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Summary. The purpose of this paper is to develop a machinery to analyze existence

and stability of limit cycle of a prototype of piecewise linear systems, possibly with

delays in switching rules. The study of this type of problems is motivated by modelling

cell cycle regulation. The results are applied to a cell cycle model of fission yeast. It is

shown that the cell cycle model has a limit cycle and it is stable and criterion of the

stability regions are also given.

3.1 Introduction

Consider the following piecewise linear system of prototype

ẋ(t) = Aαx(t) +B, for t > t0,
x(s) = ϕ(s), for t0 − τ ≤ s ≤ t0

(3.1)

with a switching rule
α(x) ∈ {1, 2, ...} (3.2)

where x ∈ R
n is the state, ϕ(s) is given in R

n, Aα is an invertible n× n matrix
and B is an n× 1 matrix.

In order to distinguish the time at which we inspect the state from the variable
passing through the interval [t0 − τ, t0] we shall, as usual in the theory of delay
equations (see Hale [13]), write throughout the paper xt(s) := x(t+ s) for t ≥ t0
and t0 − τ ≤ s ≤ t0. With this notation, xt is the state at time t. Clearly the
solution to (3.1) is

x(t) =

{
eAα(t−t0)(ϕ(t) +A−1

α B)− A−1
α B, for t0 − τ ≤ t ≤ t0

eAα(t−t0)(ϕ(t0) +A−1
α B)−A−1

α B, for t > t0
(3.3)

for a fixed α.
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The motivation of studying this class of piecewise linear systems is highly
inspired by a desire for understanding the complexity of cell cycle regulation
and for making mathematical analysis accessible to these complex systems, as
comprehensive as possible. For a detailed study on how a highly nonlinear com-
plex cell cycle model [1] can be reduced to the piecewise linear system described
above we refer to [2, 3]. For references on stability analysis of piecewise linear
systems without unstructural delay we refer the reader to e.g. [4, 5].

In this paper we shall give a general analysis of the systems defined by (3.1)-
(3.2), and prove that there is a limit cycle in the cell cycle system discussed in
[3] and that it is locally stable. The stability regions of the limit cycle will also
be discussed.

Without loosing insight in detailed analysis, we assume that α(x) ∈ {i, j} and
i, j correspond to the following rule

i =

{
1 if Cxt ≤ θ1
2 if Cxt > θ1

,

j =

{
1 if Cx ≤ θ2
2 if Cx > θ2

,

(3.4)

with C being a 1 × n matrix. Denote the hyperplanes Cx − θ1 = 0 and Cx −
θ2 = 0 by SI and SD. Note that the index j in (3.4) indicates a delay of τ for
(x, α) passing through the hyperplane SD. Thus we sometimes say the immediate
respectively delayed switching plane. For simplicity let SI lie to the left of SD

and we only consider, throughout the paper, systems where, if x(t′′) ∈ SD then
x(t) /∈ SD ∪ SI for t ∈]t′′, t′′ + τ ]. See motivation in Section 3.5.

The paper is organized as follows. In Section 3.2, we study the existence of
limit cycles. Then we turn to analysis on stability, especially Section 3.3 deals
with local stability and Section 3.4 stability regions. In Section 3.5, we apply the
results in Section 3.3 and Section 3.4 to a reduced cell cycle model proposed in
[3]. Finally the paper is concluded by some further comments in Section 3.6.

3.2 Existence of Limit Cycle

Assume that a limit cycle generated by (3.3)-(3.4) passes the switching planes
in a clockwise consecutive order according to Figure 3.1, and that the delayed
switch of this limit cycle after passing SD from left to right takes place on the
right side of SD, while the delayed switch after passing SD from right to left
takes place on the left side of SI . Then a limit cycle solution can be constructed
by integrate the subsystems according to the switching rules, (3.3) and (3.4),
respectively.

Let x̃1, x̃2, x̃3, x̃4 be the intersection points between the trajectory generated
by (3.3)-(3.4) and the hyperplanes SI and SD as indicated in Figure 3.1.

Let the time taken from x̃i to x̃i+1 be ti,i+1 where i+4 = i, i = 1, 2, 3, 4. Then
t34 < τ < min(t23, t34 + t41) according to the assumptions on delay described
earlier.
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Fig. 3.1. Switching planes and trajectory of limit cycle.

Note that the matrices A11, A12, A21 and A22 are assumed to be invertible.
Thus the solution (3.3), together with the switch rules (3.4), can be written
explicitly as follows:

x̃2 = eA21t12(x̃1 +A−1
21 B)−A−1

21 B,

x̃3 = eA22(t23−τ)(eA21τ (x̃2 +A−1
21 B)−A−1

21 B) +A−1
22 B)−A−1

22 B,

x̃4 = eA22t34(x̃3 +A−1
22 B)−A−1

22 B,

x̃1 = eA11(t41−(τ−t34))((eA12(τ−t34)(x̃4 +A−1
12 B)−A−1

12 B) +A−1
11 B)−A−1

11 B.

Now, by this construction we can in principle formulate the conditions for
the existence of limit cycle. Obviously, it takes t∗i time for actual switch of the
system, where t∗1 = t12 + τ , t∗2 = t34 + t23− τ , t∗3 = τ − t34 and t∗4 = t41 + t34− τ .

By successive elimination of x̃2, x̃3 in the expression of x̃1 we have

x̃1 = (I − E4E3E2E1)−1 [E4E3E2(E1 − I)z1 + E4E3(E2 − I)z2
+E4(E3 − I)z3 + (E4 − I)z4] (3.5)

whereEi = eAit
∗
i and zi = A−1

i B with A1 = A21, A2 = A22, A3 = A12, A4 = A11.
In the same way we obtain

x̃4 = (I − E3E2E1E4)−1 [E1E2E3(E4 − I)z4 + E1E2(E3 − I)z3
+E1(E2 − I)z2 + (E1 − I)z1] , (3.6)

x̃2 = (I − E12E4E3E2Eτ )−1 [(E12E4E3E2(Eτ − I) + E12 − I)z1
+E12E4E3(E2 − I)z2 + E12E4(E3 − I)z3 + E12(E4 − I)z4] , (3.7)
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x̃3 = (I − E23E1E4E3E34)−1 [(E23E1E4E3(E34 − I) + E23 − I)z2
+E23E1E4(E3 − I)z3 + E23E1(E4 − I)z4 + E23(E1 − I)z1] , (3.8)

where Eτ = eA1τ , E12 = eA1t12 , E23 = eA21(t23−τ) and E34 = eA21t23 . Obviously,
E23E34 = E2 and EτE12 = E1. Since x̃2 and x̃3 lie on SD and x̃1 and x̃4 lie
on SI , respectively, they satisfy Cx̃1 − θ1 = 0, Cx̃2 − θ2 = 0, Cx̃3 − θ2 = 0,
Cx̃4−θ1 = 0. Thus we have the following result on the existence of a limit cycle.

Proposition 3.2.1. Assume that there exists a periodic solution with four
switches per cycle and period t∗ = t∗1 + t∗2 + t∗3 + t∗4 > 0. Assume further that
x̃j:s are defined by (3.5)-(3.8) and g1(t∗1, t∗2, t∗3, t∗4) = Cx̃1 − θ1, g2(t∗1, t∗2, t∗3, t∗4) =
Cx̃2 − θ2, g3(t∗1, t∗2, t∗3, t∗4) = Cx̃3 − θ2, g4(t∗1, t∗2, t∗3, t∗4) = Cx̃4 − θ1. Then the
following conditions hold

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g1(t∗1, t
∗
2, t

∗
3, t

∗
4) = 0

g2(t∗1, t
∗
2, t

∗
3, t

∗
4) = 0

g3(t∗1, t
∗
2, t

∗
3, t

∗
4) = 0

g4(t∗1, t
∗
2, t

∗
3, t

∗
4) = 0

and the period solution is governed by system with A21 on [0, t∗1), A22 on [t∗1, t
∗
1 +

t∗2), A12 on [t∗1 + t∗2, t∗1 + t∗2 + t∗3), and A11 on [t∗1 + t∗2 + t∗3, t∗). Furthermore, the
periodic solution is obtained with initial condition x̃i for i = 1, 2, 3, 4.

Note that if the initial condition does not belong to any switching surface the
existence of a limit cycle still holds, for the trajectory will cross one switching
surface after a finite time.

3.3 Local Stability of Limit Cycles

The idea is to analyze the effect of a small perturbation of the initial condition
x̃1 on SI that generates a limit cycle (or other points as defined in the previous
section) to the first return map. Let the return map be T from some point in
a small neighbourhood of x̃1 ∈ SI , to the point where the trajectory returns to
SI . It is well-known that the limit cycle is locally stable if all eigenvalues of the
Jacobian of T are inside the unit circle.

To this end we have to find the Jacobian of the return map. Starting at
x(t0) = x̃1 ∈ SI , x(t) = eA21(t−t0)(x(t0) + A−1

21 B) − A−1
21 B, if t < t12 + τ , thus

x̃2 = eA21t12(x̃1+A−1
21 B)−A−1

21 B. Now let x(t0) = x̃1+δ̃x1 where δ̃x1 is arbitrary
and the norm of which is small, but x(t0) is on the switching plane, i.e. it is such
that C(x̃1 + δ̃x1)− θ1 = 0. The solution with this initial condition is

x(t) = eA21t(x̃1 + δ̃x1 +A−1
21 B)−A−1

21 B.

Assuming the solution reaches the switching plane SD at time t12 + δ1t12 we
have
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x(t12 + δ1t12) = eA21(t12+δ1t12)(x̃1 + δ̃x1 +A−1
21 B)−A−1

21 B,

Taylor expanding the term eA21δ1t12 , together with the fact that eA21t12(A21x̃1 +
B) = A21x(t12) +B, gives

x(t12 + δ1t12) = x̃2 + eA21t12 δ̃x1 + eA21t12(A21x̃1 +A−1
21 B)δ1t12 +O(δ21)

=x̃2 + eA21t12 δ̃x1 + (A21x̃2 +B)δ1t12 +O(δ21)

Since the trajectory passes SD at t12 + δ1t12, Cx(t12 + δ1t12) = θ2. Then ne-
glecting the higher order terms and using θ2 = Cx(t12) we have

CeA21t12 δ̃x1 + Cv1δ1t12 = 0.

where v1 = A21x̃2 + B. If Cv1 �= 0 (that is, the solution is transversal to SD),
then

δ1t12 = −Ce
A21t12

Cv1
δ̃x1.

Now we have
x(t12 + δ1t12) = x̃2 +W1δ̃x1

i.e. δ̃x2 =W1δ̃x1 where W1 =
(
I − v1C

Cv1

)
eA21t12 .

Next, let x(t0) = x̃2 + δ̃x2, x̃2 ∈ SD, δ̃x2 is arbitrary and the norm of which
is small but x(t0) ∈ SD. Compute now solution with this initial condition and
assume it reaches the switching plane SI at time t23+δ2t23. By a straightforward
calculation as before:

x(t23 + δ2t23) = x̃3 + eA22(t23−tτ )eA21tτ δ̃x2

+A22e
A22(t23−τ)((eA21tτ (x̃2 +A−1

21 B)−A−1
21 B) +A−1

22 B)δ2t23 + o(δ22)

=x̃3(A22x̃3 +M)δ2t23 + eA22(t23−tτ )eA21tτ δ̃x2 + oδ22)

if t34 +ε1 < τ < min(t23, t34 + t41)−ε2 for some ε1, ε2 > 0. Neglecting the higher
order terms and use the same argument as that in computing W1 yields

δ2t23 = −Ce
A22(t23−tτ )eA21tτ

C(A22x̃3 +B)
δ̃x2.

Hence

x(t23 + δ2t23)− x̃3 ≈
(
I − (A22x̃3 +B)C

C(A22x̃3 +B)

)
eA22(t23−τ)eA21τ δ̃x2.

Set W2 :=
(
I − v2C

Cv2

)
where v2 = A22x̃3 +B.

Using similar calculations and neglecting the higher order terms, we obtain

δ̃x4 =W3δ̃x3 =W3W2W1δ̃x1.

x(t41 + δ4t41)− x̃1 =W4δ̃x4 =W4W3W2W1δ̃x1.
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where

W3 =
(
I − v2C

Cv2

)
eA22t34 ,

W4 =
(
I − v4C

Cv4

)
eA11t

∗
4eA12t

∗
3

and v2 = A22x̃3 + B, v4 = A11x̃1 + B, and x̃2, x̃3 ∈ SD, x̃1, x̃4 ∈ SI . Note that
to derive W2 and W4 we needed a technical assumption that there exist small
numbers ε1 > 0, ε2 > 0 such that t34 + ε1 < τ < min(t23, t34 + t41)− ε2.

Now the Jacobian of the return map is W =W4W3W2W1. If the eigenvalues
ofW are inside the unit circle, then the limit cycle under consideration is locally
stable. Therefore we have proved the following theorem.

Theorem 3.3.1. Consider the piecewise linear system (3.3) and (3.4). Assume
there exists a limit cycle with period t∗ as described in Proposition 3.2.1, and that
there exist small numbers ε1 > 0, ε2 > 0 such that t34 + ε1 < τ < min(t23, t34 +
t41)−ε2. Assume further that the limit cycle is transversal to the switching planes
SD, SI at x̃1, x̃2, x̃3, x̃4, respectively. Then the Jacobian of the return map T is
given by W = W4W3W2W1. Furthermore, the limit cycle (if existing) is locally
stable if all eigenvalues of W lie inside the unit circle.

3.4 On Stability Regions

In this section we discuss the question arising from the global analysis of limit
cycles. However, the analysis given below applies to both cycles and fixed points.
Our analysis leads to a description of a stability region, that is, all points in
this region will generate solutions that will converge to either an asymptotically
stable fixed point or an asymptotically stable limit cycle.

To find the stability regions we study the maps from a subset of one switching
plane to a subset of another switching plane. We will give conditions to ensure
that the maps we have found are contractive, which in turn provide the condition
for asymptotical stability of fixed points or limit cycles. To find these maps for
the delay piecewise linear system (3.3)-(3.4) we have to set up some necessary
notations and definitions.

Let S1, S2 be two switching planes. Let x(0) = x̃1+Δ1. Define tΔ1 as the set of
all times t ≥ 0 such that the trajectory x(t) with initial condition x(0) ∈ S1 and
x(t) in the closure of the solution set on [0, t]. Note that we have taken the initial
time t0 = 0, which is not restricted. Define also the set of expected switching
times of the map, called impact map, from Δ1 in a subset of S1, Sd1 − x̃1 called
departure set, that generates the trajectory toΔ2 in a subset of S2, Sa2−x̃2 called
arrival set, to which the trajectory arrives, as T = {t | t ∈ tΔ1 , Δ1 ∈ Sd1 − x̃1}.
We denote x(t, x̃) the trajectory generated by the initial condition x̃.

Now we turn to finding such maps, called impact maps, for the system (3.3)
and (3.4). Remember that we have four switching possibilities: SI → SI , SI →
SD, SD → SD, SD → SI , that make four maps: (i) SId to SDa from left to right,
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(ii) SDd to SDa from right side of SD, (iii) SDd to SIa from right to left, and finally
(iv) SId to SIa from left side of SI . Denote also the expected switching time sets
as Ti, where i is in accordance with the above four cases.

Let x(0) = x̃1 ∈ SId . Then

x(t, x̃1) = eA21tx̃1 +
∫ t

0

eA21(t−s)Bds. (3.9)

We require that x(t, x̃1) ∈ SDa . Hence t is a switching time. Note that switching
time may not be unique.

Let x1 = x̃1 +Δ1 ∈ SId , x2 = x̃2 +Δ2 ∈ SDa , and x̃1 ∈ SId , x̃2 ∈ SDa . Then
CΔ1 = CΔ2 = 0. From the expression of x(t, x̃1) above, we have

Δ2 = eA21tΔ1 + eA21tx̃1 +
∫ t

0

eA21(t−s)Bds− x̃2 = eA21tΔ1 + x(t, x̃1)− x̃2.

Since CΔ2 = 0 and Cx̃2 = θ2,

CeA21tΔ1 = θ2 − Cx(t, x̃1).

Assume that Cx(t, x̃1) �= θ2. Then

CeA21tΔ1

θ2 − Cx(t, x̃1)
= 1

showing that

Δ2 = eA21tΔ1 + (x(t, x̃1)− x̃2) · 1 =
(
I +

(x(t, x̃1)− x̃2)C
θ2 − Cx(t, x̃1)

)
eA21tΔ1.

Therefore

H1(t, τ) :=
(
I +

(x(t, x̃1)− x̃2)C
θ2 − Cx(t, x̃1)

)
eA21t, x̃1 ∈ SId , x̃2 ∈ SDa , t ∈ T1 (3.10)

is the desired map from Δ1 ∈ SId − x̃1 to Δ2 ∈ SDa − x̃2 for all t ∈ T1.
In the same manner, we can derive the other three maps, denoted by H2(t, τ)

fromΔ2 ∈ SDd −x̃2 toΔ3 ∈ SDa −x̃3,H3(t, τ) fromΔ3 ∈ SDd −x̃3 toΔ4 ∈ SIa−x̃4,
and H4(t, τ) from Δ4 ∈ SId − x̃4 to Δ5 ∈ SIa − x̃5.

H2(t, τ )=

(
I +

(x(t, x̃2)−x̃3)C

θ2 − Cx(t, x̃2)

)
eA22(t−τ)eA21τ , x̃2 ∈ SD

d , x̃3 ∈ SD
a ,∀t ∈ T2 and t > τ

(3.11)

H3(t, τ) =
(
I +

(x(t, x̃3)− x̃4)C
θ1 − Cx(t, x̃3)

)
eA22t, x̃3 ∈ SDd , x̃4 ∈ SIa , ∀t ∈ T3 (3.12)

H4(t, τ) =
(
I +

(x(t, x̃4)− x̃5)C
θ1 − Cx(t, x̃4)

)
eA11(t−t̃)eA12t̃,

x̃4 ∈ SId , x̃5 ∈ SId , ∀t ∈ T4, t− t̃ > 0, for some 0 < t̃ < τ (3.13)

where Cx(t, x̃i) �= θ1, (i = 3, 4) and Cx(t, x̃2) �= θ2.
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We summarize this as a theorem:

Theorem 3.4.1. Assume that Cx(t, x̃i) �= θ1, (i = 3, 4) and Cx(t, x̃i) �= θ2,
(i = 1, 2) for x̃1 ∈ SId , x̃2 ∈ SDd , x̃3 ∈ SDd and x̃4 ∈ SId . Define Hi as above,
(3.10)-(3.13). Then, for any Δi ∈ Sid − x̃i there exists a t ∈ Ti such that

Δi+1 = Hi(t, τ)Δi,

Such t ∈ tΔi is the switching time associated with Δi+1, for i = 1, 2, 3, 4, where
S1 = S4 = SI , S2 = S3 = SD.

Furthermore, if the initial states are chosen so that these maps are contractive,
then the limit cycle, or fixed point, is stable.

Note also that CΔi = 0 in the derivation of Hi. This indicates that the maps
Hi, in fact, takes place in R

n−1. To see this, let C⊥ be an n×(n−1) matrix with
columns orthonormal to C′. Then Δi+1 = Hi(t)Δi is equivalent to C⊥Δ̃i+1 =
Hi(t, τ)C⊥Δ̃i, where Δ̃i, Δ̃i+1 ∈ R

n−1. Thus,

Δ̃i+1 = (C⊥)′Hi(t, τ)C⊥Δ̃i.

Thus
Δ̃i+1 = H̃i(t, τ)Δ̃i.

where H̃i(t, τ) := (C⊥)′Hi(t, τ)C⊥.
It is in general not easy to check contraction of these maps. However, if the

state space is two-dimensional, then the difficulty is reduced significantly. Note
that Hi(t, τ) becomes scalar. To prove that Hi(t) is contractive is equivalent to
proving that |H̃i(t, τ)| < 1, for each i, since H̃i is a scalar, i.e.

|(C⊥)′Hi(t)C⊥| < 1. (3.14)

Next step is to find the largest interval in SI and SD around x̃i where the
impact map from some Ui ⊂ SI(SD) to the next switch on the switching plane
is continuous, and a set of initial conditions of interval in SI or SD such that
every point in this set has switching time in Ti. Define C1(t) = CeA21tC⊥, C2(t)
= CeA22teA21τC⊥, C3(t) = CeA12tC⊥, C4(t) = CeA11(t−t̃)eA12t̃C⊥, d1(t) = θ2 −
Cx(t, x̃1), d2(t) = θ2 − Cx(t, x̃2), d3(t) = θ1 − Cx(t, x̃3), and d4(t) = θ1 −
Cx(t, x̃4). We have

Theorem 3.4.2. Assume that (3.14) holds for all t ∈ Ti := [ti−, ti+]. Define

RCi = min
t∈Ti

|ḋi(t)|/|Ċi(t)|, R̄i = inf
t�∈Ti

|di(t)|/|Ci(t)|.

Then the impact map in the domain {x̃i + C⊥Δ̃i : |Δ̃i| < min{RCi , R̄i}} is a
contraction.

The proof is similar to the ones in [4].
If the piecewise linear system has a local limit cycle with period t∗, and the

limit cycle crosses transversely 4 switching planes per cycle we can continue dis-
cussing the stability region. To find the stability region of the limit cycle we have
to find the conditions for contraction of the four impact maps simultaneously.
This is summarized in the following:
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Theorem 3.4.3. Let Ti be the largest set such that (3.14) holds for all ti ∈ Ti,
i = 1, 2, 3, 4. Let R = min{Ri : i = 1, ...., 4}. Then the solution starting inside
of any of the set defined by {x̃i + C⊥Δ̃i : |Δ̃i| < R} ⊂ SI or SD, i =1,...,4,
converges asymptotically to the limit cycle.

3.5 Application to a Reduced Cell Cycle Model

The purpose of this section is to illustrate that the study carried out in preceding
sections is useful in the global analysis of dynamical behavior of the reduced cell
cycle model [3]. The reduced cell cycle system is defined as follows:

ẋCdc13t(t) =− s1(t− τ)xCdc13t(t) + k1M, (3.15)
ẋPreMPF(t) =s2(t)xCdc13t(t)− s3(t, t− τ)xPreMPF(t), (3.16)
yMPF(t) =xCdc13t(t)− xPreMPF(t), (3.17)
s1(t− τ) =k′2 + sslp/ste(yMPF(t− τ)), (3.18)

s2(t) =swee(yMPF(t)), (3.19)
s3(t, t− τ) =swee(yMPF(t)) + s25(yMPF(t)) + k′2 + sslp/ste(yMPF(t− τ)),

(3.20)

s25(z) =

{
l25 if z ≤ θ25/wee

h25 if z > θ25/wee

, (3.21)

swee(z) =

{
hwee if z ≤ θ25/wee

lwee if z > θ25/wee

, (3.22)

sslp/ste(z) =

{
lslp/ste if z ≤ θslp
hslp/ste if z > θslp

, (3.23)

where the parameters are

τ = 15, k1 = 0.03, k′
2 = 0.03, l25 = 0.2, h25 = 5, θ25/wee = 0.25,

hwee = 1.3, lwee = 0.15, lslp/ste = 0, hslp/ste = 1.3, θslp/ste = 0.4, μ = 0.005.

(3.24)
In the original model [1], the cell mass M is a slow time dependent variable.

We here treat M as a constant parameter in order to examine model behaviour
for different values of M . In the following analysis M = 1.8.

Let x = (xCdc13t xPreMPF)′ represent the state of the cell cycle system and
uext = M the external input, and let y = yMPF be the output from the cell
cycle system. Then, the DPL described in the preceding section can be put in
the matrix form

ẋ = Ax+B, y = Cx, (3.25)

where C = (1 − 1), A =
(−s1(t−τ) 0

s2(t) −s3(t,t−τ)
)
, and s1,s2,s3 are combinations of

step functions defined by (3.18)-(3.20) and B = (k1uext 0)′ and k1 a constant
parameter. The system matrix A takes four possible forms, indexed by Aij , i, j ∈
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{1, 2}, where i = i(y(t)) and j = j(y(t− τ)) (A change of index i corresponds to
a change of step functions s25 and swee and a change of j to a change of sslp/ste).
Then

ẋ(t) = Aijx(t) +B (3.26)
y(t) = Cx(t), (3.27)

where i and j correspond to the following switching rules

i(y(t)) =

{
1, if y(t) ≤ θ25/wee
2, if y(t) > θ25/wee

,

j(y(t− τ)) =

{
1, if y(t− τ) ≤ θslp/ste
2, if y(t− τ) > θslp/ste

,

(3.28)

and θ25/wee and θslp correspond to the switching thresholds of the different step
functions. The DPL-model is illustrated in Figure 3.2. The resulting Aij -matrices
are obtained from (3.15)-(3.23), and correspond to

A11 =
[
−(k′2 + lslp/ste) 0

hwee −(hwee + l25 + k′2 + lslp/ste)

]

A12 =
[
−(k′2 + hslp/ste) 0

hwee −(hwee + l25 + k′2 + hslp/ste)

]

A21 =
[
−(k′2 + lslp/ste) 0

lwee −(lwee + h25 + k′2 + lslp/ste)

]

A22 =
[
−(k′2 + hslp/ste) 0

lwee −(lwee + h25 + k′2 + hslp/ste)

]
.

(3.29)

Here hslp/ste, hwee, h25 and lslp/ste, lwee, l25 are the high and low values of the
step functions and k′2 is the parameter from the original NT-model [1]. Note that
the matrices Aij are invertibe and have all eigenvalues real negative.

Following the discussion in Sections 3.2 and 3.3 we could find a limit cy-
cle going from x̃1 = (1.646, 1.396) on SI : (1,−1)x = θ25/wee, it reaches
x̃2 = (1.646, 1.246) on SD: (1,−1)x = θslp/ste, continues to x̃3 = (0.412, 0.012)
on SD, then to x̃4 = (0.257, 0.007) on SI and finally goes back to x̃1. The pe-
riod is 112.253 and the switching times t∗1 = 0.023, t∗2 = 16.13, t∗3 = 0.40 and
t∗4 = 95.70. This is depicted in Figure 3.2.

Note that in order to prove the local stability of a limit cycle we have to show
that the Jacobian of the return map W defined in Theorem 3.3.1 should have
all eigenvalues inside the unit circle.

If all parameters are fixed as in (3.24), and cell mass M = 1.8, we can easily
compute the eigenvalues of W to check if the eigenvalues are inside the unit
circle. The eigenvalues of W are both ≈ 0.
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Fig. 3.2. A numerical simulation of the reduced cell cycle model (3.15)-(3.23) together
with the switching lines SI and SD.

The following estimation will allow us to find parameters such that a limit
cycle is locally stable if existing. It is well-known that |λi(W )| ≤ ‖W‖, where λi
is denoted as the eigenvalues of W and ‖ · ‖ is the norm of an operator · and we
shall take the spectral norm, i.e. ‖ · ‖ = maxi∈1,2(λi((·)′(·)))1/2. Now

‖W‖ ≤ ‖W4‖‖W3‖‖W2‖‖W1‖.

Then, to guarantee |λi(W )| < 1, it suffices to find conditions such that ‖Wi‖ < 1.
To this end we estimate the norms of the matrices Wi.

Lemma 3.5.1. Let A =
[
α 0
γ β

]
with α, β, γ ∈ R. If α �= β,

e2(α+β)t < 1

1− (e2αt + e2βt +
(
eαt − eβt
α− β

)2

γ2) + e2(α+β)t > 0

or if α = β,

e4αt < 1

1− e2αt(1 + γ2) + e4αt > 0,

then ‖eAt‖ < 1.

Proof. By a straightforward calculation
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eA
′teAt =

⎡
⎣e2αt +

(
eαt−eβt

α−β

)2

γ2 eβt
(
eαt−eβt

α−β

)
γ

eβt
(
eαt−eβt

α−β

)
γ e2βt

⎤
⎦ ,

if α �= β. Then the eigenvalues of eA
′teAt lie inside of the unit circle is equiva-

lent to

e2(α+β)t < 1

1− (e2αt + e2βt +
(
eαt − eβt
α− β

)2

γ2) + e2(α+β)t > 0.

Similarly if α = β, then

eA
′teAt = e2αt

[
(1 + γ2) γ
γ 1

]
,

The second alternative follows.

Lemma 3.5.2. Let C =
[
1 −1

]
, vi defined earlier be

[
ai
bi

]
. Then ‖Wi‖ < 1,

i = 1, 2, 3, 4, if √
2(a2i + b2i )
(ai − bi)2

<
1

‖eAi‖ ,

where A1 = A21t23, A2 = A22t23 + (A21 − A22)τ , A3 = A12t34, A4 = A11t
∗
4 +

A12t
∗
3.

Proof. Since A21 and A22 commute, and A11 and A12 commute, we have
eA22(t23−τ)eA21τ = eA22t23+(A21−A22)τ = eA2 and
eA11t

∗
4eA12t

∗
3 = eA11t

∗
4+A12t

∗
3 = eA4 .

A simple calculation yields that the eigenvalues of (I − viC
Cvi

)′(I − viC
Cvi

) are 0

and 2(a2
i +b2i )

(ai−bi)2
> 0, where ai �= bi according to the definition of vi. Then

‖I − viC
Cvi

‖ =

√
2(a2i + b2i )
(ai − bi)2

.

Hence
‖Wi‖ ≤ ‖I − viC

Cvi
‖‖eAi‖ < 1,

completing the proof.

3.6 Conclusions

We have investigated a class of piecewise linear systems with explicit delay in this
paper. The main contribution is giving a set of conditions for local stability of the
limit cycle and stability regions of such solutions. Although it is not possible to
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provide a fully analytical result, our theory provides a computationally checkable
tool based on a rigorous analysis. To deal with unstructural delay was new to
our best knowledge.

It is worth pointing out that our analysis, with some small modifications, can
be carried out for several switching surfaces and also if the delay occurs in a
different way. For the essence of the analysis we have chosen the DPL-structure
which we think is the most representative (also in the degree of difficulty).

The theory developed in this paper can also be applied to other models,
without assuming that the subsystem matrices are invertible or Hurwitz, by a
slight modification in our proofs.

Piecewise linear systems with memory delay both in states and switching
rules are under investigation. This will hopefully allow us to analyze systems of
delay-differential equation such as the one used in [7].
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