Chapter 7

Optimization in Biology Parameter
Estimation and the Associated Optimization
Problem

Gunnar Cedersund, Oscar Samuelsson, Gordon Ball, Jesper Tegnér
and David Gomez-Cabrero

Abstract Parameter estimation—the assignment of values to the parameters in a
model—is an important and time-consuming task in computational biology. Recent
computational and algorithmic developments have provided novel tools to improve
this estimation step. One of these improvements concerns the optimization step,
where the parameter space is explored to find interesting regions. In this chapter we
review the parameter estimation problem, with a special emphasis on the associated
optimization methods. In relation to this, we also provide concepts and tools to help
you select the appropriate methodology for a specific scenario.
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7.1 Introduction

Mathematical models have been part of biological research for more than half a cen-
tury. One of the starting points for this development was the now classical model for
the action potential in an axon, developed by Hodgkin and Huxley [27, HHM]. HHM
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Fig. 7.1 Schematic of the basic Hodgkin-Huxley model (HHM) of a neuron. The figure depicts
the basic components of HHM models that represent the biophysical characteristics of cell mem-
branes. In the model Capacitance (Cm) represents the lipid bilayer. Nonlinear (gn) and linear (gL)
conductances represent voltage-gated and leak ion channels respectively. Batteries (E) represent
the electrochemical gradients driving the flow of ions. Current sources (Ip) represent ion pumps and
exchangers. Figure obtained from Wikimedia, under Creative Commons CCO 1.0 Universal Public
Domain Dedication. Author: Krishnavedala

explains these action potentials using a set of coupled nonlinear ordinary differen-
tial equations (ODEs), which are associated to membrane channels with specific
time-and voltage-dependent properties (Fig.7.1). The HHM is of major relevance
because (i) it was the culmination and integration of a large number of experiments
[17, 52] where the model provided a mechanistically unified vision of the system; and
because (ii)) HHM generated specific predictions that were subsequently validated
using new single-channel recording techniques [26]. For these reasons, Hodgkin and
Huxley were awarded the Nobel Prize in 1963, the first Nobel Prize in physiology
awarded for the development of a mathematical model. An illuminating account of
the development of both experiments and model is available in [26].

However, those early successes by Hodgkin and Huxley were possible because
they could bypass one of the biggest hurdles in most current biological modeling:
the simultaneous determination of all the values of the parameters in the model from
systems-level data. These parameters that need to be estimated appear in the ODEs,
and in the case of HHM, these parameters could be experimentally characterized
from initial targeted experiments. In other words, their only problem was that of
forward simulation, which was possible even in the pre-computer era. For most other
biological models, parameters cannot be determined directly in specific experiments,
but instead need to be estimated simultaneously from systems-wide data. Particularly,
one needs to search the space that is spanned by the unknown parameters in the
model, in order to characterize which parts of the parameter space are consistent
with experimental data and prior knowledge. This task of determining parameters
from data is known as parameter estimation, and a key step in this task is to optimize
the agreement between model and data. In other words, optimization research enters
as a natural component in research on parameter estimation for biological models
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[2, 22, 23, 36]. This optimization step is not trivial, and there are a wide variety of
methods to choose from.

In this chapter, we will describe the basics of the parameter estimation problem,
look in depth at the associated optimization problem, and at the available tools to
solve it. In Sect. 7.2, the parameter estimation problem is introduced using an intuitive
example and in Sect. 7.3, the problem is treated from a more mathematical viewpoint.
Section7.4 describes several meta-heuristic optimization approaches and Sect.7.5
compares these approaches and provides useful inputs for selecting among them.
Finally, Sect.7.6 provides a closing overview of the chapter and provides links to
open challenges, most of which are discussed in other chapters of this book.

7.2 The Parameter Estimation Problem

Let us start by introducing the parameter estimation problem from an intuitive point
of view, through a specific biological model. The example is formulated as an ODE
model, which is the most widespread formalism in systems biology [10, 31, 37, 48].
An ODE model can be formulated in state-space form, which is a mathematically
well explored representation [1, 6], written as:

x(t) =f(x(), u), P) (7.1)
() = h(x(t) , u(t), P) (7.2)

where x(¢) are the states, x are the time-derivate of the states, f and & are smooth
nonlinear functions, are the parameters, and u(¢) and y(¢) are input and output signals,
respectively. All symbols are vectors.

Let us now consider the specific model in Fig.7.2. This figure depicts an
interaction-graph for a simple model of the insulin signaling network, taken from
[43]. As can be seen, the model describes how insulin binds to the insulin receptor
(IR), which thus becomes phosphorylated (IRp), and able to phosphorylate the pro-
tein IRS, which phosphorylates the protein PKB, which finally stimulates transport
of Glut4 to the membrane, which together with Glutl transports glucose into the
cell. There is a straightforward approach to go from an interaction-graph to a state-
space formulation [50], and the full ODEs are given in [43]. A short summary of this
process is as follows. The states correspond to the concentrations (or, alternatively,
the amounts) of the different molecules, i.e. [IR], [IRSp], etc. The concentrations are
affected by the reactions, and the rate of these reactions is the first thing that needs
to be defined. In this model, mass-action Kinetics are assumed, which means that the
rates are given by the product of the concentrations of the substrates and the regu-
lators multiplied by an unknown rate constant [3]. The unknown rate constants are
called kinetic rate constants, here denoted k;, and they thus regulate the speed of each
individual reaction. It is often these rate constants that need to be determined from
experimental data. These rates are summed together to form the ODE:s, so that rates
corresponding to ingoing reactions appear with a plus sign, and rates corresponding
to outgoing reactions appear with a minus sign. In other words, the ODE for [/RS]



180 G. Cedersund et al.

insulin

u = [insulin]
y = (k,1[IRp],k,,[IRSp], k 3[PKBp])

Fig. 7.2 A schematic description of an insulin-signaling network. The input and output signals
are the concentrations of insulin, and the measurements of the phosphorylated proteins, IRp, IRSp
etc. This schematic description is referred to as an interaction-graph, and it corresponds one-to-one
with the ODEs, as is described for instance in [43], which also is the paper from which this model
is taken

is given by:

, dlIRS] .
[/RS] = — TR = kap[IRSp1(t) — ko [IRS][IRp] (1) (7.3)

In the model specification, each parameter p; (usually, but not always, corresponding
to some rate constant k;) is specified to have values in a specified range. This range
is here defined by [, below and u; above

lpi<Pi<up, (7.4)

These boundaries are referred to as box-constraints. The box-constraints should
include all physically possible parameter values. If the range of physiologically likely
parameters is unknown, a box-constraint would still be required in order to restrict
the parameter space. Many physiologically relevant models are at least bounded by
0 below, and the time-scale of the observed dynamics can often give a suggestion for
an upper bound as well. The box-constrained parameter space may also be referred to
as the search space, and a parameter set is a point in the (box-constrained) parameter
space.
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The parameter estimation problem is to find those parameter sets that both are
biologically feasible and that display a satisfactory agreement with experimental
observations. An experimental observation may refer to any set of values that are
available from experimental measurements. One example is a so-called perturbation
experiment, where a cell is perturbed from steady-state, and where the transient
response of the system is observed. In the insulin example above, insulin is such a
perturbation, i.e. the levels of all the states are assumed to be in steady-state before the
perturbation, and one then follows how the signaling intermediates ([/Rp], [IRSp],
etc.) are changing over time. Such perturbation experiments can also be done in other
systems, e.g. gene regulatory networks. In gene regulatory networks the availability
of perturbation experiments is growing as several technological advances [39] have
allowed the generalization of gene perturbation screens of the systems. One such
example is RNA interference experiments, which are being used as a tool for both
association discovery and for validation purposes [53].

The agreement between model and data can be of two types: qualitative and
quantitative. A qualitative agreement can often be assessed by mere inspection and
reasoning. For instance, the initial response to an insulin stimulation is that [/Rp]
and [IRSp] goes up. Another qualitative observation may be that the system oscil-
lates, i.e. that it changes periodically up and down over time. In these two cases,
the model will qualitatively agree with the data if it goes up in response to insulin,
or if it oscillates, respectively. However, experimental data that have been collected
often contains fundamentally more information than that: it usually contains quanti-
tative information. Such quantitative information is typically measured as the aver-
age deviation from the data points (Eq.7.5 below). Loosely, parameters that give
an acceptable agreement with the data are called feasible, and other parameters are
referred to as infeasible. Whereas the question of whether or not simulations for a
specification parameter agree qualitatively with data can be assessed by mere inspec-
tion, the quantitative agreement requires a more formal treatment. This parameter
characterization—which simulations agree, and which do not agree, with the data—is
the task of parameter estimation.

Originally parameter estimation was done “by hand”, by combining physiological
knowledge with reasoning and manual tests. Such an approach is time-consuming,
requires expert knowledge on the exact role of each parameter, and is therefore infea-
sible for most biological models. With the invention and development of computers,
this estimation “by hand” could be replaced by more exhaustive searches in the para-
meter space, since computers allow for thousands or millions of parameter sets to
be tested. This development of computers has gone hand-in-hand with the devel-
opments in the field of optimization. More specifically, the application of methods
from the field of optimization has been essential for the exploration of extremely
large parameter spaces. This is the case, since the task of covering large parame-
ter spaces seldom can be solved by “brute-force” approaches, even with the rapid
advances in computer power. Let us therefore now turn to a more formal treatment
of these concepts, using the language of mathematical optimization.
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7.3 The Optimization Problem in Parameter Estimation

In Sect. 7.2, we learned that parameter estimation is concerned with the search for
feasible parameter sets in the box-constrained parameter space, and that “feasible”
measures the agreement between our experimental observations and the model sim-
ulations, either qualitatively or quantitatively. Now the challenge is to transform the
concepts “feasible” and “agreement” into mathematical terms.

Let us start by considering a specific set of data and simulation possibilities,
again taken from insulin signaling [5]. The example is depicted in Fig.7.3. The data
reflects the amount of IRSp, and at time t =0 the system (isolated fat cells) have been
stimulated with 100 nM insulin. The collected data points are depicted in blue, where
the error bars depict the uncertainties (top to bottom reflects 2 standard deviations,
20). As can be seen, these data have a big uncertainty, but one can nevertheless see
certain features clearly. First, the system responds by going up, but then around one
t=1min, the response decreases, and from somewhere between 5 and 10 min and
onwards, the system has settled at an intermediate steady-state level. Now, when a
model tries to mimic these data, there are two aspects that can be taken into account.
First, one may capture the presence of the overshoot (that the response goes up and
then down), and this is captured by the blue but not the green line. Second, one may
capture the quantitative features of the data, e.g. the location of the final steady state.
This steady-state is, conversely, captured by the green but not the blue line. These
two lines correspond to simulations with the studied model, done using different
parameter values, and this example illustrates that quantitative and qualitative aspects
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Fig. 7.3 Example of data and model simulations. This example is also from insulin signaling, as
described in [5]. In blue you see the data points with uncertainty, and the other lines show simulations
for different parameters values: one that is qualitatively wrong but quantitatively right (green), one
with the opposite problem (blue), and one from a feasible parameter (red). A cost function is formed
by summing together the normed and squared residuals, as described in Eq.(7.5)
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do not always coincide. The task is therefore, to decide upon how to quantify the
features (quantitative or qualitative) that are important in the data, and then optimize
this quantification, to find the best parameters (red line).

In other words, we need an automatic way to evaluate how “feasible” a parameter
set is. Let us start by denoting the experimental data point at time ¢ with y(7x). Sim-
ilarly, let y(#;| P) denote the simulated data point, at time ¢ and using the parameters
P. Now, we are interested in the differences between these two values, the so called
residuals r(t;) = y(tx) — (1 |P) . In general, the larger the residuals, the worse the
model, so we are interested in the average size of the residuals. However, we want
them to be always positive (since it does not matter if the model is above or below
the data). Furthermore, if the data point is highly uncertain (there is a big o (#)), that
residual should be less important, when taking the average. All of these requirements
are met by studying the following cost function

N

~ 2
vy =3 (v (1) =3 wlP)) @5)

2
1 o (%)

As can be seen the residuals have been squared (to make the residual always posi-
tive), normalized with the standard deviation of the measurement uncertainty (divided
with o), and then summed together (giving the average size, considering all resid-
uals). This cost function is the most common choice, and it is usually denoted the
chi-square cost function. Independently of which cost function, V (P), that is used,
the final parameters are in the end defined by

~

P =argminV (P) (7.6)
P

Let us now consider a general optimization problem, and see if we have succeeded
with the reformulation of the parameter estimation problem. In mathematical opti-
mization, the problem is defined by three elements: (a) the objective function—in
our case the evaluation function described in (5); (b) a set of decision variables that
can vary during the search—in our case the parameters P; and (c) the constraints
that limit the value of the decision variables or the relations between them—in our
case the box constraints (4). The problem we have described is thus a mathematical
optimization problem. More specifically, our problem is a continuous optimization
problem, because the decision variables are all real numbers. A systems biology
oriented description of optimization is available at [2].

Let us now consider a complication of this general scenario that often happens:
additional constraints. Such constraints may stem from prior knowledge, not con-
tained in the data. Consider for instance a system that contains the variables C and
D, where expert knowledge assures us that D cannot be more than twice the value
of C at any time. Then this extra information should be added to the problem set-
ting. The information can be added to the system in two ways. The first way is to
include the information as a constraint in the objective function (in the same way the
boxed-parameter space defines inequalities):
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D(p,t) <2C(p,t)Vt (7.7)

The second way (which we favor here, as it is easier to integrate with the heuristic
methodologies shown in the next section) is to construct a new objective function
Vior (P) that is the weighted combination of the normal “data-based” objective func-
tion V(P) (e.g. that in Eq.(7.5)) and a new one, eval2(P)

Vier (P) =V (P) 4+ w - eval2 (P) (7.8)
N

eval2 (p) =Y dist (C. D, P, 1) (7.9)
k=1

QC@p.1) =D (p,0) if 2C(p,1) > D (p.1))

0 otherwise (7.10)

dist (C,D, P, t) = [

As can be seen, eval2(P) will be zero if the relation based on expert knowledge
between C and D is fulfilled by the simulation, and if the constrain is violated,
eval2(P) will grow with the size of the violation. The parameter describes the weight-
ing between the two sources of knowledge: the experimental data (V (P)) and the
expert knowledge (eval2(P)). These kind of ad hoc expansions of the cost function
can be used to incorporate also other types of knowledge, or preferences regarding
how the data should behave. In the example in Fig. 7.3, one could for instance decide
that the model should have an overshoot. One could then add a similar punishment
as eval2 in (8) to such simulations that do not produce such an overshoot.

An alternative approach to a weighted combination of different elements in a cost
function is to compute Pareto Optimal (PO) solutions. Considering two evaluations
functions, A and B, a PO solution is such that there is no other solution with better
evaluation for both A and B simultaneously. The study of Pareto Optimal is an active
field in multi-objective optimization but we do not consider it further in this chapter.
Relevant examples of multi-objective optimization in biology can be found in [8, 57,
58]

Finally, optimization has been used in the study of many different types of biolog-
ical systems, and the details of the formulations may differ from setting to setting.
Common examples include flux balance analysis [51], metabolic engineering, sig-
naling pathways [43, 54], reverse engineering [24], and stochastic modelling [60].
However, a common feature, usually appearing in biological systems is that there
are many local optima. This means that global optimization algorithms should be
used to search the parameter space. Such global methods are usually described using
meta-heuristics.
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7.4 Meta-Heuristics: A Tool for Optimization

7.4.1 Introduction to Meta-Heuristics

The term meta-heuristics is a composition of the Greek words meta (beyond) and
heureskin (to find) or heuristic (rules of thumb). Meta-heuristics combine basic
heuristic methods in higher-level frameworks to efficiently explore the box con-
strained objective function to be optimized. Introductions to meta-heuristics can be
found at [19].

Meta-heuristics require little or no information about the problem to be solved,
and they are sometimes referred to as black-box optimization methods. Interestingly,
the same meta-heuristic algorithm can usually be applied to a wide range of differ-
ent problems. Meta-heuristics do not make explicit use of Hessians or gradients as
opposed to gradient descent methods, and can therefore be used also on discontinuous
problems. More importantly, most parameter estimation problems are multi-modal,
i.e., they contain several optima; hence, traditional gradient-based local search meth-
ods usually fail at locating the global optimum in such problems. In the search for
the global optimum, one is therefore directed to use global optimization methods
where one alternative is to use meta-heuristic methods.

Within the area of global optimization there are two different approaches, deter-
ministic and stochastic methods, and they differ in their ability to guarantee conver-
gence towards the global optimum. The deterministic methods can in theory provide
a level of assurance of finding the global optimum. However, the computational time
often increases exponentially with problem size, which often makes it impossible to
locate the global optimum in a reasonable time. The stochastic methods, including
meta-heuristics, use random components to locate the vicinity of the optimum. The
trade-off is that one cannot guarantee the identification of the global optimum. How-
ever, the computational cost is significantly lower for stochastic methods compared
to deterministic methods and this is an important advantage in large problems.

Many different meta-heuristic methods exist and in this chapter only a few of
the most common methods are described. It should also be noted that the way of
implementing the algorithms can differ widely, and here, only the pseudo-code is
shown in order to illustrate the basic structure of the algorithms. Let us now turn to
the specific algorithms.

7.4.2 Simulated Annealing

Simulated annealing was originally developed for solving combinatorial optimiza-
tion problems [35]. However, the scope of use for the algorithm has grown and it
is currently used in various optimization areas for numerous types of optimization
problems. The algorithm resembles the internal energy of atoms at different temper-
ature levels. The analogy is as follows. At a high temperature, multiple states for the
atoms are possible and a random state is adopted. A reduced temperature restricts
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the number of possible states to ultimately converge to a single state at the absolute
zero temperature. Finally, if the atoms are allowed to equilibrate at each temperature
level, the final state is also the optimal state in terms of energy. In optimization, the
energy function, which describes the states of the atoms, is replaced by the objec-
tive function V (P) as described in [35]. Thus, a state of the atoms is replaced by a
parameter vector in the search space.

In practice, the search space may be explored by a geometrical figure, e.g. a
simplex. In a D-dimensional search space, a simplex is a hyper-triangle with D+ 1
vertexes, where each vertex consists of a parameter vector. The simplex is pro-
grammed to update the parameter vector (vertex) with the worst objective function
value with a better one. The updating procedure of the simplex is iterated, which
results in a simplex that deforms and moves across the search space. At high temper-
atures, the simplex performs more or less a random search. However, the probability
to include a parameter vector with higher cost than those already included in the
simplex becomes smaller as the temperature decreases. Thus, at low temperatures,
the simplex performs a local search.

To be able to guarantee convergence to the optimal parameter vector, an impracti-
cally slow cooling scheme must be used [55]. In practice, pre-defined faster cooling
schemes are used, which do not guarantee global convergence. In this chapter, a
slightly modified Simulated annealing procedure based on the Nelder-Mead Down-
hill Simplex algorithm (NMDS) is shown, for which a description can be found in
[46]. The modification makes it possible to search for several optima simultaneously
by using several simplexes, see “Algorithm 4” on page 27 in [44].

In this modified version, the starting point for each simplex is found by a clustering
technique, which makes sure that the simplexes are started with a sufficient Euclidian
distance between them. The temperature is decreased after a specified number of
iterations for each one of the simplexes. The magnitude of the temperature decrease
is set by a reduction factor which reduces the temperature in a step-wise manner. As
the temperature reaches the defined end temperature it is set to zero, and no uphill
moves are allowed. This is similar to a local search. A short pseudo-code description
is given in Fig. 7.4, to illustrate the algorithm. For further information, see [44].

7.4.3 Scatter Search

The meta-heuristic method Scatter search was originally introduced by Glover in the
late 1970s [18]. Scatter search involves strategic combinations of parameter vectors
to generate improved parameter vectors.

As originally proposed in [ 18], the core of Scatter search is the Reference Set (Ref-
Set) which contains a limited number of promising parameter vectors. The number
of parameter vectors, denoted R_s, in the RefSet is an option specified by the user.
Different heuristic methods interact with the RefSet during the search. Most scat-
ter search implementations follow the five step template, originally described by
Glover. These five steps, or sub-methods, are: Diversification Generation Method,
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Pseudo-code Simulated Annealing

Requirements: Start temperature Ts, end temperature T, reduction factor a,
start guess Py, number of iterations I at each temperature, number of
iterations at absolute zero temperature /,, and maximum number of
simplexes S.

1: [nitiate parameters and set k = 1

2 SetTy =T

3: while T, > T, do

4: Perform [ iterations of Nelder-Mead Downhill Simplex
algorithm for the S simplexes

5: Set Tk+1 = O.'Tk

6: Calculate R new restart points with single-linkage-clustering
whereR < §

7 Setk=k+1

8: end while

9: SetTy =0

10:  Perform I, iterations of Nelder-Mead Downhill Simplex algorithm at

the absolute zero temperature
11:  return Best parameter vectors found during the last temperature
iteration

Fig. 7.4 Pseudo-code: simulated annealing

Improvement Method, Reference Set Update Method, Subset Generation Method, and
a Solution Combination Method. The methods will be briefly explained in the way
they are implemented in SSm (Scatter Search for Matlab). For a detailed description,
the reader is referred to the original description of SSm [15].

o Diversification Generation Method generates a set d consisting of D, diverse
trial parameter vectors. The parameter values for the D, parameter vectors with
D parameters are selected from ND cells, where the rows are N intervals for
each parameter and the D columns are the different parameters. The intervals for
each parameter are defined by dividing the region between the lower and upper
boundaries in N intervals. Thus, all parameters have N intervals regardless of range
between lower and upper boundary. Since the D}, parameters in d are selected from
all of the ND cells, one can be certain that the trial parameter vectors are diverse.
The probability prob‘z :1 of choosing a new parameter vector p + 1 with one of
its parameters in one of the N intervals is inversely proportional to the number of
previous parameters in the specific interval, i.e.,

1
1 fi
k=1 fi
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where f; is the number of previous values of parameter i in the interval n. When the
boundaries of one or several parameters are of different orders of magnitude, the
intervals can be defined according to a logarithmic distribution providing a spread
of the D, parameter vectors across the entire search space.

e Improvement Method is optional to include in a Scatter Search design but is nor-
mally required to obtain high quality parameter vectors (in terms of cost function
value). One option is to use the local search method Dynamic hill climbing [41] as
an improvement method. The improvement method can be restricted by activating
a merit filter which ensures that no local search is performed from a worse initial
point than previously found.

e Reference Set Update Method updates the R_s parameter vectors according to
quality and diversity. The first half of the RefSet is updated with high quality
parameter vectors (low cost function value) which are selected from the Dp diverse
parameter vectors such that

V(P) <V (Pin1) <. ....< V (Pg,) (7.17)

where V (P;) is the cost function value for one of the R_s parameter vectors j.
In order to obtain a RefSet with both parameter vectors with low cost and para-
meter vectors which are spread in the search space, the second half of the Ref-
Set contains spread or diverse parameter vectors. Diversity is measured either
by the spread in the parameter vectors in terms of Euclidian distance, or by the
spread in the parameter vectors in terms of direction. For further information, see
pages 57-60 in [14].

e Subset Generation Method creates a combination of parameter vectors and in this
case, pairs of all Py, P, ..., Pg, parameter vectors.

e Solution Combination Method explores the distance between all paired parameter
vectors to find new parameter vectors. Different approaches exist on how to do
the search, but in this implementation only linear or hyper-rectangle searches are
used [14]

How the different methods are combined in a basic search is shown in the pseudo-
code, in Fig.7.5. It should be pointed out that it is the way of implementing the
five methods that decides the sophistication of the algorithm rather than the specific
methods [14].

7.4.4 Genetic Algorithms

While many bio-researchers rely on computational methodologies for the analysis
of large data-sets, it is interesting to observe how many methodologies have been
designed in the recent decades by considering the principles observed in biolog-
ical systems. For instance, machine-learning applications have used neurons as a
reference to develop neural network classifiers [4, 30]. A second example, Genetic
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Pseudo-code Scatter Search

Requirements: R; (size of RefSet) and number of D,, diverse parameter vectors in
the set d. Set remaining options to default.

1:

H B D 00O e Wl

._.
3

13:
14:
15:
16:
157
18:
19:

20:

21:

22:
23:
24:
25:
26:
2

= O

Startwithd = @
Repeat

Use the Diversification generation method to construct a
parameter vector and apply the Improvement Method Local solver

Let P be the resulting parameter vector

if P € d then
d=du{P}
Else
Discard P
end if
until |d| = D,

Use the Reference set update method to build Refset = [P,, P PRS] with
s 2 Rs 4. F
the best R? quality parameter vectors and = diverse parameter vectors in d

Sort the parameter vectors in RefSet according to their objective function
value such that P, is the best parameter vector and Py_is the worst
Set NewSolutions = TRUE
while NewSolutions do
Generate NewSubsets with the Subset Generation Method
Set NewSolutions = FALSE
while NewSubsets = 0 do
Select the next subset s in NewSubsets
Apply the Solution Combination Method to s to obtain new
trial parameter vectors
Apply the Improvement Method to the s trial parameter
vectors
Apply the RefSet Update Method to the Rg U s parameter
vectors
if RefSet has changed then
Set NewSolutions = TRUE
end if
Delete s from NewSubsets
end while
end while

Fig. 7.5 Pseudo-code: scatter search

Algorithms (GA), arguably the most well-known optimization procedure inspired
by biology, is based in the studies of DNA sequence evolution [20] (pseudo-code in
Fig.7.6). GA mimics the process of natural selection in order to find quality solu-
tions in optimization problems. Briefly, GA mimics the natural selection process
by considering an initial population of solutions (that can be generated randomly)



190 G. Cedersund et al.

Pseudo-code Genetic Algorithm
Requirements: maximum number of iterations (Itmax), number of elements in
a population (pop), maximum CPU, Mutation, Crossover and Selection.

1: Initiate randomly the solution set: pool.

2: Setk=1

3: while It,,,4, > k do

4 forin 1:pop

5: Select randomly two solutions a,b.
6: Crossover(a,b): generates newsol.
7s Mutation(newsol)

8: Add newsol to pool

9: end for

10: Selection(pool)

s Setk=k+1

12 end while
11:  return Best solution found during the process

Fig. 7.6 Pseudo-code: genetic algorithm

and iterating over the population in a survival-of-the-fittest approach. The iterations
make use of the following three elements:

Selection Criteria periodically the population of solutions is evaluated, and those that
score poorly are discarded. A selection criterion, based on the evaluation function,
is used to make the decision. Random discards or weight-based discards are also
considered as options.

Genetic Operators solutions in a population will be used to generate new solutions
that will be added to the population pool. The new solutions are generated through
“cross-over” (using two solutions and generating a novel, “child” solution from them)
and “mutation” (modifications of a solution). There are many ways to combine cross-
over and mutations to generate new solutions. Once a new solution is generated it
will also be evaluated and added to the pool of solutions.

Termination Criteria it is necessary to define when the algorithm will stop search-
ing for new solutions. Termination criteria usually considered are (i) number n of
iterations without improvement of a solution, (ii) finding a solution that reaches a
lower boundary, (iii) maximum number of iterations, (iv) maximum running time or
(v) a combination of any of the criteria (i)—(iv).

GA, as many other meta-heuristic algorithms, faces the challenge of setting a good
trade-off between exploration and local optimization. Exploring is necessary when
finding optimal solutions and it can be stressed by (a) including selection criteria
that do not consider uniquely “best evaluated” solutions but enforce a heterogeneity
in the solution pool; a second option, among others, is to (b) consider mutations
that may lower or increase the evaluation score of a solution. The burden with high
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heterogeneity is that the computational time required in the search will increase dra-
matically; for this reason it is important to limit exploration, and for this reason local
optimization may help guide the search more rapidly. Importantly, “naive GA” has
been shown to have a premature convergence that prevents a global optimization
[28]. Interestingly, there are hybrid methodologies combining GA with local opti-
mum search exploiting the properties of GA without limiting its exploring ability
[11, 25, 40].

It is worth considering that GA was originally conceived to solve discrete (or
integer-based) optimization problems [28]. In the context of parameter estimation,
binary representations of parameter values may solve the problem of representing
parameter sets containing real numbers, but this option will also increase the number
of solutions to investigate. Finally, GAs have developed into a wider area of opti-
mization algorithms known as Evolutionary computation (EC) that are able to deal
with continuous values [12].

7.4.5 Particle Swarm Optimization

EC algorithms find solutions through continuous optimization of a population of
solutions. Within this setting Particle Swarm Optimization (PSO) is amongst the
most well-known algorithms [32, 33] other relevant representatives are Ant Colony
Optimization [13] or Genetic Programming [34].

Given a real parameter space, PSO first places a set of particles (agents) randomly
in the parameter space, assigning them a random initial velocity. Every particle
receives a fitness-score (the cost, V(P), delivered by the objective function) associated
to the parameter set visited; those values are stored. Additionally the parameter set
with the globally best fitness-score is also stored in GBest. Particle positions are
updated iteratively based on a (randomly) weighted combination of: (1) the inertia
of the particle, (2) a vector pointing from the present particle position to the best
known position and (3) a vector pointing from the present particle position towards
GBest. In this way particles share information of the best areas to search (social
knowledge) but they also keep their best-visited solutions (cognitive knowledge).
The iterative movement of particle i is explained by the following two equations:

vel (i) = ovel (i) + r1 * c1 (pos (i) — best (i)) + r2 * ¢z (pos (i) — GBest)
(7.18)

pos (i) = pos (i) + xvel (i) (7.19)

pos(i) and vel(i) respectively denote the current position and the current velocity of
particle i. The symbols cj and c; are integer non-negative values, named cognitive
and social respectively, ri, rp are real values drawn from [0,1], sigma and x are
non-negative real values, named inertia weight and constriction factor, respectively.
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Pseudo-code Particle Swarm Optimization

Requirements: maximum number of iterations (Itmax), number of particles
(nparticles), maximum CPU, cognitive weight (c), social weight (s), inertia
weight (in), constriction factor (con).

1: Initiate set of particles: randomly assign positions.

2: foriin particle_set do

3: evaluate(i)

4: best(i)=position(i)

5t end for

6: Setk=1

7 GBest: position(i), that evaluate(i)=min(evaluate(i), i € particle_set).
8: while It,,,, > k do

9: foriin 1: nparticles do

10: calculate velocity(i)

11: update_position(i,GBest, best(i), velocity(i), c, s, in, con).
12: if evaluate(i)<evaluate(best(i)) then

13: best(i)= position(i)

14: end if

15: if evaluate(i)<evaluate(GBest) then

16: GBest = position(i)

17: end if

18: end for

19: k=k+1

20:  end while
21: return GBest, evaluate(GBest)

Fig. 7.7 Pseudo-code: particle Swarm optimization

PSO has become a widely used methodology mainly because it is easy to imple-
ment, it is flexible and can be applied to most continuous-based problems [45] and
requires little fine-tuning (few parameters to adjust) [33]. The caveat of PSO is that
it is mainly limited to continuous problems (despite discrete to continuous mapping
approaches [47]). The pseudo-code for PSO is found in Fig.7.7.

7.5 Performance of Meta-Heuristics

Defining the difference between good and bad performance is essential when com-
paring algorithms. In accordance to the introduction, several parameter sets can give
the same model output. Depending on the search purpose, different criteria for the
performance exist. Denoting by a run the “completion of the selected optimization
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algorithm”, four possible criteria (among many others) to evaluate meta-heuristics
are:

(1) BS: Given 7 runs, with limited time x, what is the quality of the best solution
found in all the runs, i.e. what is the best cost found? BS provides a measure
of how good is an algorithm searching for good solutions; however if the best
solution is found once in 100 runs, that would require running the algorithm
many times in order to find such a good solution.

(2) BSa: Given n runs, with limited time x, what is the average quality (average
cost) of the solutions found, when pooling the best solution per run. BSa is
useful when we may require algorithms that do not provide the best solutions
(or lower BS) but on average perform better.

(3) BSIf: similar to BS but instead of fixing to a limited time x, the run is fixed to a
maximum number of objective-function evaluations.

(4) BSaff: similar to BSa but instead of fixing to a limited time x, the run is fixed to
a maximum number of objective-function evaluations.

Several studies have approached the comparison of methodologies in different opti-
mization problems. Unfortunately, there is no perfect optimization algorithm; given
a performance evaluation, for each optimization methodology there is always a class
of problems where the methodology will be worse than for other methodologies.
That is, there is no method that will be optimal for all problems. This is a direct con-
sequence of the No-Free-Lunch theorems presented in [59]. However, for making
a selection among possible optimization algorithms, we recommend to follow two
pieces of advice:

e Hybrid version while there is no “best-ever” algorithm for all types of optimiza-
tion problems, it has been observed that hybrid methodologies, those combining
ideas/methods from several optimization methodologies, tend to work robustly in
all optimization problems. We recommend the implementation of hybrid versions.

e Widely used We can observe that there exist several optimization methods that
are continuously implemented in parameter-fitting tools. For instance Neurofitter
[56], developed to find parameter sets that able to reproduce experimental data
in neuronal models, includes Random search, Particle Swarm Optimization,
Evolution strategies, Multi-Start Local Optimization and combinations of them.
Similarly, COPASI [29], an open source package that allows the generation and
simulation of biological processes, includes Evolutionary Strategy, Genetic Algo-
rithm(s), Particle Swarm Optimization, Random Search, and Simulated Anneal-
ing. This may reflect (1) the flexibility of those methods, (2) the low complexity
to implement them, but also (3) that there are many successful examples of their
applications.
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7.6 Conclusions

The present chapter has provided a brief introduction to the field of optimization and
its applications in the challenge of parameter estimation in biology. We have provided
introductory explanations to some of the most widely used concepts and optimization
algorithms. The focus of this chapter has been on meta-heuristic methods, within the
field of stochastic global optimization. The benefit of these methods is that they
can work on any optimization problem, and that they can deal with multi-modal
systems: systems with multiple local optima. An outstanding question remains what
algorithms are best in a specific situation. Herein, we have not really taken a stand
on this issue, but nevertheless provide some tools and concepts that may be useful
when comparing methods in different situations.

There are many implementations of these methods, and there are also many ways to
implement models. Some of these model-formulation alternatives are standardized
markup languages, such as SBML [9] and CellML [16], and some of these also
have resources for parameter estimation. For instance, fitMatlabCellML has been
developed for CellML. Similarly, sloppyCell [42], COPASI, and SBtoolbox [49]
have been developed for SBML. However, for independent development and testing
of these methods, it will always remain a tractable alternative to work with your own
implementations of these algorithms.

In the following chapters, optimization tools are used to find parameter sets [38],
and modified optimization algorithms are also used to generate a pool of “good-
quality parameter sets”, used for prediction uncertainty analysis [7, 21]. These
slightly different settings will put new demands on future developments of opti-
mization algorithms. All in all, it is therefore plausible that the development and
evaluation of optimization algorithms will remain an important part of modelling in
biology for the foreseeable future.
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