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Abstract

We identify fundamental issues with discretization when estimating
information-theoretic quantities in the analysis of data. These difficulties
are theoretical in nature and arise with discrete datasets carrying sig-
nificant implications for the corresponding claims and results. Here we
describe the origins of the methodological problems, and provide a clear
illustration of their impact with the example of biological network re-
construction. We propose an algorithm (shared information metric) that
corrects for the biases and the resulting improved performance of the al-
gorithm demonstrates the need to take due consideration of this issue in
different contexts.

This is investigated in the context of network inference [1–5] where information-
theoretic methods have been extensively applied [6–9]. Despite its ubiquity,
general systematic analysis of the techniques and their underlying assumptions
have been few [10].Although information entropy, and its variations such as the
joint or conditional entropy, is well-defined for discrete variables, its formulation
for continuous probability distribution is far from unambiguous. The flexibility
in this definition lies at the heart of the issue when applying it consistently to
different physical systems. Specifically, entropy estimation in continuous cases
requires discretization of the variable values, and the calculation results are not
invariant to the choice of discretization. With the focus on reverse-engineering,
we describe the fundamental issues with information-theoretic methods, con-
struct examples that highlight them, and propose an algorithm to remedy the
situation.
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1 Results

Mathematically, Shannon entropy of a variableX, defined asH(X) =
∑
i−pi log(pi)

[11], is a well-defined quantity when X is discrete, taking distinct values i with
probabilities pi. This is not the case when X is sampled from a continuous
probability distribution where an equivalent definition would just give infin-
ity [12]. Nonetheless, there exists a generalization of mutual information (MI)
of two variables X and Y with joint probability distribution PX,Y (u, v) and
corresponding marginals PX(u) and PY (v) :

I = H(X) +H(Y )−H(X,Y )

=
∑

X=u,Y=v

PX,Y (u, v) log
PX,Y (u, v)

PX(u)PY (v)
(1)

from discrete to continuous joint probability distribution

I =

∫
dudvPX,Y (u, v) log

PX,Y (u, v)

PX(u)PY (v)
(2)

which is well-behaved [12]. However, given discrete ordered pair (xp, yp) sam-
pled from an unknown joint probability distribution over continuous variables,
we would have to approximate the true (continuous) distribution from it. At
the level of probability, this is achieved by binning and discretizing the range of
values of the variables.

While this is carried out straightforwardly, there are pitfalls in simple general-
ization to mutual information. The key problem is that mutual information de-
pends in a significant way on the discretization parameters, even when the num-
ber of points is very large. We show this with the following simple but general
example. Consider ordered pairs (xv, yv) , v = 1, 2, · · ·N from a joint distribu-
tion with the only requirement that xu 6= xv for u 6= v and likewise for y’s. If the

entire range of X and Y is considered as a single segment for discretization, ∆
(0)
X

and ∆
(0)
Y then the joint probability distribution PX,Y (∆

(0)
X ,∆

(0)
Y ) = 1 and hence

the marginals are also unity for the corresponding X and Y ranges. It can be im-
mediately seen that the mutual information is zero. Now, for the other extreme,
we choose the interval widths δX and δY such that there is at most one point
lying within each interval (for both the variables). We can always do this by se-
lecting δX < minu6=v,u,v=1,2,··· ,N{|xu−xv|} and δY < min

u 6=v,u,v=1,2,··· ,N
{|yu−yv|}.

In that case, the discretized joint probability in each rectangular cell is 1/N if
it is occupied and 0 otherwise. In much the same way the marginal probability
in each interval is either 1/N or 0 for both X and Y . Fig (1) shows how would
be done in the general case (note that interval widths there are not uniform).
We have then the mutual information:

I =
∑
α,β

PX,Y (α, β) log
PX,Y (α, β)

P (α)P (β)
=
∑
α,β

1/N log
1/N

(1/N)(1/N)
= logN (3)
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Figure 1: Grids in 2D space for a set of 10 points such that for any partition
along the X-direction (Y -direction) there is exactly one point within it. This
corresponds to a maximum possible mutual information of log 10.

Thus, for a set of N observations from a joint probability distribution, the mu-
tual information can vary between 0 and logN depending on the size of the
binning. What is most striking about this is that this is true regardless of the
true mutual information of the underlying joint probability distribution. As the
upper bound grows with the size N , having a larger sample number does not
solve the fundamental problem of the inherent ambiguity of defining mutual
information using discrete data points.

1.1 Standard partitioning biases

Recognizing this basic limitation, we wish to consider the implications of dif-
ferent choices of binning in estimating mutual information [13]. We want to
understand the underlying biases and the possible deviation of mathematical
properties from that of the original definition.

In general, mutual information increases as we increase the number of partitions
of the space. We can see that in Fig (2) the variation of the estimated mutual
information for two multivariate Gaussian random variables with the number
of bins (assuming fixed bin length) for different sample sizes N . The plotted
values for the estimated MI comes from the average taken over 50 samples. In
the supplement, we prove a general result stating that the doubling of partition
size would increase the mutual information between two variables for an arbi-
trary set of samples. However, this by itself would not be an issue if we are
considering reverse engineering in networks as long as the rankings of estimated
mutual information between variables is preserved with respect to their true
values
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Figure 2: Variation of the estimated entropy as a function of number of bins
(along each axis) for a pair of jointly Gaussian random variables.

There are other biases and errors that are introduced by the choice of the par-
titioning scheme that we will consider here. Broadly, partitioning of the two
dimensional space of variables X and Y fall into two general categories: uniform
number of bins (b) where the number of divisions of both axis is identical, uni-
form width where the width of each partition (w) is identical for both variables,
and uniform frequency where the number of points falling into each partition
(for each variable) variable is fixed.. We will now turn to each of these specific
methods.

1.1.1 Uniform number of partitions

Here each axis of the space is split into equal number of uniform segments. The
advantage of this method is that it works well when the data is distributed
reasonably evenly across the range of each axis which happens when the den-
sity of points falls off sharply outside of the confined region under consideration.

However, the difficulty arises with probability densities that have a fat tail,
where the spread is wide but the majority of points are still lying within a
smaller region. A binning of this sort would then be finer for points in the
periphery but coarser in the denser regions, thus tending to underestimate the
mutual information from the latter areas.
We demonstrate this by estimating the entropy for two samples , the first of
which comes from the exponential family,

PX,Y =
1

Γ(θ)λ
xθe−

xy
λ −x (4)

with θ = 4, λ = 5 and the second a multivariate Gaussian in two-variables

4



∼ e−(X−µx)·Σ−1·(Y−µy) where

Σ =

(
5 4
4 5

)
and (µx, µy) = (5, 5). Each set consists of 200 points, and the barplots of
distributions (Fig.(3a,3b)) across a uniform 10 × 10 grid show that while the
multivariate normal is spread quite smoothly across the entire surface, it falls
off in the other for X,Y > 5.
The mutual information can be theoretically computed in these two cases:

Iexp(θ, λ) = λ(ψ(θ + 1)− log θ)

where ψ is the digamma function and

IGauss(Σ) =
1

2
log

σ2
xxσ

2
yy

σ2
xxσ

2
yy − σ2

xy

which evaluate to Iexp = 0.79 and IGauss = 0.51 but the estimated mutual
information from the above binning leads to Iexpe = 0.21 and IGausse = 0.59.

The reason for the severe underestimation in the first case is precisely the fact
that there is a closer clustering of points within a smaller region where this type
of binning tends to be ‘too wide’ and averaging the finer distinctions. In the
multivariate normal case, this difference is not so striking, and the estimation
is far more accurate.

1.1.2 Uniform partition widths

The other standard approach to choosing a grid on the two dimensional space
of points is to set the width of every partition on both axes to be a constant. As
the spread of the two variables is in general different, the total number of par-
titions need not be the same. The idea behind this is that the width represents
the distance over which points are considered to fall within the same discrete
category. It may be set based on estimates of noise in the sample, or, where
available, prior knowledge of the form of the joint distribution.

There is however a fundamental problem with this approach : setting the widths
to be a constant destroys the scaling invariance of the theoretical definition of
mutual information for continuous variables. In Eq. (2), the integral is invariant
under the transformation y → cy, PX,Y (x, y)→ cPX,Y (x, cy), PY (y)→ cPY (cy)
which corresponds to scaling the metric of the Y-axis by a constant. It must
be noted that this is not an incidental property of the integral but one that is
central to the usefulness of mutual information, i.e., mere scaling of the under-
lying space should not, and does not, alter the relative information between two
variables.
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(a) Sample from an exponential fam-
ily Eq. (4) with θ = 3 and λ = 5.
Theoretical (estimated) mutual infor-
mation is 0.79 (0.21)

(b) Normal distribution with σ2
xx =

σ2
yy = 5, σxy = 4. Theoretical (es-

timated) mutual information is 0.51
(0.59)

(c) Normal distribution with σ2
xx =

5, σ2
yy = 5, σxy = 4.5. Theoreti-

cal (estimated) mutual information is
0.83 (0.79)

(d) Normal distribution with σ2
xx =

5, σ2
yy = 2.5, σxy = 3.18. Theoreti-

cal (estimated) mutual information is
0.83 (0.67)

Figure 3: Mutual Information and meshing: In (a) and (b), the grid
choice turns the space of points into a square with equal number
of partitions along both, while for (c) and (d) the width of every
partition is held fixed.

6



(a) (b)

Figure 4: (Left) Mixed-Gaussian distribution. (Right)Equal-frequency partitioning

skews the distribution. Estimated(Numerical) mutual information is 0.19 (0.45)

Choosing binning styles with equal widths implies that scaling the points along
one direction in the space would change the number of partitions on its axis,
which changes the estimated mutual information. The effect of this can be easily
observed by considering samplings from two multivariate normal distributions
in two dimensions that differ only by the scaling of the y-axis by a factor of
1/
√

2( Fig. (3c) and Fig. (3d). By definition, the scale-invariance implies equal
mutual information but the requirement of setting equal widths (unity in this
case) leads fewer bins in the second case and consequent underestimation of its
value.

1.1.3 Equal Frequency Partitioning

In this case, the boundaries of the partitions for a given variable are chosen
such that each division contains an equal number of points. The general advan-
tage of this method is that, unlike the above two, every row or column in the
grid would contain equal number of points, eliminating the problem highlighted
in Fig (3a,3b). However, this would skew joint distributions that have strong
association between two variables to a more uniform shape, causing an under-
estimation in mutual information. We can see this with the mixed-Gaussian
distribution with three modes (Fig. (4)) where the effect of choosing the equal
frequency partitioning on a 10×10 grid flattens the peak in the center spreading
the probability over a wider region, leading to a decrease in mutual information.

It is thus clear from the examples above that the standard types of partitioning is
in general unsatisfactory in terms of obtaining reasonable and consistent mutual
information scores. It should be noted that although our examples consider
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discrete binning of the data, the kernel-based estimation of mutual information
[14, 15] has the same fundamental problem. While it is not as pronounced
as it is with direct binning, the width of the kernel in that case is equivalent
to the width of the bins here (equal-width partition). The same is true with
estimators like the k-nearest neighbors [16] where the scores depend on the
parameter corresponding to the number of neighbors.

1.2 Adaptive Partitioning for Network Inference

Data-driven reverse-engineering of genetic networks uses pairwise association
between genes to determine true interactions among them. Information the-
ory is applied effectively for this task by estimating the mutual information
between every pair of network node variables and reconstructing the network
based on the relative rankings of the different edge scores [8, 9, 17]. A distinct
advantage being that mutual information detects all forms of associations while
correlation-based measures perform well only with linear relations.

We propose a novel method of partitioning of space in the context of network
reverse-engineering that aims to reduce the biases created by the standard tech-
niques. This includes choosing grid sizes that take into consideration (a) overall
spread of the data among all variables (b) spread of the values of the pair of
node variables in question (c) dependence of numerical estimation of mutual
information on this spread (d) appropriate normalization using the entropy of
each variable.

Given set V of N node variables and M samples, we choose first a standard par-
tition width w0 = wint/Kmin, where wint = median{σ(X)|X ∈ V }, and Kmin

is an integer parameter that represents the minimum number of partitions and
σ(X) is the empirical standard deviation of the X variable values.

For any two node variables X and Y whose mutual information we want to esti-
mate, the number of bins bX and bY are obtained using the following algorithm
(see Fig. 5). In addition to Kmin, we have another integer parameter Kmax

that sets the maximum number of partitions.

Steps 1-3 may look complicated but the idea is simple enough: we prefer to
maintain the bin widths constant as long as their numbers lie between Kmin

and Kmax. This is primarily in recognition of the fact that spread of the node
variable is a measure of the strength of the interactions: if the values are nearly
the same, the uniform width approach would select fewer partitions. However,
to ensure that the distribution is not skewed when the spread of one or both is
large (or too small), we need to correspondingly rescale both variables to force
them to lie within that range. Heuristically, the two limits Kmin and Kmax

8



Step 1: bX is first set to [σ(X)
w0

] where [.] refers to

the nearest integer function. Likewise for bY . Assume

bX ≤ bY .

Step 2 : If bY > Kmax, then reset bX = [bX(K/bY )]

and bY = K. If the new bX < Kmin, reset bX = Kmin.

Step 3: If bX < Kmin, then bY =

[max{Kmin,min{Kmax,Kmin

√
bY /bX}}] and

bX = Kmin.

Step 4: Once the binning is fixed, we proceed

to calculate the number of points falling within

each rectangle, and the discretized form of mutual

information between the two variables.

Step 5: We normalize the mutual information by

dividing by min{H(X), H(Y )}, where H(X) and

H(Y ) are the entropies of X and Y calculated using

the same bin numbers bX and bY respectively. We

call the resulting quantity shared information metric

(SIM).

Figure 5: Adaptive Paritioning Algorithm

ensure that the relative values of mutual information are not under- or over-
estimated.

Normalization Measure:
Step 5 was motivated by two considerations. First, we note that a proper nor-
malization is required when having different bin sizes. If, for example, there is
a node variable with a small spread but happens to have a strong direct inter-
action with another node, the binning scheme would then ‘overcorrect’ for the
small spread. We overcome that by such a normalization scheme. Second, we
recognize that what is significant in reverse-engineering is not the absolute value
of mutual-information but the MI relative to the information content of the two
node variables. The inequality I(X,Y ) ≤ min{H(X), H(Y )} captures the fact
that this quantity represents that part of the information that is shared between
the nodes. The fraction of what is shared should serve as a better indicator of
true interaction than their absolute values.
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1.3 Evaluation on networks

We assess the algorithm by studying its performance on in-silico networks
against that of standard methods (see Section 2 for more details). The ini-
tial comparison is with respect to the estimation method using only uniform
bin size or uniform bin number. Evaluation of the performance is done by plot-
ting the precision-recall curve (Fig. (6)) (see Section 2 for more details on their
definition). It can be clearly seen that, at any given value of recall, the precision
is significantly higher when using adaptive non-uniform discretization. We also
consistently found better results regardless of the size or the topology of the
network or its dynamics.

Our method performed better even against standard mutual-information based
approaches such as kernel estimation and DPI (ARACNE) [15] and the k-nearest
neighbor algorithm (with DPI) [16] (Fig. (7)).
For biological data sets, we considered the gene regulatory network of E. coli,
and the expression data for it from the DREAM 5 challenge [18]. In this case,
the set of transcription factors is known, and the aim is to determine their
targets. Thus our binning choice should reflect this prior knowledge and the
algorithm was modified accordingly (described in the supplement). Of the set
of 2000 interactions we evaluated, of which only 111 represented true regulatory
interactions, our method clearly performed better than the standard method of
discretization (Fig. 8).

2 Methods

We constructed synthetic networks obeying power-law degree-distribution with
the R package igraph. The data was generated by carrying out numerical in-
tegration of the Hill-kinetic equations corresponding to the network topology
until global steady state was reached. Each sample in the data set corresponds
to the steady state value of all variables. Different samples correspond to steady
states of different equations obtained with set of parameters comes from a uni-
form distribution.

The precision-recall curve (PRC) is used to evaluate these networks, where
precision and recall are given by:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

and TP= True Positives (the number of correct interactions identified), FP=
number of pairs incorrectly identified, and FN=number of interactions that were

10
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Figure 6: Comparison of the performance of network edge determination using
uniform number off bins (10 and 5 in figure (a) and (b) respectively) or uniform
bin width (Fig. (c)) against a non-uniform discretization. N and E refer to the
total number of nodes and true edges in the network.
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Figure 7: Comparison of the performance of network edge determination using
k-nearest neighbor method (with DPI) (Fig. (a)) and ARACNE (Fig (b)) against
the non-uniform discretization with the shared information mertic (SIM). N and
E refer to the total number of nodes and true edges in the network.
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unidentified. In general, there is a trade-off between precision and recall, as we
slide the threshold parameter.

3 Conclusions

We have described and detailed significant problems with the definition and es-
timation of mutual information, a quantity that is central to information theory.
We argue that this issue is of a theoretical nature leading to an inherent arbi-
trariness in its estimation from a discrete set of points. Moreover, the the errors
introduced by the standard forms of partitions of space is explicitly demon-
strated with examples .

By formulating a novel adaptive partitioning algorithm for reverse engineering
of networks, we further show the impact of these estimation biases in a real-
world context where mutual information is applied extensively. The superior
performance of the method over standard approaches on both in-silico and real
biological networks is not only an advancement in that field, but also clearly
implies the necessity to carefully understand the problems with estimating mu-
tual information.

The applications of information theory to various fields have grown enormously
in recent decades as the concepts have become central to areas such as physics,
communications and signaling, inference theory, multiple biological sciences,
pattern recognition and artificial intelligence [19–24]. We believe that a thor-
ough investigation of the fundamental issues involved in the subject would be
immensely beneficial to all of their applications.

Appendix A Proof of increase in mutual infor-
mation

We show that doubling the partition number along one of the directions leads
to a non-negative change in the mutual information. Starting with a division
of the 2D space into L ×M blocks we bisect each of the LM units along the
X−axis to create 2L×M cells. The mutual information:

I =

L∑
i=1

M∑
j=1

PX,Y (i, j) log
PX,Y (i, j)

PX(i)PY (j)
(5)

where PX,Y (i, j) is the fraction of particles lying in the rectangular cell (i, j).
After bisection, we have a new probability distribution P 2L(i, j) (dropping
the double-index subscript) where i = 1, 2, · · · 2L, such that P 2L(2k − 1, j) +
P 2L(2k, j) = P (k, j) for k = 1, 2, · · ·L. We will show that for every original
cell, its contribution to MI is exceeded by the sum of the contributions of the
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bisected components and thus obtain a stronger version of our required result.
To prove:

P 2L(2k−1, j) log
P 2L(2k − 1, j)

P 2L
X (2k − 1)PY (j)

+P 2L(2k, j) log
P 2L(2k, j)

P 2L
X (2k)PY (j)

≥ P (k, j) log
P (k, j)

PX(k)PY (j)
(6)

which reduces to,

P 2L(2k−1, j) log
P 2L(2k − 1, j)

P 2L
X (2k − 1)

+P 2L(2k, j) log
P 2L(2k, j)

P 2L
X (2k)

≥ P (k, j) log
P (k, j)

PX(k)
.

(7)
Substituting pa = P 2L(2k − 1, j), pb = P 2L(2k, j), p1 = P 2L

X (2k − 1), p2 =
P 2L
X (2k),

pa log
pa
p1

+ pb log
pb
p2
≥ (pa + pb) log

pa + pb
p1 + p2

(8)

Straightforward rearrangements of the terms leads to,

pa
pa + pb

log
pa

pa + pb
+

pb
pa + pb

log
pb

pa + pb
− pa
pa + pb

log
p1

p1 + p2
(9)

− pb
pa + pb

log
p2

p1 + p2
≥ 0

which is equivalent to demonstrating that :

x log
x

y
+ (1− x) log

1− x
1− y

≥ 0 (10)

for 0 ≤ x, y ≤ 1. The left hand side is nothing but KL-divergence between two
distributions on two element set with probabilities {x, 1 − x} and {y, 1 − y},
which is always positive.

Appendix B Modified Algorithm for determin-
ing targets

We used a modification of the general algorithm for the TF-target identifi-
cation in the E. coli expression data set. As the set of transcription factors
are known, the binning adjustments can be limited to the targets here and
thus our technique is significantly simplified. As before w0 = wint/H, where
wint = median{σ(X)|X ∈ V }, and H and K represent the minimum and max-
imum number of bins.

Step 1: Fix bX = (H +K)/2
Step 2 : If bY > K, then reset bY = K.
Step 3: If bY < H, then bY = H.
Step 4: Once the binning is fixed, we proceed to calculate the number of points
falling within each rectangle, and the discretized form of mutual information be-
tween the two variables.
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Step 5: We normalize the mutual information by dividing by min{H(X), H(Y )},
where H(X) and H(Y ) are the entropies of X and Y calculated using the same
bin numbers bX and bY respectively.
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