evaluated in all PSO runs; by doing this we were able to recover more than one
high-quality parameter set per PSO run. In the analysis, FPS denotes the original 29
parameter sets while rFPS denotes FPS extended with those high-quality recovered
parameter sets.

16.3.3 Increasing the Set of Solutions

Once we had FPS we sought to explore the relation between them by simulating net-
works (parameter sets) that interpolated between them. We designed an exploratory
greedy search of the parameter space. For each pair of the best solutions of the 31
PSOwe investigated 9 equidistant points in the linear path between them in parameter
space. We call these linearly interpolated parameter sets LIps. Figure16.5 shows an
example of themethodology, C1, C2 and C3 are the best solutions, the lines represent
the shortest path (line) in 16 dimensions between each pair; each cross represent a
new parameter set to be evaluated, a (un)filled cross denotes a (un)feasible model. By
using this procedure we can evaluate if different solutions form part of a large con-
tinuous region of solutions or else if they are separated by regions without solutions,
suggesting that they could constitute qualitatively different solutions.
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Fig. 16.5 Extending the solution space. All the linear paths between every pair of PSO’s best
solutions (FPS) are evaluated. For each linear path 9 equidistant points are evaluated. We observed
that no single path contained all parameter sets evaluation as good (see “Truncated straight line”).
In addition, a few possible new clusters of solutions were identified in some paths (see “Possible
new cluster”)

16.3.4 Testing the Allowed Range of Parameters

One concern in this whole procedure is that one needs to define beforehand an
allowed range for each of the parameters explored (see Fig. 16.2a), and this may
limit the capacity of the search algorithm to find the best solutions. We performed
one analysis to test this, and we iterated the procedure if we found that some of the
ranges needed to be expanded.We plotted the density functions of the FPS (Fig. 16.6,
black continuous), FPS extended with new solutions by linear paths (LIps, Fig. 16.6
black discontinuous), and the set of all parameter sets explored (Fig. 16.6, grey). By
analysing FPS density plots we can confirm that no parameter had a large number of
FPSs clustered at one of the imposed range limits, so that parameter boundaries did
not seem to be a limiting factor to find FPS. Interestingly, densities are in many cases
centred in the point equidistant between the lower and upper bound; we consider
two explanations for this observation: (a) it may reflect a bias generated by the range
definition (centred values are exploredmore often in random trajectories) and (b) this
may denote parameters that have no large effects on the network described by the
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Fig. 16.6 Ranges of parameter in good solutions. For each parameter we evaluated the density of
the values observed in all parameter sets evaluated (grey), FPS (black, continuous line), and rFPS
(black, discontinuous line)

parameter set. Importantly, despite the benefits of extending FPS by linear paths, we
consider that LIps reflect biases and have to be considered carefully when statistical
analysis in parameter space are conducted.

16.4 Results

We applied the procedure described above and we found 93 different networks that
could produce spatial working memory function as described in Fig. 16.1; 29 were
identified in FPS and the rest were included through linear path extension (LIps,
Fig. 16.5). We then analysed these solutions with the aim of identifying relevant
characteristics of the solutions and parameters associated to them.
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(a) (b)

(c) (d)

Fig. 16.7 Identification of solution grouping and compensatory mechanisms. a Shows the FPS’s
PCAwith all parameter sets evaluated plotted in gray in the plane of the 2 first principal components.
Red dots are FPS with two peaks in the firing rates of inhibitory neurons (see Fig. 16.7a, b) and blue
dots are FPS with one single peak in inhibitory neuron activity (blue, see Fig. 16.7c, d) . b Similar
to (a) but blue dots mark FPS where inhibitory neurons had activity centred around the stimulus
duringpersistent activity (Fig. 16.7a, d) and red dotsmarkFPS for peak inhibitory activity opposite to
stimulus location (Fig. 16.7b, c). c Identified Compensatory mechanism in FPS between GEE,NMDA
and J+EE. Black dots represent solutions in FPS, while grey dots represented discarded parameter sets
evaluated during the parameter search. d Opposite compensatory mechanism between GEE,NMDA

and σI1: solutions with inhibitory activity centred around the stimulus had a negative correlation
betweenGEE,NMDA andσII (ρ = −0.66, black dots), while this correlationwas positive for solutions
with inhibitory activity maximal 180◦ away from the stimulus (ρ = 0.69, red dots)

16.4.1 2-D Representation of FPS to Detect Structure
in the Solutions

We applied Principal Component Analysis (PCA) to the parameter sets explored
by our search algorithm (Fig. 16.7a). PCA analysis (see [4]) allowed dimensionality
reduction from the16parameters to the2first principal components (which accounted
for 33% of the variance). This bi-dimensional representation allowed us to identify
that many of the explored parameter sets clustered around the best solutions (FPS,
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Table 16.1 Principal component analysis of FPS

Parameter PC1 PC2 PC3

GEE,AMPA 0.31 −0.27 0.33

GEE,NMDA 0.35 −0.25 −0.35

GEI,AMPA 0.31 −0.02 −0.15

GEI,NMDA 0.03 0.16 −0.56

GIE 0.26 −0.37 0.02

GII −0.23 −0.06 −0.40

σEE −0.23 −0.05 −0.23

σEI −0.02 0.20 0.05

σIE 0.07 0.10 −0.10

σII 0.08 −0.08 0.27

J+EE −0.23 0.35 0.29

J+EI 0.42 0.16 0.04

J+IE 0.32 0.33 −0.21

J+II −0.19 −0.44 −0.02

gext,E 0.16 −0.27 −0.01

gext,I −0.33 −0.35 −0.08

shown in red or blue). We may consider this initial clustering to be a consequence of
the searching algorithm; however, from the observations during LIps computation
(Fig. 16.5) we observed that many linear combinations of FPSs were not considered
with quality enough to be part of the FPS; therefore we may conclude that FPS is
non-convex (but we cannot conclude anything about parameter connectivity in the
topological sense [18]).

The loadings of the 3 first PCA components (which accounted for 46% of the
variance) can be found in Table16.1. Careful inspection of these loadings could help
identify what parameters of our simulation were most informative in distinguishing
between the different FPS. We found that connectivity strengths, especially among
excitatory neurons, and the tuning strengths of all neuron connectivities were dis-
criminating factors between solutions, while the width of the connectivities did not
seem to differentiate them significantly.

16.4.2 Clustering Solutions in the Parameter Space

Next we aimed to identify if solutions that are close in parameter space were shar-
ing specific characteristics in their network activity. As a first exploratory approach
we considered the solutions as they were mapped on the 2-D PCA reduction.
We investigated the rastergrams and firing rates of excitatory and inhibitory neu-
rons. FPS are clearly separated into subgroups if we inspect the activity of inhibitory
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(a) (b)

(c) (d)

Fig. 16.8 Characterization of inhibitory rasters. Four types of inhibitory rastergrams are shown. In
each case, 5 simulations initiated with different random seeds are shown, both for tuned persistent
activity (PA 1–5 in the upper panels) and for spontaneous activity trials (SA 1–5 in the lower panels).
These four examples illustrate: a single peak of activity centred at 180◦; b single peak of activity
not centred at 180◦; c two peaks of activity, not centred at 180◦; and d two peaks of activity centred
at 180◦

neurons. We considered two characterizations of inhibitory rasters: (1) CvsNC: cen-
tred around the presented stimulus (180◦, Fig. 16.7a, d) or not centred (Fig. 16.8b, c);
and (2) 1vs2: 1 peak (Fig. 16.8a, b) or 2 peaks (Fig. 16.8c, d). In both characterizations
there is a separation between groups in the PCA, see Fig. 16.7a, b.

We identified with a Kruskal-Wallis test that J+EI was significantly different (after
multiple testing correction) in comparison CvsNC, while J+II changed significantly
in the 1vs2 comparison. Interestingly, J+EI and J

+
II were the most relevant parameters

in the first and second component of the PCA, respectively.
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Fig. 16.9 PFC model solutions are linearly unconnected, but new solutions are Inferred: example
of a novel cluster in the Linear Path between two FPS-B. The linear path (grey dashed line) between
two best solutions (A and B) from PSO is inspected at 9 interpolating points. The red points in the
line denote new feasible solutions. For A, B and 3 new solutions the rastergram and firing rates of
excitatory (left) and inhibitory (right) are shown. Rastergrams are provided for 5 simulations with
different seeds. Average firing rates over the delay period for excitatory and inhibtiory neurons are
plotted in the rightmost panels, each simulation with a different line to show diffusion of activity
in different trials

16.4.3 LIps Identifies Transition Between Solution Types

In LIps we extended FPS by investigating linear combinations of FPS parameter sets
(Fig. 16.5). Through this methodology we observed that a straight line of feasible
solutions connected no pair of solutions; therefore we validate the non-convexity of
FPS.

In LIps we identified novel clusters of high-quality parameter sets; importantly,
we found that in all cases the novel cluster firing rates are similar to those of one of
the pair of solutions that define the linear combination, possibly suggesting a non-
linear connection between them. Figure16.9 shows an example of a novel cluster.
We observe that in this case the characteristics of the behaviour of the novel cluster
are similar to those found in Solution B. However, we observe a gradual transforma-
tion that reduces the high bump diffusion observed in solution A to the non-existent
diffusion of solution B. We conclude that the study of the linear paths helps in the
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identification of those parameters associated to specific characteristics. Interestingly,
the major differences between Solution A and Solution B are not occurring in pyra-
midal neurons but in inhibitory neurons.

16.4.4 Studying Compensatory Mechanisms

We were interested in observing whether there were compensatory mechanisms
between the parameters that may help to alleviate the fine-tuning problem bio-
logically. We measured this by computing Spearman non-parametric correlation
between the values of the parameter sets. We considered only parameter sets in
FPS, without including the linear combinations of those, to prevent introducing an
artificial bias. Table16.2 shows all correlations. Among them, we selected those that
were statistically significant, strong absolute correlations (| ρ | > 0.5). We found
three compensatory mechanisms of interest: (1) GEE,NMDA versus J+EE (ρ = −0.63,
Fig. 16.8c); (2) J+EI versus J

+
IE (ρ = 0.62, expected positive correlation); and (3) J+EI

versus gext,I(ρ = −0.53). These compensatory mechanisms can be interpreted as
addressing critical principles of network operation that sustain the required work-
ing memory function. Thus, the first of these compensations, relating negatively
the strength of GEE,NMDA and the tuning of excitatory connections J+EE, seems
to work to keep a sufficient level of excitation locally: if the strength of excita-
tory synapses is strong enough, local potentiation relative to other synapses is not
required andmay actually lead to unreasonably high firing rates. The second compen-
satory mechanism (positive relation between the tuning of excitatory-to-inhibitory
and inhibitory-to-excitatory connections) suggests a control of the spatial specificity
in the local excitation-inhibition loop. Finally, the third compensation addresses the
local excitation-inhibition balance: if inhibitory cells have high spontaneous activ-
ity (as a result of increased gext,I), local excitation from excitatory cells should be
reduced. These particular requirements for the operation of working memory net-
works have not been scrutinized in previous studies and suggest new avenues to study
the conditions for working memory operation in such networks.

Finally, we also searched for compensatory mechanisms that were opposite in
different sub-groups as defined by 1vs2 and/or CvsNC. We found one such oppo-
site compensatory mechanism relating GEE,NMDA and σ in the CvsNC classification
(Fig. 16.7d). Thus, for solutions in which inhibitory neurons presented a stable firing
pattern with maximal activity centred around the stimulus location (i.e. congruent
with maximal activity in excitatory neurons), these two parameters correlated nega-
tively, while they correlated positively for those solutions where inhibitory neurons
had activity profiles peaking at the same location as excitatory neurons (Fig. 16.7d).
This relationship is intriguing and suggests a different mechanistic link between
within population interactions (inhibition to inhibitory neurons, and excitation to
excitatory neurons) for each of these two network function organization (CvsNC).
This remains to be explored in depth in a future study.
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16.5 Conclusions

We show here that large-scale biological simulations of neural networks for specific
cognitive functions can be evaluated for generality using an optimization procedure
in their high-dimensional parameter space. Typically, these simulations are very
unconstrained and generality has been tested using mathematical simplifications
in mean field formulations. While this approach is indeed very general, the initial
assumptions on the simplifications to use may constrain the validity of the results to a
subset of possible solutions. Our computational workflow approach can classifywhat
parameters are more critical for the identified behaviour, and what compensatory or
synergistic associations between parameters are imposed by the required behaviours.
These relationships can guide simplifications for further mathematical analysis.

Our study provides two major conclusions arguing for the exploration of multiple
high-quality parameter sets (or solutions), which support and extend those shown
in Marder et al. [17]. First, to consider a single solution (such as a single set of
parameters fitting the expected data) provides limited insights on a given model:
are we sure that the conclusions observed in a single solution (parameter set) are
true for all feasible parameter sets? Secondly, the characterization of the set of
feasible parameter sets provides a deeper understanding of the model because it can
(a) characterize and enumerate the set of hypotheses that cannot be rejected based
on the present experimental and theoretical understanding of the phenomenon; (b)
identify specific experiments that can be most informative in distinguishing between
these pending alternative scenarios; and (c) provide insights about what parameters
of the models are critical, and could be used as targets for specific manipulations in
subsequent simulations.

We have made of use of the approach proposed in the present chapter in other
computational works [2, 3]; where this parameter exploration procedure was used
to confirm that a specific property observed in one model was general to the class of
possible models constrained by experimental and behavioural results. See also [5]
for other parameter exploration-based approaches to generate hypothesis.
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