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After the major achievements of the DNA sequencing
projects, an equally important challenge now is to
uncover the functional relationships among genes (i.e.
gene networks). It has become increasingly clear that
computational algorithms are crucial for extracting
meaningful information from the massive amount of
data generated by high-throughput genome-wide tech-
nologies. Here, we summarise how systems identifica-
tion algorithms, originating from physics and control
theory, have been adapted for use in biology. We also
explain how experimental perturbations combined with
genome-wide measurements are being used to uncover
gene networks. Perturbation techniques could pave the
way for identifying gene networks in more complex
settings such as multifactorial diseases and for improv-
ing the efficacy of drug evaluation.

Introduction
TheHumanGenomeProject identified a surprisingly small
number of full-length genes (�30 000) [1,2], a number
almost identical to that in mice [3] and not much greater
than the number in simpler organisms such as the fruit fly
(13 600) [4] and yeast (6000) [5]. Moreover, there are
striking similarities in the biochemical building blocks
(genes, proteins, metabolites) across these species. The
secret of human complexity must in part lie in the non-
coding DNA [6] but also in the interactions between genes
that aremediated by proteins binding to regulatory regions
[7]. Revealing the architecture of gene interactions in net-
works under normal and pathophysiological conditions is
therefore of considerable interest.

Analyzing biological systems: from molecular parts to
networks and their dynamic interactions
To understand the exact mechanisms underlying a
biological process or a disease, it is first necessary to
identify the relevant components (DNA, transcripts, pro-
teins, metabolites) that are involved in the process or
disease. Of central importance for obtaining such a ‘parts
lists’ are high-throughput screening technologies, devel-
oped in parallel with the genome projects. In humans,
relatively reliable whole-genome lists can be extracted
using DNA arrays. At the protein level, it is possible to
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extract the identity of a large number of proteins (although
not yet reliable for the entire genome) using two-dimen-
sional (2D) gels and mass spectrometry [8]. Variants in the
genome sequence such as single nucleotide polymorphisms
(SNPs) could also be important to elucidate because some
of these variants might affect gene expression and thus be
relevant for the biological question at hand. Nowadays, a
large number of genome-wide SNP analyses are available
[9].

The second challenge is to determine how these parts
interact in networks – the focus of this review. Again, high-
throughput technologies have been key, and they have led
to a surge of systems biological approaches aimed at elu-
cidating the architecture of functional relationships among
genes, proteins and metabolites. Thus far, most of these
studies have focused on gene networks (Box 1) in organ-
isms such as Escherichia coli [10] and Saccharomyces
cerevisiae [11,12]. However, scientists are increasingly
taking on new challenges, and addressing more complex
systems, including mammalian cells [13–15], organs [16]
and complex diseases such as cancer [17] and cardiovas-
cular diseases [18].

Finally, the dynamics of gene networks must be worked
out. Although not addressed here, this topic will become
increasingly important as gene networks are unravelled
[14,19]. The dynamic properties of a network include the
kinetics of interactions between and among genes and
proteins andwhether an interaction is activating or repres-
sing. Clearly, computational tools to identify directly these
properties from experimental data will be required. In
addition, analytical tools will be essential for understand-
ing the dynamic behavior within these networks. Pioneer-
ing studies on network dynamics have most notably been
performed on the cell cycle by Tyson and colleagues [20].

Gene network identification: hurdles and solutions
The era of modern networks research began in the 1960s
following the publication in 1959 of the classic work by
Erdos and Renyi [21], who developed the mathematical
theory for networks, where nodes are randomly connected
by edges. Since then, applied mathematicians and physi-
cists have been busy understanding the interplay between
the topology and dynamics of networks [22]. Researchers
have studied how to characterize different wiring diagrams
in cells, computers and the internet. An important area of
d. doi:10.1016/j.tig.2006.11.003
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Box 1. Biological systems as networks

All biological systems can be described in terms of networks that

consist of parts (nodes) and their interactions (edges). Because each

node receives input from other nodes through the corresponding

edges, each node has effectively an input–output function that

describes how the inputs are transformed into an activity for the

receiving node. The complexity of this function depends on the nature

of the network. Within a cell, there are several interconnected

networks, such as the protein interaction network and the metabolic

network [12,30,66,67]. Here, proteins and metabolites are nodes, and

the edges describe either protein–protein interactions or biochemical

reactions among metabolites. Most nodes have few connections;

however, a few nodes act as hubs (i.e. nodes with a large number of

connecting edges) [12]. Other entities, such as genes, can also be

considered as nodes in a network where the interactions are mediated

by means of the proteins.

Figure Ia illustrates a biological network of interactions between

eight hypothetical genes and their respective proteins. An mRNA is

first transcribed from DNA and then translated into a protein that can

then interact with another protein (protein–protein interaction) or bind

to DNA (transcription factor DNA-binding). The effective interaction

between the genes is obtained by collapsing Figure Ia into an effective

gene network (Figure Ib). A protein interaction with a transcription

factor (TF) in the underlying gene–protein network (Figure Ia) renders

a regulatory edge to the gene target of the TF in the effective gene

network. For example, in the gene–protein network (Figure Ia), protein

d interacts with TF g, which in turn regulates the expression of gene E.

In the effective gene network (Figure Ib), gene D is therefore a

regulator of the expression of gene E. The number of incoming

regulatory connections, corresponding to the parameter k, represent-

ing the in-degree (k = 4 for E), is shown in parentheses within the gene

symbols in the effective gene network (Figure Ib). In such a ‘collapsed’

network, the effective input–output function of a given node (gene) is

the integration of all the intermediate reactions connecting the two

genes in question. When the regulation is dominated by post-

translation mechanisms, it might be better to maintain a separate

representation of proteins and genes, provided that it is possible to

obtain measurement data on the posttranslational modifications of

the proteins.

Figure I.
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study is how global network dynamics are determined by
the input-output properties of individual nodes and the
coupling dynamics between nodes. In the late 1990s, the
group of Barabasi and co-workers demonstrated that real
networks – computer networks, the internet, and meta-
bolic and protein networks – are not randomly organized
but are instead characterized by a small number of well-
connected nodes and a majority of nodes with only a few
interactions [12]. With the rapid development of powerful
computers, sequencing of genomes and the parallel devel-
opment of whole-genome technologies for monitoring the
expression of genes and proteins, network identification
has become a serious player in biology and medicine.

Identifying gene networks from large-scale dataset
measurements is a difficult computational and experimen-
tal problem. The main reason for this is the bewilderingly
large number of possible wiring diagrams, without even
considering the detailed reaction kinetics (i.e. the
www.sciencedirect.com
dynamics of a gene network), even for a small network
of only three genes (Box 2). The fundamental challenge for
a gene network identification algorithm is the great dimen-
sionality of the number of features (nodes, genes), which
gives a large number of different network wiring diagrams,
in relation to the small number of experimental samples
for use in discriminating between the different networks.

To illustrate this problem, an analogy might be helpful.
In algebra, it is not possible to solve an equation system
without additional constraints if the number of unknowns
(x1, x2,. . .xn) exceeds the number of equations. Every equa-
tion is like a sample that constrains the possible values of
the unknowns (nodes) that jointly satisfy the equation. To
obtain a unique solution of the equation system it is there-
fore necessary to have as many equations (samples) as
unknowns (nodes). Unfortunately, because there are fewer
experimental samples (equations) than genes (unknowns),
current cluster analysis techniques [23] can only establish



Box 2. Level of network resolution determines difficulty of

network identification

From a combinatorial viewpoint, the problem of identifying a

network is difficult. As an example, let us consider a small three-

gene network (Figure Ia). The protein products from gene A might or

might not influence the expression of gene A. Similarly, gene B or

gene C might or might not influence the expression of gene A. In

sum, there are eight possibilities for the regulation of gene A and

512 (8 � 8 � 8) possible directed wiring diagrams in a small three-

gene network, where the direction of the arrow indicates causality.

However, if we increase the biological resolution by including the

sign of the causality, the number of possible wiring diagrams for a

three-gene network is even larger. The protein products from gene

A can increase or decrease the expression of gene A. Similarly, gene

B or gene C could activate or repress gene A (Figure Ib). In sum,

there are 27 different activation or repression possibilities for the

regulation of gene A and 19 683 (27 � 27 � 27) networks in a small

three-gene system. Similar calculations for a four-by-four or a five-

by-five gene network, without considering the signs, result in 65 536

and 33 554 432 possible wiring diagrams, respectively.

Complex as this might seem, such a wiring diagram description is

still a simplification of the underlying biology. For each causal

wiring diagram, the input–output properties of each node could

range from ‘simple’ linear summation of the inputs to a more

complex nonlinear integration of the different input signals. Finally,

there is a large number of possible magnitudes for the activation

and repression for each possible causal description. In either case,

the example of a small-scale gene circuit illustrates that an

exhaustive experimental search, such as testing every possible

wiring diagram, is not feasible. Hence, any attempt to identify

networks from experimental data cannot succeed without a tightly

integrated computational and experimental strategy. A computa-

tional model of the system can be used to suggest what the next

most informative experiment is to learn more about the network

structure.

Figure I.
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whether a gene A is ‘correlated’ with gene B (Figure 1a).
Clustering of gene expression data provides no direct
information on the underlying wiring cellular diagram.

What strategies might we use to solve this key issue?
The first would be to increase the number of experiments.
During the last couple of years, costs for whole-genome
expression studies have steadily decreased, and libraries of
hundreds of whole-genome-wide expression profiles for
yeast are now available [24,25]. As a rule, the ratio of
genes to samples is between 10:1 and 100:1. Howmuch this
ratio needs to be lowered to enable accurate network
identification is an open question. The answer depends
on the computational complexity of the problem and on
experimental signal-to-noise levels. In addition, the more
complex (nonlinear) the regulatory control mechanisms
www.sciencedirect.com
are, the more samples will be required. Hence, increasing
the number of samples will probably not, by itself, solve the
network identification problem.

A second strategy is to incorporate prior knowledge. In
algebra, the number of possible solutions is severely
reduced if only positive integers, rather than any real
number, are allowed. Hence, by analogy, prior knowledge
can in part compensate for the smaller number of samples
in relation to the number of nodes (genes) by reducing the
number of possible networks that are consistent with
the available experimental observations. For example,
there are biological reasons to expect the gene network
is sparsely connected [12]. Knowledge of connections that
have already been characterizedwould obviously be useful.
These constraints would simplify the problem because not
all putative wiring diagrams would be accepted as equally
good. Many studies have integrated gene expression data
with a prior knowledge network [15,26,27]. Most followed a
two-step procedure. First, a prior knowledge network map
is constructed by assembling information from a variety of
sources, such as transcription factor binding data [28],
published literature (text mining) [29], and protein–pro-
tein interactions [30] (Figure 1b). This provides a wiring
diagram but as a rule there is no information on causality
and strengths of the interactions. Next, to improve further
the analysis, whole-genome expression data relevant to the
biological issue at hand are used to identify a subset of
interactions that are considered to be active. However,
using prior knowledge in this manner has been severely
limited because the gene expression data have only been
used to filter out a subset of already characterized inter-
actions. Thus, it has not been possible to infer novel
interactions from the prior knowledge network map per
se or by adding gene expression profiles to the analysis.

A third strategy is to reduce the number of nodes
(genes) by collapsing them into functional subgroups
based on the correlations in the gene expression activity.
This is the strategy behind modular analyses [31]. A large
number of nodes (genes) are therefore included within a
module. A modular analysis therefore identifies a net-
work of modules and the connections between the mod-
ules. Again, this analysis does not provide a causal wiring
diagram with the strength of interactions. Although such
an analysis is a useful first step for stratifying the genome
into functional modules, which can be useful for a later
detailed network analysis, these techniques do not by
themselves consider the network architecture between
the nodes within the modules and thus do not enable a
comprehensive gene network identification and will not
be considered further.

The computational perturbation approach
The computational perturbation approach originates from
engineering sciences, such as control theory and physics.
Instead of using only observational data, as is generally the
case in biological and medical sciences, engineering
sciences combine a computational representation of the
system of interest with controlled perturbations. By per-
turbing the system and analyzing the response, para-
meters in the computational model can be identified.
The chosen level of detail at which the computational



Figure 1. Flowcharts illustrating the difference between correlation analysis (a), prior knowledge networks (b) and a computational perturbation network identification

scheme (c). Pros and cons for each scheme are given; example references include [24,31] (a); [15,27,29] (b) and [41,43,50] (c).
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model reflects the true system depends on the particular
engineering discipline and the application.

In control theory, for example, tools for system
identification are based on a computational representation
of the true system, referred to as a transfer function, which
is determined by comparing the input (perturbations) with
the system response (measurements). The perturbation
experiments determine the parameters of the transfer
function, which then can be used to predict the system
response to different input data.

The above procedure used in control theory is also the
principle for using perturbation techniques in biology – that
the system (represented by a computational model) respon-
sible for transformingan inputsignal toanoutput signal can
be characterized by sending different input signals (pertur-
bations) and monitoring the system response. The pertur-
bationapproachcan thereforebeviewedasawayto increase
the number of samples nonrandomly by choosing those that
will generate the most useful information. Importantly,
engineering sciences have (as a rule) focused on describing
a system well enough to predict the response. In applying
the perturbation approach to biological problems, however,
the intrinsic structure of the system is the main interest.

Several studies [32–34] have demonstrated that the
perturbation approach can be applied to identify biological
networks. The principle for this application (Figure 1c) is
the use of a computationalmodel that ismore detailed than
a transfer function, to represent the underlying system (i.e.
a biological network). Identifying a network from data is
then equivalent to determining the parameters of the
computational model from experimental data. Here, a
wiring diagram is obtained where each edge has a number
that represents the strength of the activation or repression
www.sciencedirect.com
between the nodes (genes). Such a map provides molecular
hypotheses that can be experimentally investigated.
Importantly, this analysis is not limited to edges that have
previously been described. The idea of perturbing a system
and measuring the response is well established in experi-
mental biology. However, measuring the system response
using high-throughput technologies provides novel chal-
lenges because of the large amounts of data produced.
These challenges can be addressed by using an underlying
computational model and reducing the identification pro-
blem to a parameter estimation problem in an engineering
style. Thus, the computational model facilitates the choice
of selecting genes to perturb and sets the stage for inte-
grating prior knowledge directly into the network infer-
ence procedure.

Several molecular methods (Figure 2a) can be used as
perturbation tools, including knockouts [24], small inter-
fering RNA (siRNA), and overexpression of selected genes
[25]. To monitor the response of the system (i.e. the net-
work), whole-genomemeasurements, most commonly gene
expression profiling, are being used. An important issue in
gene network identification fromwhole-genome expression
measurements is to estimate the noise levels. The noisier
the data, the more samples are required to identify the
network [32].

Perturbation themes: insights and challenges
Box 2 illustrates one of the simplest computational models
to represent genes and their interactions using a three-
gene example. Recently, several studies using different
levels of biological resolution have addressed how net-
works of several hundred genes can be identified (see
ref. [35] for a recent mathematical review). To increase



Figure 2. Future potential for perturbation-based gene network identification strategies. (a) Compound target identification. Network identification based on a perturbation

approach has been proposed to be useful for identifying the primary affected gene (PAG) of compounds [61]. PAGs will be the most frequently differentially expressed

network gene(s) over several whole-genome measurements of targeted cells within a given compound. If the network architecture is known, the position of the PAGs in the

network can be calculated [68]. If the network architecture is unknown, repeated whole-genome measurements in cell lines incubated with the compound in combination

with different mutant strains will still enable the identification of PAGs using the CutTree algorithm [62]. The basic logic for this proposal is that the PAGs will be affected by

the compound regardless of the nature of the deletions. Currently, perturbations are executed mainly in the form of gene deletions in cell lines of yeast or prokaryotic

organisms. In humans and animal model systems, the genome-wide deletion strategy is prohibited. (b) Etiology of complex disease. We and others [65] suggest that,

instead of deletions, naturally occurring disease-related mutations can be considered as subtle disease perturbations (as compared with deletions from which disease

networks can be extracted) and, hence, useful for uncovering gene networks underlying the etiology of complex diseases.
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further the biological resolution beyond a graphical model,
differential equations are useful because they incorporate
gradations of gene activity and different strengths of genetic
interactions. Tegnér and colleagues introduced the concept
of integrating differential equations with experimental
perturbations to identify gene networks [32] whereas
Akutsuand othersdevelopedaperturbation approachusing
adiscretemodel [34,36].Friedmanandcolleaguespioneered
a probabilistic perturbation formulation using Bayesian
models [33]. The discrete representation models the
interactions as either on or off whereas the interactions in
Bayesian models encode probabilities between random
variables for explaining the data. Despite these differences
in the underlying model representation all algorithms
basically fit the expression profiles to the computational
model and thereby identify the parameters describing the
network [35,37]. Indeed, several common insights and
challenges have been revealed in these studies.

Perturbations to reduce sample number

Despite the large number of possible wiring diagrams for
even a small network (Box 2), the perturbation approach
enables us to identify the correct wiring diagram with
surprisingly few samples in relation to the size of the net-
work. As a rule, for a network of N genes, the number of
samples required to identify the correct wiring diagram is
proportional to a constant multiplied by log(N) [32,34,
36,38]. The constant includes both a term for the signal-
to-noise ratio and k, a parameter that indicates the number
of incoming regulatory connections to the genes (Box 1).
Using a reduced model for data analysis and assuming
reliable measurements of the activity, a typical network
of say 10 000 genes can be identified with fewer than 100
perturbations. The analysis [32,34,36,38] demonstrated
that by choosing a set of perturbations that collectively
www.sciencedirect.com
activate a large part of the network, the large number of
genes in the network is not, by itself, a limiting factor for
solving the network identification problem.

Network sparseness

Computational analysis [32,34,36,38] showed that k (the
number of incoming regulatory connections to a gene)
strongly influences the number of required whole-genome
measurements to identify the gene network. The rationale
behind this result is that the number of possible regulatory
combinations for a given gene increases dramatically when
k increases and there is a large number of genes (N) in the
network (see also Box 2). For example, with 100 genes and
three inputs per gene, there are �106 different input
combinations for each gene in the network, resulting in
�10600 different network wiring diagrams. The number of
samples required to identify a gene network from expres-
sion profiles is linear with k [32,36,38]. Current network
algorithms cannot identify gene networks if k is large.
Thus, current studies have as a rule constrained k to be
less than five inputs despite some evidence that k could
be large [39]. Fortunately, there is ample evidence that
gene networks are sparse and that k << N is a reasonable
approximation [12,28,40]. An important future challenge
will be to develop efficient network identification algo-
rithms when k is large.

Signal-to-noise ratio

The number of samples required to identify gene networks
is also linearly proportional to the inverse of the signal-
to-noise ratio [32]. Hence, the measurement resolution
must be sufficient to distinguish whether two distinct
genes, xi and xj, have different gene expression values
after the perturbation. The computational analysis
therefore clearly underlines the importance of increasing
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the signal-to-noise ratio by using replicates and adopting
sound algorithms for normalization and probe-level ana-
lysis of microarray data.

Linear computational models and beyond

An underlying computational model with greater biological
resolution generally hasmore parameters. Its identification
therefore requires more data points and thus more experi-
ments to identify the gene network. For this reason, it is
advantageous touse simplifiedmodels that require lessdata
but are flexible enough to account for the underlying
gene network. The choice of model complexity depends on
the accuracy of the measurement technology used and the
amount of prior knowledge of the system under study. One
can therefore question how realistic these simplifications
are. Experimental tests of the approach using linear differ-
ential equations data [32,36,38] demonstrated that despite
these simplifications of the biological regulatory complexity,
linear differential equations are sufficient to recover a nine-
gene SOS, DNA repair gene network in E. coli from gene
expression data [41]. The free parameters in the underlying
linear differential equation, representing connections
betweengenes,were identifiedbyfitting thegeneexpression
data to themodel by regression. In the case of theSOSE. coli
network, the inferred connections were compared with pre-
viously described connections. This important experimental
validation together with another large-scale experimental
validation in yeast [42] demonstrates the usefulness of a
linear representation of the underlying gene regulation.
Both the SOS network and the yeast network were good
enough to predict the mode of action from the expression
profile of the respective chemical compounds. Recent
network identification studies have shown that the
inferrednetworksare inaccordancewith currentknowledge
[13,43–47].

However, the next step is clearly to develop network
identification algorithms that can recover the nonlinear
dynamics of cellular networks. However, this requires the
incorporation of nonlinear aspects of the gene or protein
regulation. In silico studies are necessary to determine
initially how to design experiments optimally using multi-
ple simultaneous perturbations to reveal the nonlinear
regulation of the nodes (genes, proteins or metabolites).
This direction of research requires not only more experi-
mental data but also clever incorporation of conditions
such as prior knowledge on both interactions and func-
tional forms of the node regulation to reduce the possible
solutions space. This is a major future challenge, because
these properties will most probably be important for per-
forming a detailed dynamic analysis of smaller regulatory
networks. A recent study, using a Bayesian model formu-
lation, demonstrated the usefulness of focusing on a gene of
interest, a seed gene, and then reconstructing the local
network around the seed gene [48]. This strategy, which
can be combined with a modular analysis, reduces the
number of genes and could provide a sound basis for
developing locally correct dynamical network models.

General applicability of the perturbation approach

Recent studies have demonstrated the general applicability
of a perturbation approach [11,13,49–59]. One particularly
www.sciencedirect.com
illustrative example is the analysis of protein networks by
Sachs et al. [50]. These investigators used a perturbation
approach using simultaneous measurements of multiple
phosphorylated proteins and phospholipid components in
human immune cells. The cells were experimentally per-
turbed, and an underlying Bayesian model enabled the
group to recover several known connections and to predict
novel interactions. Importantly, these predicted interac-
tions were verified experimentally. This study demon-
strates the usefulness of integrating an underlying
computational model with experimental perturbations
and measurements. Finally, as this case study also illus-
trates, there is nothing inherent in the perturbation
approach that limits its applicability to gene networks.

Prior knowledge

To reduce the number of possible wiring diagrams for a
given system, it is important to incorporate prior biological
knowledge. Current approaches [15,26,27] use a prior
knowledge network (Figure 1b) together with gene expres-
sion data to define which passive edges from the prior
knowledge network are to be considered active. Here, prior
knowledge and the gene expression data are treated sepa-
rately. A perturbation approach can in principle readily
incorporate prior biological knowledge directly into the
inference algorithm (Figure 2b). However, how to incorpo-
rate a prior knowledge network into an inference algorithm
remains a challenge. In principle, integrating such data
requires an underlying mathematical model for analysis
because different types of data (transcription factor bind-
ing, protein binding data) can be used to estimate the
parameters in the model (i.e. network structure). Such
an algorithm can exclude a large number of solutions
(network structures) that are not compatible with current
knowledge; because prior knowledge originating from dif-
ferent data types is directly used, algorithms thereby
increase inference power. An important challenge ahead
is therefore to design a new generation of network identi-
fication algorithms that can infer novel interactions while
harnessing the power of a large prior knowledge database
integrated with the inference algorithm.

Using perturbations to improve drug evaluation and
understand complex diseases
Interestingly, causal gene networks have proven to be
useful in two practical applications beyond the basic
science quest of characterizing and understanding mole-
cular networks. First, integration of computational tech-
niques with experimental perturbations is increasingly
being used to meet challenges in drug evaluation and
development [60]. For instance, it has become clear that
compounds with many targets interacting in several path-
ways can be investigated using gene network inference
based on experimental perturbations [61] (Figure 2a).
Knowledge of the gene network architecture could also
be useful to assess possible side effects of existing drugs
and compounds. In essence, combining gene expression
profiles associatedwith administration of a particular drug
or compound with the network architecture enables a
‘backwards’ calculation of the primarymechanism of action
of the drug or compound [41,42]. This is a consequence of a
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linear modelling approach, because here it is sufficient to
have only two of the following three components: the input
perturbation (action of the drug or compound), the network
model and the systemic whole-genome response (output).
However, a recent study generalized this approach by
demonstrating that an additional input perturbation
delivered in parallel to the (unknown) drug or compound
perturbation enables the mechanism of action to be
inferred from the system response even without a network
model [62] (Figure 2a).

Second, uncovering genenetworks could also be essential
for understanding complex diseases such as cancer and
cardiovascular disease. Thus far, the ‘candidate gene
approach’ has governed the search for novel targets and
diagnostics. Also, fuelled by the successes of identifying
genetic variation underlying single-gene disorders (mende-
lian traits), positional cloning approaches have been used to
search for common variants underlying complex traits, thus
far without success [63]. Recently, however, Schadt and co-
workers elegantly showed that integrating genetic variants
underlying complex quantitative trait loci (QTLs) with gene
expression traits (eQTLs) greatly improves the chance of
identifying genes of importance for complex traits [64]. The
authors suggested that DNA variants should be viewed as
subtle perturbations and therefore might be useful for
identifying gene networks underlying complex traits [65].

The use of genetic variants as subtle perturbations is
mainly limited to identifying genes whose expression is
governed by genetic variants. It is likely that a substantial
number of genes that govern a complex trait are not
influenced (at least directly) by genetic factors but instead
by environmental factors and by the disease itself (reactive
gene expression). Currently, we are testing the slightly
controversial notion that using the underlying phenotypes
of complex disorders as perturbations can reveal gene
networks underlying complex traits.

Concluding remarks
The principles underlying the use of perturbations are
fundamental. For instance, if deep in a forest you find a
living creature that you have never seen before, you will
probably pick up a stick and poke it carefully to see its
reaction. From the reaction you will most probably learn
something about this creature that was not apparent from
merely looking at it. Using large-scale perturbations of
biological systems in combination with detailed molecular
monitoring of the system response and a computational
model for data analysis is likely to open up new and
exciting perspectives of the molecular networks governing
life and disease, systems about which we so far know little.
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