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ABSTRACT: 

In this review we address to what extent computational techniques can augment our ability to 

predict toxicity. The first section provides a brief history of empirical observations on toxicity 

dating back to the dawn of Sumerian civilization. Interestingly, the concept of dose emerged 

very early on, leading up to the modern emphasis on kinetic properties, which in turn encodes 

the insight that toxicity is not solely a property of a compound but instead depends on the 

interaction with the host organism. The next logical step is the current conception of evaluating 

drugs from a personalized medicine point-of-view. We review recent work on integrating what 

could be referred to as classical pharmacokinetic analysis with emerging systems biology 

approaches incorporating multiple omics data. These systems approaches employ advanced 

statistical analytical data processing complemented with machine learning techniques and use 

both pharmacokinetic and omics data. We find that such integrated approaches not only 

provide improved predictions of toxicity but also enable mechanistic interpretations of the 

molecular mechanisms underpinning toxicity and drug resistance. We conclude the chapter by 

discussing some of the main challenges, such as how to balance the inherent tension between 

the predicitive capacity of models, which in practice amounts to constraining the number of 

features in the models versus allowing for rich mechanistic interpretability, i.e. equipping 

models with numerous molecular features. This challenge also requires patient-specific 

predictions on toxicity, which in turn requires proper stratification of patients as regards how 

they respond, with or without adverse toxic effects. In summary, the transformation of the 

ancient concept of dose is currently successfully operationalized using rich integrative data 

encoded in patient-specific models.  
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A brief history of Toxicology – from Sumerian drugs to pharmacokinetic 

analysis of toxicity  

There are numerous examples of “drug” usage in ancient times. The first documented 

evidence of drug receipts is believed to be approximately 5000 years old, on a 

Sumerian clay slab [1]. In contrast to the long history of using substances from plants 

for therapeutic purposes, it was only a couple of hundred years ago that people 

realized the hazards of these substances. This insight can be expressed as “All 

substances are poisons; there is none which is not a poison. The right dose 

differentiates a poison and a remedy” [2]. While Paracelsus (1493-1541) had this key 

insight, the boundary between poison and remedy is hazy. The toxicity of individual 

chemicals is indeed a complex feature which itself depends on several factors, such 

as dose, chemistry, individual genetic make-up and exposure to environmental 

conditions, which all play key roles, to different degrees, in determining susceptibility 

to disease and adverse drug responses. In modern times it has become increasingly 

evident that it is not the case that each medicine works equally well, as regards both 

efficacy and safety, in individuals in a population—hence the rationale behind the idea 

of personalized medicine [3]. Following the work of Paracelsus, Mathieu Orfila (1787-

1853) first described specific organ damage caused by toxins. Toxicity studies of 

individual substances using animals began in 1920. J.W. Trevan proposed the concept 

of a 50% lethal dose (LD50), defining the lethal dose of individual chemicals. As a new 

subject, the field of toxicology slowly developed until the occurrence of the thalidomide 

disaster in the early 1960s, one of the gloomiest episodes in pharmaceutical history. 

The drug was approved as a mild sleeping pill with a good safety profile and beneficial 

effects on morning sickness in pregnant women. However, this caused thousands of 

babies worldwide to be born with malformed limbs in less than 4 years. Since then, all 
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regulatory agencies have made it obligatory to report the toxicity profiles of 

Investigational New Drugs (IND). In the late 1980s, the Organization for Economic Co-

operation and Development (OECD) and the International Conference on 

Harmonization (ICH) brought out the guidelines for the toxicity testing of 

pharmaceutical substances, which are still in use, supplemented with occasional 

amendments. In the context of regulatory guidelines, the lowest dose able to induce 

adverse effects (LOAEL) and the highest dose without observable adverse effects 

(NOAEL) must be tested to extrapolate the derived no-effect level (DNEL), which is 

more useful in defining the appropriate dose in clinical trials. Other conventional toxicity 

testing includes repeated dose toxicity testing, carcinogenicity testing, one-generation 

reproduction toxicity testing, and two-generation reproduction toxicity testing, et al. 

These depend on the formulation and indication of the drug. The toxicity testing of 

pharmaceuticals depends strongly on different animal models. Not surprisingly, such 

an evaluation is expensive (reported to cost more than $3B per year), time-consuming 

(two-generation reproduction toxicity testing takes around 2 years), suffers from low 

throughput, and in some cases raises ethical concerns relating to animal welfare [3]. 

The low throughput of toxicity testing methods has serious consequences for public 

health, as 86% of chemicals (not limited to drugs) currently on the market lack the 

necessary toxicity data [4, 5]. The most controversial issue is the translational 

efficiency of those compounds being tested in humans [6]. No doubt, the current 

toxicity model is not optimal, motivating both regulatory authorities and pharmaceutical 

companies to promote innovative alternatives to limit the use of animals and to better 

assess the risk of drug candidates as early as possible. In 2003, an EPA report 

proposed a computational toxicology research agenda promising several advantages, 

including prioritizing candidates and developing predictive models for quantitative risk 
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assessment. Yet the use of computational methods to predict toxicity has a history in 

toxicology. In 1962, Hansch et al. developed a Quantitative Structure-Activity 

Relationship (QSAR) model to estimate the concentration of chemicals using the 

octanol/water partition and the Hammett constant, which laid the foundation for in silico 

toxicity prediction [7]. Numerous tools were developed to predict carcinogenicity, 

mutagenicity, and developmental toxicity using pre-built QSAR models such as TopKat 

and METEOR, most of which have been modified and are currently deployed in 

academia and the pharmaceutical industry [8] . QSAR models provide a wide range of 

complexity for toxic endpoints, given flexible feature selection, i.e. qualitative and 

quantitative toxicity plus molecular descriptors can be used. Yet, QSARs require a 

large dataset to produce robust statistics, which makes the framework less useful in 

applications where data is limited. Benezra [9] used structural alerts (SAs) (also called 

toxicophores/toxic fragments) for skin sensitization in 1982, which was more 

practicable and economical with the low throughput experimental technologies 

available at the time. SA based models flourished in toxicity prediction in almost all 

types of toxic endpoint [10, 11]. Several expert systems are available for toxicity 

prediction based on pre-built rules and SAs, e.g. HazardExpert, Oncologic Cancer 

Expert System (OCES), Toxtree, et al.[12–14]. These models are limited to producing 

qualitative binary output, i.e. toxic or non-toxic. Chemical similarity cluster methods 

take into account the structural similarity of chemicals, physiochemical features, ADME 

and mechanisms of action (MoA), which in turn can provide qualitative or quantitative 

predictions depending on the toxicity endpoint [15]. Multiple tools implement this 

approach, such as AMBIT, DSSTox and Toxmatch, with applications including 

prediction of environmental risk, reproductive toxicity, skin sensitization and so on [16–

18]. The statistically-derived rule-based approaches mentioned above share a 
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common limitation, namely, lack of biological insights into the mechanistic basis of 

toxicity. Analogous to pharmacokinetics/pharmacodynamics features indicating the 

mutual interaction of recipient and chemicals, toxicokinetics/toxicodynamics analysis 

selects the toxic response related to the chemical concentration in vivo. Importantly, 

measurement of the internal doses rather than administered doses and key 

metabolites provide a more accurate relationship to the response. In addition, it is a 

well-developed practice to extrapolate between various administration routes, as 

different species use non-identical PK/PD and ADME. However, the toxicity pathway 

and the MoA can only be defined with expert knowledge [19–21]. Drug toxicity is a 

complex response occurring at system, tissue, cellular and molecular levels. Classic 

toxicity testing and prediction methods, using either animals or in silico chemicals, 

similarity based or PK/PD based models, simplified complexity and left the mechanistic 

understanding of the chemical-induced toxicity pathways out of consideration. In 2007, 

the NRC released the report Toxicity testing in the 21st century: A Vision and a 

Strategy, in which it addressed future directions that would take complexity and toxicity 

pathways into account [22].  

From Systems Biology to Systems Toxicology  

The revolution in biomedical science in the post genome era has made it feasible to 

study the effects of chemicals using cells, cellular components and tissues, preferably 

of human origin. High-throughput assay technologies, bioinformatics and systems 

biology have significantly empowered scientists to decipher how molecular 

components, different cells or tissues cooperate to carry out normal physiological 

functions that are key to maintaining health [23, 24]. Three high-throughput assays 

developed in recent decades have provided major impetus to the field of toxicology: 

omics technologies, image techniques, and automated robotic platform techniques. 
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The platforms enable testing of huge numbers of chemicals in a high-throughput 

number of samples under standardized conditions. Omics technologies collect the 

molecular responses to a substance while image methods decode the phenotypical 

and functional change of cells, organs or organisms in response to exposure to a 

compound. Together, these three technologies allow researchers to characterize 

toxicity rapidly at affordable cost [25–27]. As an interdisciplinary field of science, 

bioinformatics combines computer science, statistics, mathematics, and engineering 

to analyze and interpret biological data, and serves as a key tool with which to decode 

the enormous quantum of data generated with high-throughput assays [28]. Since 

2000, Systems Biology had been used widely to “understand biology at the system 

level” using computational and mathematical modeling of complex biological systems 

[29]. The emergence of systems toxicology can be characterized as the integration of 

classical toxicology with the quantitative analysis of large networks of molecular and 

functional changes occurring across multiple levels of biological organization. This is 

in essence a holistic approach to deciphering the impact of environmental agents 

(chemicals, complex mixtures, occupational exposures, physical agents, biological 

agents, and lifestyle factors) on complex biological systems using an engineering 

approach applied to toxicological research [30]. Systems toxicology is rooted in the on-

going revolution in biology and biotechnology, and is founded on the premise that 

morphological and functional changes in cellular, tissue, organ, and organism levels 

are caused by and cause changes at the omics level. One example is the Human 

Toxome project launched by NIH/DDD that is intended to test the strategies that 

combine omics data and computational models, aiming to develop a common, 

community accessible framework [31]. Another is Tox-21c, which focuses on toxicity 

pathways, mechanisms/modes of action, and adverse outcome pathways (AOP) in 
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humans. Tox-21c largely overlaps with 3Rs (replace, reduce, and refine) proposed half 

a century ago [32, 33]. The Systems Toxicology computational challenge, sbv 

IMPROVER computational challenge, used crowd resourcing to demonstrate that gene 

expression data from blood cells are sufficiently informative to predict response to 

smoking in humans and across species translation [34].  

Yet, a comprehensive understanding of the mechanisms of drug toxicity in specific 

cases requires the integration of different data modalities, from changes at the 

genomic, proteomic, and metabolomics level across several scales of cellular 

organization. In contrast to classical approaches, systems toxicology resides at the 

intersection of systems biology and toxicology where chemistry incorporates 

mechanisms into the predictive framework [35]. To understand how this complex 

interaction system in cells and tissues leads to toxicity requires the integration of two 

disciplines that have been increasingly useful in biomedical research: “Systems 

Biology” and “Quantitative Pharmacology”. In systems biology, a system is generally 

described as a set of nodes (vertices) connected by edges describing functional 

interactions. These edges can represent physical interactions, functional interactions, 

and connections between data across several scales. Similarly, in systems toxicology 

biological networks are the basis for the prediction of drug action in complex biological 

systems[36]. 

Systems toxicology models contain expressions that characterize functional 

interactions within a biological network, which are very useful when drugs act at 

multiple targets in the network or when homeostatic feedback mechanisms are 

operative[37]. Therefore, these models are particularly useful in describing complex 

patterns of drug action such as synergies between different drugs. Although systems 

toxicology is still in its infancy, it has tremendous potential to change the way we 
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approach biomedical research. It represents a movement beyond a traditional study-

centric approach towards a continuous quantitative integration of data across studies 

and the different phases of drug development. Network-based approaches offer a wide 

range of possibilities for deciphering and possibly for understanding the complexity of 

human disease, thereby providing new tools with which to develop novel drugs. Here 

we review some current efforts and recent methods through the lens of quantitative 

systems pharmacology (QSP). 

 

Examples of Predictive Systems Toxicology 

The general notion of a network-based approach rests upon the ambition to connect 

several entities across the molecular, cellular pathways, organs and systems to 

facilitate the prediction of the effect of a drug candidate or any kind of perturbation on 

biological outcomes of interest [38, 39]. The way in which one defines or infers a 

network from data is the main determining factor of the degree of reliability and 

applicability of network analysis in drug design. It is crucial to have a clear definition of 

network nodes early on, edges and edge weights in the specific application case, and 

in that context to consider data quality and refinements of the data based on genetic 

variability, aging, environmental effects. Different types of networks such as networks 

of chemical compounds, signaling networks, gene-gene interaction networks, protein-

protein interaction (PPI) networks or metabolic networks and disease networks can be 

(and have been) used in QSP models and methods [40] . Following the work on 

inferring a network comes the analysis of the network and its properties. In the last 

step, the result of analysis needs to be converted to a series of actionable hypotheses, 

which then need to be tested and validated or refuted (see Fig1).  
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Drug–target interaction is the first and most common type of network analysis that has 

been used in QSP models. Interactions between drugs and targets can facilitate the 

process of drug discovery by deciphering a drug's mechanism of action, thereby 

assisting researchers seeking new targets for an old (FDA approved) drug as well as 

new drug candidates for a known target [41–45]. The main source of information in 

reconstruction of the Drug- Target interaction network (DTN) is the Drug Bank, which 

is one of the major publicly available integrated sources of drugs and targets. It is a 

highly comprehensive database combining chemical properties and detailed clinical 

information about drugs and their targets. It also provides drug-related data feeds for 

well-known databases such as Uniprot, PubChem, PDB and KEGG [46, 47]. 

In spite of the fact that mining drug-target interaction data is increasing at an amazing 

rate [42], drug-target interaction data currently available from public sources are largely 

incomplete and biased toward targets of common therapeutic interest [48–50]. 

Biochemical experiments or in vitro methods for finding drug–target interaction are 

costly and time-consuming. An attempt to address the issue of data completeness of 

drug-target interaction involves using in silico methods [51]. For example, docking 

simulations are extensively used in pharmacology. AutoDock [52] is one of the most 

complete suites of free open–source software for the computational docking and virtual 

screening of small molecules to macromolecular receptors. Xie et al. identified drug 

off-targets by docking the drug into protein binding pockets similar to those of its 

primary target, followed by mapping the proteins with the best docking scores to known 

biological pathways, thus predicting potential side effects[53].Classically, the process 

starts with a target of known three-dimensional structure, and docking is used to predict 

the bound conformation and binding energy. In most cases, the three-dimensional 

structure of a target is needed to compute the binding of each drug candidate to the 
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target, which for many targets are still unavailable [54–56]. Wallach et al. have 

developed a method to mitigate the impact of this important limitation. They utilize a 

dataset where there is a pairing of drugs with their observed adverse drug reactions 

(ADRs), the protein structure database and in silico virtual docking to identify putative 

protein targets for each drug and search for correlated pairs of side effects and 

biological pathways [57]. Another challenge when performing docking simulation is that 

it is computationally expensive and most of the methods must simplify the problem to 

make the computation feasible. The reduction of conformational space by imposing 

limitations on the system, such as fixed bond angles and lengths in the ligand or a 

simplified scoring function such as those based on empirical free energies of binding 

to score poses quickly at each step of the conformation search, are the most common 

short-cuts that are currently used in the field [52, 58]. 

 In a more recent effort, machine-learning approaches have been used for larger-scale 

predictions of drug–target interactions. The new interactions between drugs and 

targets can lead to potential insights on previously unidentified side effects for a 

particular drug. This idea is the basis of another category of systems toxicology 

methods. Machine learning-based methods mostly use structural and chemical 

descriptors of drugs and sequences of targets, similarity matrix or (and) any other 

pharmacological information about drugs as input. Then they use any machine learning 

method, such as support vector machines (SVMs) or kernel regression, for predicting 

the drug–target interactions [59–63]. Cobanoglu et al. used the known interactions in 

the Drug Bank in the form of a bipartite network to train a model that represents each 

drug and target as a vector of latent variables and assigns weights to drug-target 

interactions using probabilistic matrix factorization [64]. Approaches that use similarity 

scores as input are more promising than other approaches [41]. 
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In general, the use of machine-learning algorithms is one of most promising 

approaches to extracting knowledge from big data using a data-driven framework. 

However, the performance of machine-learning algorithms relies heavily on data 

representations called features, and identifying which features are more appropriate 

for the given task is very difficult. Deep Learning has recently emerged as a promising 

technique where the features do not need to be hand-crafted a priori. Recent success 

has been accomplished thanks to the availability of fast computations, massive 

(labeled) datasets and sophisticated algorithms [65]. Machine learning using deep 

learning is defined by neural networks with multiple hidden layers. Each layer basically 

constructs a feature from the preceding layers [66]. The training process allows layers 

deeper in the network to contribute to the refinement of earlier layers. For this reason, 

these algorithms can automatically engineer or discover features that are suitable for 

representing the data at hand. When sufficient data are available, these methods 

construct features attuned to a specific problem and combine those features into a 

predictor [67]. Deep learning algorithms have shown promise in fields as diverse as 

high-energy physics[68] , dermatology[69], and translation[70]. DEEPtox is one of the 

first methods using Deep Learning for computational toxicity prediction [65]. DeepTox 

normalizes the chemical representations of the compounds and computes a large 

number of chemical descriptors that are used as input in machine learning methods. 

As a next step, DeepTox trains several models, evaluates them, and combines the 

best of them into ensembles. Finally, DeepTox predicts the toxicity of new compounds. 

In DEEPTox SVMs, random forests, and elastic nets are used for cross-checking, 

supplementing the Deep Learning models, and for ensemble learning to complement 

Deep Neural Networks (DNNs). The networks consist of multiple layers of rectified 

linear units (ReLUs) to enforce sparse representations and counteract the appearance 



 12 

of a vanishing gradient. ReLUs are followed by a final layer of sigmoid output units, 

one for each task. One output unit is used for single-task learning. Stochastic gradient 

descent learning has been used to train the DNNs, and both dropout and L2 weight 

decay were implemented for the DNNs in the DeepTox pipeline for regularizing 

learning and avoiding overfitting. Of note is the fact that DEEPtox outperformed many 

other computational approaches like naive Bayes, support vector machines, and 

random forests in toxicity prediction of 12,000 environmental chemicals.  

The output of all the above-mentioned methods is a DTN, an undirected bipartite 

network composed of two sets of nodes, drugs and targets. DTN have a complex 

topology that reflects the inherently rich polypharmacology of drugs (also known as 

drug repurposing) [51]. The analysis of DTN has recently emerged as an effective 

means to study targets and to identify new targets for known drugs. In one of the very 

first attempts, Ma’ayan et al. [71] reconstructed such a bipartite network, and the nodes 

have been connected if there is an association between a drug and a target on the 

basis of data from the Drug Bank. They report several classes of proteins as better 

targets for drugs based on network statistics and gene ontology. A decade later, Lin et 

al. [72] have followed the same approach to studying the drug–target interaction and 

could characterize the drug–target relations of different kinds of drugs. They showed 

that the number of multi-target new molecular entities (NME) has increased over the 

years, but less than single-target NMEs. In both these cases and several other cases 

in the literature, it has proven useful to analyze the general structure of a network in 

order to extract new knowledge facilitating the classification of drugs and/or their 

targets. Structural (graphical) analysis of a network provides insights into the 

organization and topology of the DTN and targets for hypothesis generation and 

experimental testing. As a rule this is performed through computation and analysis of 
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network parameters–parameters that quantify different aspects of the network’s 

internal structure, such as parameters measuring centrality, a node or more global 

parameters such as modularity index, network density, network entropy or network 

diameter [73]. Several methods have been developed and applied based on network 

topology, graph theory, and cluster analysis (see [8] for a recent review). Methods 

based on the similarity of networks is another set of techniques that have been used 

to uncover novel target or disease-specific changes [74, 75]. A wide range of similarity 

measures have been used in the literature, ranging from intuitive measures such as 

the number of edge changes required to get one network from another or the 

comparison of the top-k nodes to the more complicated ones, such as using an 

ensemble of different model networks, and the distribution of the best-fitting ensemble. 

However, it should be kept in mind that the fundamental question of checking whether 

two given networks have the same structure, network comparison, is computationally 

expensive, and despite extensive progress in the field, it remains one of the greatest 

challenges in the field. For example, it is still not known whether graph isomorphism is 

polynomial solvable or whether it is NP-complete. Therefore most of the current 

methods in the network comparison field are heuristic, which in turn may affect the 

outcome strongly, depending on which kind of prior biases exist in the particular 

method.  

All interactions, from protein-protein interactions (PPI) to gene expression and 

pathways, are useful in the quest to understand the mechanism(s) of interaction 

between drugs and complex diseases. Remez et al. used predicted drug−protein 

interactions obtained with a CT-link in combination gene expression data to obtain a 

projected anatomical profile of a drug and use it for connecting in vitro assays with in 

vivo outcomes and predict potential in in vivo organ toxicities [76, 77]. 
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Kuhn et al. used a network based on drug–target interaction data and drug–ADR 

interaction data to systematically predict and characterize proteins that cause drug side 

effects. They integrated phenotypic data obtained during clinical trials with known 

drug–target relations to identify overrepresented protein–side effect combinations [78]. 

Their networks have three types of nodes: drugs, targets, and side effects, and links 

are identified side effect causality predictors. The authors considered overrepresented 

protein-side effect pairs, and hypothesized that such overrepresentation could be 

indicative of causality. Their approach can make predictions for proteins that are the 

targets of a certain number of drugs. In this context, Yildirim et al. used a bipartite 

graph composed of FDA-approved drugs and target proteins in the context of cellular 

and disease networks and quantitatively demonstrated an overabundance of ‘follow-

on’ drugs[79]. The authors overlaid the drug-protein network with a network of physical 

PPI. They demonstrated a significant increase in the number of interacting proteins as 

compared to the average in the PPI network. They used the distance between drugs 

and a drug target and the corresponding disease to show that most drug targets are 

not closer to the disease genes in the protein interaction network than a randomly 

selected group of proteins.  

Similarly, several other approaches have been developed based on the notion of 

expanded drug-target interactions, combined with protein-protein interactions data, in 

order to develop a network-based pharmacology that could better explain the drug-

phenotype relationship, and this approach has been used to predict novel targets and 

drug repositioning [80–85]. For example, Guney et al. in [86]integrated protein–protein 

interaction, drug-disease association and drug-target association data. They analyzed 

the topological characteristics of drug targets with respect to disease proteins and 

showed that for a drug to be effective against a disease, it had to target proteins within 
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or in the immediate vicinity of the corresponding disease module. Such approaches 

were also considered for issues related to drug safety and side effects. Cami et al. 

constructed a network representation of drug-ADR associations for approximately 800 

drugs and ADRs and pharmacological information for toxicity prediction. They 

exploited network structure to predict likely unknown adverse events using a trained 

logistic regression model [87]. Berger et al. used PPI networks to predict and identify 

drugs that likely cause Long QT Syndrome based on both a direct drug-target 

interaction and separate neighborhood [88] . 

Complementary to protein-protein interactions, transcriptomic data and gene 

expression differentiation have been used in drug discovery and safety [88–93]. For 

example, Gottlieb et al. introduced a method for inferring drug-specific pathways [89]. 

They connect known drug associated genes over protein, metabolic and transcriptional 

interaction networks while preferring high confidence interactions participating in 

curated cellular processes. They use their computed pathways to suggest novel drug 

repositioning opportunities, gene-side effect associations, and gene-drug interactions. 

Huang et al. developed a new metric to measure the strength of network connection 

between drug targets to predict the pharmacodynamics of drug-drug interactions [92, 

93]. 

 For the purpose of predicting drug toxicity, in most cases we require a collection of 

experimental data reflecting molecular changes in the context of quantifiable cellular 

changes across different biological scales that are linked to toxicity at the body level 

[35]. So in addition to all the above-mentioned data, systems toxicology depends 

strongly on the quality and scope of databases annotating side effects (SIDER) and 

drug-induced differential gene expression, or a combination thereof [94–97].  
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As an example, Lounkine et al. developed an association metric asking how to prioritize 

those new off-targets that explained side effects better than any known target of a 

given drug, thereby creating a drug–target–adverse drug reaction network [43]. 

Network-based approaches allow the generation of hypotheses about drug-target-

phenotype-side effect associations but currently available interaction data are 

incomplete and the available parts are often non-homogeneous and biased. This 

situation results in the fact that the conclusions of such studies strongly depend not 

only on the quality, but importantly, on the degree of completeness of the data [98]. 

The other relevant point is that most of the suggested approaches in QSP are largely 

based upon the analysis of the structure of a network or on comparison of networks, 

while it has been shown[99] that network dynamics, the study of temporal changes in 

network structures or describing changes of phenotypes of a complex system in the 

state-space, is crucial to understanding the complexity of diseases and the action of 

drugs[39]. In this context Mucha et al. [100] developed the technique of multilayer 

networks, incorporating different types of nodes and edges, in order to follow the 

changes in module structure in a system having multiple and different types of edges. 

Interestingly these methods have also been used to predict drug synergies. However, 

most of them are limited to estimating target links on the PPI network. The advantage 

of using a network-based approach lies in that it helps to explain the hidden molecular 

mechanism of drug synergy from the interactions. Due to their effectiveness, some 

approaches aiming at identifying synergistic drug combinations are based on the 

dynamic simulation of specific subnetworks. However, these models relied on a very 

detailed dynamical model, where the lack of information and the uncertainties involved 

in their kinetics parameters and lots of artificial constraints often limit the usefulness of 

the simulations, resulting in the model working only for a few specific pathways. Kiani 
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et al. developed a novel integrative pipeline for systematic exploration of drug 

combinations as a comprehensive and flexible network-based model in the context of 

the DREAM challenge, a pipeline called HotPPI. Here they constructed a human 

protein interaction network from major PPI resources, and included both 

experimentally validated and computationally predicted interactions. The overall 

procedure resulted in a vast protein interaction network comprising 15,383 proteins 

and 337,413 interactions. Next, PPI was filtered based on targets of the DREAM 

challenge and the top 50 pathways involving these targets (table 1). The filtered PPI 

network comprises 6000 proteins and 16000 interactions. Molecular data are used to 

weigh interaction in our PPI. The main goal of HOTPPI is to find the best combination 

to eliminate cancer cell lines. Therefore any combination that eliminates most 

interactions in a network can cause network collapse followed by death of cancer cells. 

Thus the heat diffusion algorithm is used to predict potential synergistic drug 

combinations by calculating how efficient drugs are in hitting the top 200 selected 

nodes in a network based on their betweenness score. The Hot PPI is generally 

applicable to high-throughput experimental data where the challenge is to select a 

small number of the most promising combinations for further mechanistic studies. 

Using this score, we could rank all possible combinations in a reasonable amount of 

time. Interestingly, we learned that we should not include too many details (i.e. features 

or molecular components) in our network descriptions, since we may shift our 

description from optimal towards the ‘knowledge of everything,’ with the precision of 

the method dropping drastically as a result. This underscores the importance and 

challenge of pruning a large, but for the given application reasonable number of 

features to include in the network model. 
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Pathway maps pValue 

Ligand-independent activation of Androgen receptor in Prostate Cancer 1,203E-15 

Cell adhesion_PLAU signaling 4,362E-14 

Development_EGFR signaling pathway 8,380E-14 

Apoptosis and survival_Anti-apoptotic action of Gastrin 1,451E-13 

K-RAS signaling in pancreatic cancer 1,920E-13 

Development_G-CSF signaling 7,018E-13 

Development_Growth factors in regulation of oligodendrocyte precursor cell proliferation 1,065E-12 

Main growth factor signaling cascades in multiple myeloma cells 3,352E-12 

Development_VEGF signaling and activation 5,644E-12 

Main pathways of Schwann cells transformation in neurofibromatosis type 1  1,107E-11 

Immune response_IL-5 signaling 1,172E-11 

Signal transduction_PTEN pathway 1,172E-11 

Immune response_IL-15 signaling 1,331E-11 

Ovarian cancer (main signaling cascades) 1,595E-11 

Tissue Factor signaling in cancer via PAR1 and PAR2 2,309E-11 

Development_EPO-induced Jak-STAT pathway 2,549E-11 

Apoptosis and survival_HTR1A signaling 2,864E-11 

Development_GM-CSF signaling 2,864E-11 

Cytoskeleton remodeling_TGF, WNT and cytoskeletal remodeling 3,189E-11 

HBV signaling via protein kinases leading to HCC 3,373E-11 

Development_Delta-type opioid receptor mediated cardioprotection 4,422E-11 
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Apoptosis and survival_Anti-apoptotic action of membrane-bound ESR1 5,750E-11 

Translation_Non-genomic (rapid) action of Androgen Receptor 9,496E-11 

Apoptosis and survival_BAD phosphorylation 1,525E-10 

Development_Growth hormone signaling via PI3K/AKT and MAPK cascades 1,525E-10 

Development_Ligand-independent activation of ESR1 and ESR2 2,960E-10 

Development_Membrane-bound ESR1: interaction with growth factors signaling 2,960E-10 

Development_VEGF signaling via VEGFR2 - generic cascades 3,413E-10 

Role of Tissue factor-induced Thrombin signaling in carcinogenesis 5,194E-10 

Development_CNTF receptor signaling 7,526E-10 

IL-6 signaling in multiple myeloma 9,699E-10 

Some pathways of EMT in cancer cells 9,699E-10 

Development_IGF-1 receptor signaling 1,164E-09 

Development_FGF-family signaling 1,164E-09 

Signal transduction_Additional pathways of NF-kB activation (in the cytoplasm) 1,391E-09 

Development_Growth factors in regulation of oligodendrocyte precursor cell survival 1,563E-09 

Development_Dopamine D2 receptor transactivation of EGFR 1,746E-09 

Aberrant B-Raf signaling in melanoma progression 1,965E-09 

Immune response_TSLP signaling 2,453E-09 

Development_Prolactin receptor signaling 3,215E-09 

Development_VEGF-family signaling 3,751E-09 

Immune response_IL-7 signaling in B lymphocytes 5,605E-09 

Signal transduction_AKT signaling 5,605E-09 
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Regulation of Tissue factor signaling in cancer 5,605E-09 

Immune response_IL-4 signaling pathway 6,797E-09 

Influence of smoking on activation of EGFR signaling in lung cancer cells 6,797E-09 

Immune response_TNF-R2 signaling pathways 8,203E-09 

Development_Role of IL-8 in angiogenesis 9,139E-09 

Immune response_IL-4 - antiapoptotic action 9,803E-09 

 

 

Fig. 1 overview of predictive system toxicology approaches 
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Fig. 2 Overview of HotPPI approach 

Information theoretic approach to toxicity  

Both network analysis and pharmacokinetic analysis share a focus and grounding in 

the physical and functional interactions between molecules within the cell or tissue and 

the corresponding drugs. Here the overarching aim is not only to predict but also to be 

able to interpret the mechanism in terms of the underlying biology and chemistry. Since 

the design of new drugs for new targets is difficult, and the prediction problem is easier 

from an inference point-of-view, compared to elucidating the mechanisms driving 

toxicity, complementary approaches are warranted. For example, instead of 

engineering a drug to target the unique pathways or mutations of a tiny subset of 

diseases, drug repositioning, such as the one exemplified in the DREAM challenge, 

involves starting with approved drugs to find combinations that can be used to treat 

diseases different from the ones they have been designed for, with the advantage that 
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approved drugs can bypass much regulation if correctly controlling for the effects they 

can have. Thus prediction and simulation are key. This means that the whole field has 

to move towards causal modeling and functional inference rather than traditional 

statistical classification (e.g. Tanimoto coefficients) or computational simulation based 

on classical geometric approaches (e.g. distance between molecules, grid-based 

docking). To this end, information indexes can facilitate the characterization of drugs 

by the combinatorial and structural properties shared with or at a remove from the 

structural properties of the targets, because just as for any molecule, structure means 

function. Then all these approaches can contribute to determining drug function based 

on the fact that structurally similar molecules usually have similar properties (known as 

“neighborhood behavior”). For example, statins are associated with the heart and 

cholesterol, while morphine, codeine and heroin share structural properties and 

effects. However, algorithmic information-theoretic approaches based on both 

classical information and computability theory introduce predictive causal models that 

go beyond statistical similarities and can find, in principle, similar mechanisms shared 

by sets of drugs with respect to targets and functions. 

It is not difficult to see that complementary regions between drug and target will have 

a similar classical and algorithmic information content, because the structure of one is 

the complement of the other. Another advantage is that these measures are 

parameter-free and thus require no training, even though they can complement and 

guide machine learning approaches [101, 102]. Because drug docking is not invariant 

to, e.g., scaling factors, but information theoretic measures are, they may fail to 

characterize the positive or negative docking properties of a drug. While coarse-

graining techniques may be introduced, algorithmic complexity has the advantage of 

being able to account for scaling effects. The basic idea is the likelihood of a drug being 
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causally generated by a mechanistic model (an algorithm). This is, in general, hard if 

not impossible to find (the problem is uncomputable), but approximations are possible 

and new numerical methods have been advanced complementary to statistical and 

lossless compression approaches that cannot or are very limited at accounting for 

causation. Drugs, and molecules in general, can be represented in many ways (see 

Fig. 3a,b,c), some of which are natural networks or networks representing properties 

of the molecules. Most of these representations are lossless representations, meaning 

that they can reconstruct the primary representation of the molecule that they encode, 

e.g., the simplified molecular-input line-entry system or SMILES. The SMILES of a 

molecule is a string obtained by printing the symbol nodes encountered in a depth-first 

tree traversal of a chemical graph. SMILES can be converted back (almost) uniquely 

to the 2-dimensional representation of a drug.  

Fig. 3 shows some of these network (a,b) and 2-dimensional representations (c), 

together with 2 figures (d,e) plotting 3 information-theoretic indexes, two classical and 

one algorithmic based on the drugs’ contact networks. While the 2 classical indexes 

are the ones most correlated, as one is extracted from the other with the additional 

information of the sequence valence, the length of the algorithmic complexity (Z-axis) 

represents the complexity of a hypothesized model producing the contact network.  
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Fig. 3 Drug profiling by (algorithmic) information indexes: (a) The molecular 

(chemical) graph of Atorvastatin (C33H35FN2O5), a member of the drug class known as 

statins used primarily as a lipid-lowering agent for prevention associated with treatment 

of cardiovascular diseases. (b) In a molecular network geographical coordinates and 

shapes are no longer important, but rather their topology (which element is connected 

to which other), which can be built upon (c) the molecular contact map where grey 

scale (left matrix) indicates proximity between each element that can be binarized 

(right) using a cut-off value based on the grey scale median. (d) Algorithmic information 

landscape of more than 4000 drugs from the DrugBank (extracted from the Wolfram 

Language) constructed by taking the entropy of their SMILES codes, the valence 

sequences of each of the elements in their formula (from SMILES), given the 

importance they have for bonding (e) Algorithmic information landscape of the drugs 

involved in the DREAM challenge. Color is determined by the ‘contact map complexity’; 

the less complex (the shorter the length of the algorithm generating it) the closer to 

blue, the longer (more algorithmic-random) the closer to red. 
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Concluding remarks 

Here we have reviewed different attempts to predict toxicity from observations (i.e. the 

Sumerian) to classical pharmacokinetic, advancing to recent integrative systems 

oriented approaches taking more data into account. These systems approaches resort 

to performing advanced statistical analytical data processing complemented with 

machine learning techniques to generate paradigms attempting not only to predict 

toxicity but also to identify (molecular) mechanisms of toxicity. Information theoretic 

approaches can be situated in between, as they are as a rule less dependent upon 

biochemical representations in their problem formulation, while the ones presented 

here also aim for causal understanding of toxicity in addition to targeting prediction.  

 

In a broader perspective, there are several immediate challenges where we need more 

work. These include which features to include when predicting toxicity? Minimal 

models may suffer from being less understandable from a mechanistic standpoint, 

whereas including too many features, as in the dream example above, could hamper 

the prediction capability of the model. Overall, a systems biology approach extends the 

feature space compared to classical pharmacokinetics, while an (algorithmic) 

information approach facilitates predictions in combination, being both scale invariant 

and parameter free. Hence there is a tension between predicitive capacity and 

mechanistic interpretability.  

 

Furthermore, overtraining and overfitting in solving high-dimensional and complex 

nonlinear problems such as toxicity prediction is one of the most common problems of 

existing machine learning methods. This originates from the need for estimating and 
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optimizing numerous hyper parameters. However, a method such as the relevance 

vector machine method solves this problem by incorporating Bayesian criteria into the 

learning process to reduce the irrelevant support vectors of the decision boundary in 

feature space, thus resulting in a sparser model[103]. Methods such as Random Forest 

classifiers are another category of successful methods in systems toxicology. They are 

one of the most robust algorithms and are able to identify the patterns important for the 

preferred class, even when there is a large imbalance in the class distribution within 

the training dataset [104]. Inspecting the results of the TOX21 data challenge 

demonstrates that a hybrid strategy which combines similarity scores for structural 

fingerprints and molecular descriptors (features) and machine-learning based 

prediction models can readily improve the accuracies of toxicity prediction [105]. In 

general, an ensemble model can be effective, since taking into account the prediction 

of other models can compensate for an incorrect prediction on the part of one of the 

individual methods. Certainly, each of the systems toxicology methods has intrinsic 

advantages, limitations, and practical constraints. Moreover, the performance of these 

methods depends on the structural diversity and representativeness of the molecules 

in the data set. Therefore, it is quite important to choose the most suitable machine 

learning method to develop the prediction model for a specific toxicity data set. Finally, 

the computational cost associated with each method is another practical and important 

factor determining the usability of a given method. 

In conclusion, beyond the above challenges and considerations, the grand remaining 

challenge is to advance the state-of-the-art towards personalized medicine. This 

requires patient specific predictions on toxicity, which in turn requires proper 

stratification of patients with regard to how they respond or not, with or without adverse 

toxic effects. This most likely requires integration of multiple layers of information as a 
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background upon which an individual has to be characterized/described, while a 

machinery for toxicity prediction has to be specific enough for a given patient, given 

the amount of (sparse) patient-specific information. This challenge and perspective will 

keep the field of data-driven computational toxicology busy. 

ACKNOWLEDGMENTS 

 We  thank the contributors to HotPPI,  Dr. Gordon Ball , Dr. David Gomez, Alireza Mazaheri  and 

Dr. Francesco Marabita. This study was supported by the Swedish ResearchCouncil ( J.T. & H. 

Z. ) and  Karolinska Institutet funds (N.K. ). The funders had no role in study design, data 

collection and analysis, decision to publish, or preparation of the manuscript. 

 

 

   



 28 

REFERENCES 

1.  Petrovska BB (2012) Historical review of medicinal plants’ usage. Pharmacogn Rev 6:1–5 . doi: 

10.4103/0973-7847.95849 

2.  Hunter P (2008) A toxic brew we cannot live without. Micronutrients give insights into the interplay 

between geochemistry and evolutionary biology. EMBO Rep 9:15–8 . doi: 10.1038/sj.embor.7401148 

3.  Bottini AA, Amcoff P, Hartung T (2007) Food for thought ... on globalisation of alternative methods. 

ALTEX 24:255–69 

4.  Adeleye Y, Andersen M, Clewell R, Davies M, Dent M, Edwards S, Fowler P, Malcomber S, Nicol B, 

Scott A, Scott S, Sun B, Westmoreland C, White A, Zhang Q, Carmichael PL (2015) Implementing 

Toxicity Testing in the 21st Century (TT21C): Making safety decisions using toxicity pathways, and 

progress in a prototype risk assessment. Toxicology 332:102–111 . doi: 10.1016/j.tox.2014.02.007 

5.  Pease W (1997) Toxic ignorance : the continuing absence of basic health testing for top-selling 

chemicals in the ... Diane Pub Co 

6.  Mak IW, Evaniew N, Ghert M (2014) Lost in translation: animal models and clinical trials in cancer 

treatment. Am J Transl Res 6:114–8 

7.  HANSCH C, MALONEY PP, FUJITA T, MUIR RM (1962) Correlation of Biological Activity of 

Phenoxyacetic Acids with Hammett Substituent Constants and Partition Coefficients. Nature 194:178–

180 . doi: 10.1038/194178b0 

8.  Raies AB, Bajic VB (2016) In silico toxicology: computational methods for the prediction of chemical 

toxicity. Wiley Interdiscip Rev Comput Mol Sci 6:147–172 . doi: 10.1002/wcms.1240 

9.  Lepoittevin J-P, Benezra C (1991) Allergic contact dermatitis caused by naturally occurring quinones. 

Pharm Weekbl Sci Ed 13:119–122 . doi: 10.1007/BF01981527 

10.  Hewitt M, Enoch SJ, Madden JC, Przybylak KR, Cronin MTD (2013) Hepatotoxicity: A scheme for 

generating chemical categories for read-across, structural alerts and insights into mechanism(s) of action. 

Crit Rev Toxicol 43:537–558 . doi: 10.3109/10408444.2013.811215 

11.  Gerner I, Barratt MD, Zinke S, Schlegel K, Schlede E (2004) Development and prevalidation of a list of 

structure-activity relationship rules to be used in expert systems for prediction of the skin-sensitising 



 29 

properties of chemicals. Altern Lab Anim 32:487–509 

12.  Milan C, Schifanella O, Roncaglioni A, Benfenati E (2011) Comparison and Possible Use of In Silico 

Tools for Carcinogenicity Within REACH Legislation. J Environ Sci Heal Part C 29:300–323 . doi: 

10.1080/10590501.2011.629973 

13.  Ellison CM, Enoch SJ, Cronin MTD (2011) A review of the use of in silico methods to predict the 

chemistry of molecular initiating events related to drug toxicity. Expert Opin Drug Metab Toxicol 

7:1481–95 . doi: 10.1517/17425255.2011.629186 

14.  Bhatia S, Schultz T, Roberts D, Shen J, Kromidas L, Marie Api A (2015) Comparison of Cramer 

classification between Toxtree, the OECD QSAR Toolbox and expert judgment. Regul Toxicol 

Pharmacol 71:52–62 . doi: 10.1016/j.yrtph.2014.11.005 

15.  Hardy B, Douglas N, Helma C, Rautenberg M, Jeliazkova N, Jeliazkov V, Nikolova I, Benigni R, 

Tcheremenskaia O, Kramer S, Girschick T, Buchwald F, Wicker J, Karwath A, Gutlein M, Maunz A, 

Sarimveis H, Melagraki G, Afantitis A, Sopasakis P, Gallagher D, Poroikov V, Filimonov D, Zakharov 

A, Lagunin A, Gloriozova T, Novikov S, Skvortsova N, Druzhilovsky D, Chawla S, Ghosh I, Ray S, 

Patel H, Escher S (2010) Collaborative development of predictive toxicology applications. J 

Cheminform 2:7 . doi: 10.1186/1758-2946-2-7 

16.  Gallegos-Saliner A, Poater A, Jeliazkova N, Patlewicz G, Worth AP (2008) Toxmatch—A chemical 

classification and activity prediction tool based on similarity measures. Regul Toxicol Pharmacol 52:77–

84 . doi: 10.1016/j.yrtph.2008.05.012 

17.  Williams-DeVane CR, Wolf MA, Richard AM (2009) DSSTox chemical-index files for exposure-related 

experiments in ArrayExpress and Gene Expression Omnibus: enabling toxico-chemogenomics data 

linkages. Bioinformatics 25:692–694 . doi: 10.1093/bioinformatics/btp042 

18.  Jeliazkova N, Jeliazkov V (2011) AMBIT RESTful web services: an implementation of the OpenTox 

application programming interface. J Cheminform 3:18 . doi: 10.1186/1758-2946-3-18 

19.  Ait-Oudhia S, Zhang W, Mager DE (2017) A Mechanism-Based PK/PD Model for Hematological 

Toxicities Induced by Antibody-Drug Conjugates. AAPS J 19:1436–1448 . doi: 10.1208/s12248-017-

0113-5 

20.  Caldwell GW, Yan Z, Tang W, Dasgupta M, Hasting B (2009) ADME optimization and toxicity 



 30 

assessment in early- and late-phase drug discovery. Curr Top Med Chem 9:965–80 

21.  Mager DE, Wyska E, Jusko WJ (2003) Diversity of mechanism-based pharmacodynamic models. Drug 

Metab Dispos 31:510–8 

22.  Krewski D, Acosta D, Andersen M, Anderson H, Bailar JC, Boekelheide K, Brent R, Charnley G, 

Cheung VG, Green S, Kelsey KT, Kerkvliet NI, Li AA, McCray L, Meyer O, Patterson RD, Pennie W, 

Scala RA, Solomon GM, Stephens M, Yager J, Zeise L, Staff of Committee on Toxicity Test (2010) 

Toxicity Testing in the 21st Century: A Vision and a Strategy. J Toxicol Environ Heal Part B 13:51–138 

. doi: 10.1080/10937404.2010.483176 

23.  Tegnér JN, Compte A, Auffray C, An G, Cedersund G, Clermont G, Gutkin B, Oltvai ZN, Stephan K, 

Thomas R, Villoslada P (2009) Computational disease modeling – fact or fiction? BMC Syst Biol 3:56 . 

doi: 10.1186/1752-0509-3-56 

24.  Tegnér J, Zenil H, Kiani NA, Ball G, Gomez-Cabrero D (2016) A perspective on bridging scales and 

design of models using low-dimensional manifolds and data-driven model inference. Philos Trans A 

Math Phys Eng Sci 374:20160144 . doi: 10.1098/rsta.2016.0144 

25.  Blankenburg M, Haberland L, Elvers H-D, Tannert C, Jandrig B (2009) High-Throughput Omics 

Technologies: Potential Tools for the Investigation of Influences of EMF on Biological Systems. Curr 

Genomics 10:86–92 . doi: 10.2174/138920209787847050 

26.  Lam F, Ma C, Clifford B, Johnson CL, Liang Z-P (2016) High-resolution 1 H-MRSI of the brain using 

SPICE: Data acquisition and image reconstruction. Magn Reson Med 76:1059–1070 . doi: 

10.1002/mrm.26019 

27.  Chapman T (2003) Lab automation and robotics: Automation on the move. Nature 421:661–666 . doi: 

10.1038/421661a 

28.  Butte AJ, Ohno-Machado L (2013) Making it personal: translational bioinformatics. J Am Med Inform 

Assoc 20:595–6 . doi: 10.1136/amiajnl-2013-002028 

29.  Kitano H (2002) Systems Biology: A Brief Overview. Science (80- ) 295:1662–1664 . doi: 

10.1126/science.1069492 

30.  Plant NJ, Vinken M, Kolodkin A, Boogerd FC, Al. E, Borisy AA (2015) An introduction to systems 

toxicology. Toxicol Res 4:9–22 . doi: 10.1039/C4TX00058G 



 31 

31.  Bouhifd M, Hogberg HT, Kleensang A, Maertens A, Zhao L, Hartung T (2014) Mapping the Human 

Toxome by Systems Toxicology. Basic Clin Pharmacol Toxicol 115:24–31 . doi: 10.1111/bcpt.12198 

32.  Flecknell P (2002) Replacement, reduction and refinement. ALTEX 19:73–8 

33.  Hartung T (2010) Lessons Learned from Alternative Methods and their Validation for a New Toxicology 

in the 21st Century. J Toxicol Environ Heal Part B 13:277–290 . doi: 10.1080/10937404.2010.483945 

34.  Guryanova S, Guryanova A (2017) sbv IMPROVER: Modern Approach to Systems Biology. In: 

Methods in molecular biology (Clifton, N.J.). pp 21–29 

35.  Kiani NA, Shang M-M, Tegner J (2016) Systems Toxicology: Systematic Approach to Predict Toxicity. 

Curr Pharm Des 22:6911–6917 . doi: 10.2174/1381612822666161003115629 

36.  Kiani NA, Zenil H, Olczak J, Tegnér J (2016) Evaluating network inference methods in terms of their 

ability to preserve the topology and complexity of genetic networks. Semin Cell Dev Biol 51:44–52 . 

doi: 10.1016/j.semcdb.2016.01.012 

37.  Danhof M (2016) Systems pharmacology – Towards the modeling of network interactions. Eur J Pharm 

Sci 94:4–14 . doi: 10.1016/j.ejps.2016.04.027 

38.  Arrell DK, Terzic A (2010) Network Systems Biology for Drug Discovery. Clin Pharmacol Ther 

88:120–125 . doi: 10.1038/clpt.2010.91 

39.  Csermely P, Korcsm??ros T, Kiss HJM, London G, Nussinov R (2013) Structure and dynamics of 

molecular networks: A novel paradigm of drug discovery: A comprehensive review. Pharmacol. Ther. 

138:333–408 

40.  Knight-Schrijver VR, Chelliah V, Cucurull-Sanchez L, Le Novère N (2016) The promises of quantitative 

systems pharmacology modelling for drug development. Comput Struct Biotechnol J 14:363–370 . doi: 

10.1016/j.csbj.2016.09.002 

41.  Ding H, Takigawa I, Mamitsuka H, Zhu S (2014) Similarity-based machine learning methods for 

predicting drug–target interactions: a brief review. Brief Bioinform 15:734–747 . doi: 

10.1093/bib/bbt056 

42.  Hopkins AL (2009) Drug discovery: Predicting promiscuity. Nature 462:167–168 . doi: 

10.1038/462167a 



 32 

43.  Lounkine E, Keiser MJ, Whitebread S, Mikhailov D, Hamon J, Jenkins JL, Lavan P, Weber E, Doak 

AK, Côté S, Shoichet BK, Urban L (2012) Large-scale prediction and testing of drug activity on side-

effect targets. Nature 486:361–7 . doi: 10.1038/nature11159 

44.  Pauwels E, Stoven V, Yamanishi Y (2011) Predicting drug side-effect profiles: a chemical fragment-

based approach. BMC Bioinformatics 12:169 . doi: 10.1186/1471-2105-12-169 

45.  Wang F, Zhang P, Cao N, Hu J, Sorrentino R (2014) Exploring the associations between drug side-

effects and therapeutic indications. J Biomed Inform 51:15–23 . doi: 10.1016/j.jbi.2014.03.014 

46.  Barneh F, Jafari M, Mirzaie M (2015) Updates on drug–target network; facilitating polypharmacology 

and data integration by growth of DrugBank database. Brief Bioinform 17:bbv094 . doi: 

10.1093/bib/bbv094 

47.  Campbell SJ, Gaulton A, Marshall J, Bichko D, Martin S, Brouwer C, Harland L (2012) Visualizing the 

drug target landscape. Drug Discov Today 17:S3–S15 . doi: 10.1016/j.drudis.2011.12.005 

48.  Swamidass SJ (2011) Mining small-molecule screens to repurpose drugs. Brief Bioinform 12:327–335 . 

doi: 10.1093/bib/bbr028 

49.  Moriaud F, Richard SB, Adcock SA, Chanas-Martin L, Surgand J-S, Ben Jelloul M, Delfaud F (2011) 

Identify drug repurposing candidates by mining the Protein Data Bank. Brief Bioinform 12:336–340 . 

doi: 10.1093/bib/bbr017 

50.  Dobson CM (2004) Chemical space and biology. Nature 432:824–8 . doi: 10.1038/nature03192 

51.  Vogt I, Mestres J (2010) Drug-Target Networks. Mol Inform 29:10–14 . doi: 10.1002/minf.200900069 

52.  Forli S, Huey R, Pique ME, Sanner MF, Goodsell DS, Olson AJ (2016) Computational protein–ligand 

docking and virtual drug screening with the AutoDock suite. Nat Protoc 11:905–919 . doi: 

10.1038/nprot.2016.051 

53.  Xie L, Wang J, Bourne PE (2007) In silico elucidation of the molecular mechanism defining the adverse 

effect of selective estrogen receptor modulators. PLoS Comput Biol 3:2324–2332 . doi: 

10.1371/journal.pcbi.0030217 

54.  Halperin I, Ma B, Wolfson H, Nussinov R (2002) Principles of docking: An overview of search 

algorithms and a guide to scoring functions. Proteins 47:409–43 . doi: 10.1002/prot.10115 



 33 

55.  Shoichet BK, McGovern SL, Wei B, Irwin JJ (2002) Lead discovery using molecular docking. Curr 

Opin Chem Biol 6:439–46 

56.  Cheng AC, Coleman RG, Smyth KT, Cao Q, Soulard P, Caffrey DR, Salzberg AC, Huang ES (2007) 

Structure-based maximal affinity model predicts small-molecule druggability. Nat Biotechnol 25:71–5 . 

doi: 10.1038/nbt1273 

57.  Wallach I, Jaitly N, Lilien R (2010) A structure-based approach for mapping adverse drug reactions to 

the perturbation of underlying biological pathways. PLoS One 5:e12063 . doi: 

10.1371/journal.pone.0012063 

58.  Huey R, Morris GM, Olson AJ, Goodsell DS (2007) A semiempirical free energy force field with 

charge-based desolvation. J Comput Chem 28:1145–52 . doi: 10.1002/jcc.20634 

59.  Xia Z, Wu L-Y, Zhou X, Wong ST (2010) Semi-supervised drug-protein interaction prediction from 

heterogeneous biological spaces. BMC Syst Biol 4:S6 . doi: 10.1186/1752-0509-4-S2-S6 

60.  van Laarhoven T, Nabuurs SB, Marchiori E (2011) Gaussian interaction profile kernels for predicting 

drug–target interaction. Bioinformatics 27:3036–3043 . doi: 10.1093/bioinformatics/btr500 

61.  Yabuuchi H, Niijima S, Takematsu H, Ida T, Hirokawa T, Hara T, Ogawa T, Minowa Y, Tsujimoto G, 

Okuno Y (2014) Analysis of multiple compound-protein interactions reveals novel bioactive molecules. 

Mol Syst Biol 7:472–472 . doi: 10.1038/msb.2011.5 

62.  Perlman L, Gottlieb A, Atias N, Ruppin E, Sharan R (2011) Combining drug and gene similarity 

measures for drug-target elucidation. J Comput Biol 18:133–45 . doi: 10.1089/cmb.2010.0213 

63.  Yamanishi Y, Pauwels E, Kotera M (2012) Drug side-effect prediction based on the integration of 

chemical and biological spaces. J Chem Inf Model 52:3284–3292 . doi: 10.1021/ci2005548 

64.  Cobanoglu MC, Liu C, Hu F, Oltvai ZN, Bahar I (2013) Predicting drug-target interactions using 

probabilistic matrix factorization. J Chem Inf Model 53:3399–3409 . doi: 10.1021/ci400219z 

65.  Mayr A, Klambauer G, Unterthiner T, Hochreiter S (2016) DeepTox: Toxicity Prediction using Deep 

Learning. Front Environ Sci 3:80 . doi: 10.3389/fenvs.2015.00080 

66.  Min S, Lee B, Yoon S (2016) Deep learning in bioinformatics. Brief Bioinform bbw068 . doi: 

10.1093/bib/bbw068 



 34 

67.  LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444 . doi: 10.1038/nature14539 

68.  Baldi P, Sadowski P, Whiteson D (2014) Searching for exotic particles in high-energy physics with deep 

learning. Nat Commun 5:ncomms5308 . doi: 10.1038/ncomms5308 

69.  Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S (2017) Dermatologist-level 

classification of skin cancer with deep neural networks. Nature 542:115–118 . doi: 10.1038/nature21056 

70.  Wu Y, Schuster M, Chen Z, Le Q V., Norouzi M, Macherey W, Krikun M, Cao Y, Gao Q, Macherey K, 

Klingner J, Shah A, Johnson M, Liu X, Kaiser Ł, Gouws S, Kato Y, Kudo T, Kazawa H, Stevens K, 

Kurian G, Patil N, Wang W, Young C, Smith J, Riesa J, Rudnick A, Vinyals O, Corrado G, Hughes M, 

Dean J (2016) Google’s Neural Machine Translation System: Bridging the Gap between Human and 

Machine Translation 

71.  Ma’ayan A, Jenkins SL, Goldfarb J, Iyengar R (2007) Network analysis of FDA approved drugs and 

their targets. Mt Sinai J Med A J Transl Pers Med 74:27–32 . doi: 10.1002/msj.20002 

72.  Lin H-H, Zhang L-L, Yan R, Lu J-J, Hu Y (2017) Network Analysis of Drug-target Interactions: A 

Study on FDA-approved New Molecular Entities Between 2000 to 2015. Sci Rep 7:12230 . doi: 

10.1038/s41598-017-12061-8 

73.  Kiani NA, Zenil H, Olczak J, Tegnér J (2016) Evaluating network inference methods in terms of their 

ability to preserve the topology and complexity of genetic networks. Semin. Cell Dev. Biol. 51:44–52 

74.  McGary KL, Park TJ, Woods JO, Cha HJ, Wallingford JB, Marcotte EM (2010) Systematic discovery of 

nonobvious human disease models through orthologous phenotypes. Proc Natl Acad Sci 107:6544–6549 

. doi: 10.1073/pnas.0910200107 

75.  Korcsmáros T, Szalay MS, Rovó P, Palotai R, Fazekas D, Lenti K, Farkas IJ, Csermely P, Vellai T 

(2011) Signalogs: Orthology-Based Identification of Novel Signaling Pathway Components in Three 

Metazoans. PLoS One 6:e19240 . doi: 10.1371/journal.pone.0019240 

76.  Garcia-Serna R, Vidal D, Remez N, Mestres J (2015) Large-Scale Predictive Drug Safety: From 

Structural Alerts to Biological Mechanisms. Chem Res Toxicol 28:1875–1887 . doi: 

10.1021/acs.chemrestox.5b00260 

77.  Remez N, Garcia-Serna R, Vidal D, Mestres J (2016) The in Vitro Pharmacological Profile of Drugs as a 

Proxy Indicator of Potential in Vivo Organ Toxicities. Chem Res Toxicol 29:637–648 . doi: 



 35 

10.1021/acs.chemrestox.5b00470 

78.  Kuhn M, Al Banchaabouchi M, Campillos M, Jensen LJ, Gross C, Gavin A-C, Bork P (2014) Systematic 

identification of proteins that elicit drug side effects. Mol Syst Biol 9:663–663 . doi: 

10.1038/msb.2013.10 

79.  Yildirim MA, Goh K-I, Cusick ME, Barabási A-L, Vidal M (2007) Drug-target network. Nat Biotechnol 

25:1119–26 . doi: 10.1038/nbt1338 

80.  Luo H, Chen J, Shi L, Mikailov M, Zhu H, Wang K, He L, Yang L (2011) DRAR-CPI: a server for 

identifying drug repositioning potential and adverse drug reactions via the chemical-protein interactome. 

Nucleic Acids Res 39:W492-8 . doi: 10.1093/nar/gkr299 

81.  Daminelli S, Haupt VJ, Reimann M, Schroeder M (2012) Drug repositioning through incomplete bi-

cliques in an integrated drug-target-disease network. Integr Biol (Camb) 4:778–88 . doi: 

10.1039/c2ib00154c 

82.  Gottlieb A, Stein GY, Ruppin E, Sharan R (2014) PREDICT: a method for inferring novel drug 

indications with application to personalized medicine. Mol Syst Biol 7:496–496 . doi: 

10.1038/msb.2011.26 

83.  Lee H, Bae T, Lee J-H, Kim D, Oh Y, Jang Y, Kim J-T, Lee J-J, Innocenti A, Supuran CT, Chen L, Rho 

K, Kim S (2012) Rational drug repositioning guided by an integrated pharmacological network of 

protein, disease and drug. BMC Syst Biol 6:80 . doi: 10.1186/1752-0509-6-80 

84.  Zhao S, Li S (2012) A co-module approach for elucidating drug–disease associations and revealing their 

molecular basis. Bioinformatics 28:955–961 . doi: 10.1093/bioinformatics/bts057 

85.  Guney E, Garcia-Garcia J, Oliva B (2014) GUILDify: a web server for phenotypic characterization of 

genes through biological data integration and network-based prioritization algorithms. Bioinformatics 

30:1789–90 . doi: 10.1093/bioinformatics/btu092 

86.  Guney E, Menche J, Vidal M, Barábasi A-L (2016) Network-based in silico drug efficacy screening. Nat 

Commun 7:10331 . doi: 10.1038/ncomms10331 

87.  Cami A, Arnold A, Manzi S, Reis B (2011) Predicting Adverse Drug Events Using Pharmacological 

Network Models. Sci Transl Med 3:114ra127-114ra127 . doi: 10.1126/scitranslmed.3002774 

88.  Brouwers L, Iskar M, Zeller G, van Noort V, Bork P (2011) Network neighbors of drug targets 



 36 

contribute to drug side-effect similarity. PLoS One 6:e22187 . doi: 10.1371/journal.pone.0022187 

89.  Gottlieb A, Altman RB (2014) Integrating Systems Biology Sources Illuminates Drug Action. Clin 

Pharmacol Ther 95:1–7 . doi: 10.1038/clpt.2014.51 

90.  Fan S, Geng Q, Pan Z, Li X, Tie L, Pan Y, Li X (2012) Clarifying off-target effects for torcetrapib using 

network pharmacology and reverse docking approach. BMC Syst Biol 6:152 . doi: 10.1186/1752-0509-

6-152 

91.  Azuaje FJ, Zhang L, Devaux Y, Wagner DR (2011) Drug-target network in myocardial infarction 

reveals multiple side effects of unrelated drugs. Sci Rep 1:1–10 . doi: 10.1038/srep00052 

92.  Huang LC, Wu X, Chen JY (2013) Predicting adverse drug reaction profiles by integrating protein 

interaction networks with drug structures. Proteomics 13:313–324 . doi: 10.1002/pmic.201200337 

93.  Huang J, Niu C, Green CD, Yang L, Mei H, Han JDJ (2013) Systematic Prediction of Pharmacodynamic 

Drug-Drug Interactions through Protein-Protein-Interaction Network. PLoS Comput Biol 9:e1002998 . 

doi: 10.1371/journal.pcbi.1002998 

94.  Pouliot Y, Chiang AP, Butte AJ (2011) Predicting adverse drug reactions using publicly available 

PubChem BioAssay data. Clin Pharmacol Ther 90:90–99 . doi: 10.1038/clpt.2011.81 

95.  Iskar M, Zeller G, Zhao XM, van Noort V, Bork P (2012) Drug discovery in the age of systems biology: 

The rise of computational approaches for data integration. Curr. Opin. Biotechnol. 23:609–616 

96.  Bai JPF, Abernethy DR (2013) Systems pharmacology to predict drug toxicity: integration across levels 

of biological organization. Annu Rev Pharmacol Toxicol 53:451–73 . doi: 10.1146/annurev-pharmtox-

011112-140248 

97.  Rahmani H, Weiss G, Méndez-Lucio O, Bender A (2016) ARWAR: A network approach for predicting 

Adverse Drug Reactions. Comput Biol Med 68:101–108 . doi: 10.1016/j.compbiomed.2015.11.005 

98.  Dorel M, Barillot E, Zinovyev A, Kuperstein I (2015) Network-based approaches for drug response 

prediction and targeted therapy development in cancer. Biochem. Biophys. Res. Commun. 464:386–391 

99.  Pujol A, Mosca R, Farr??s J, Aloy P (2010) Unveiling the role of network and systems biology in drug 

discovery. Trends Pharmacol. Sci. 31:115–123 

100.  Mucha PJ, Richardson T, Macon K, Porter MA, Onnela J-P (2010) Community structure in time-



 37 

dependent, multiscale, and multiplex networks. Science 328:876–8 . doi: 10.1126/science.1184819 

101.  Zenil H, Kiani NA, Tegnér J (2016) Methods of information theory and algorithmic complexity for 

network biology. Semin Cell Dev Biol 51:32–43 . doi: 10.1016/j.semcdb.2016.01.011 

102.  Zenil H, Hernández-Orozco S, Kiani NA, Soler-Toscano F, Rueda-Toicen A (2016) A Decomposition 

Method for Global Evaluation of Shannon Entropy and Local Estimations of Algorithmic Complexity 

103.  Burden FR, Winkler DA (2015) Relevance Vector Machines: Sparse Classification Methods for QSAR. 

J Chem Inf Model 55:1529–1534 . doi: 10.1021/acs.jcim.5b00261 

104.  Vladimir Svetnik, Andy Liaw, Christopher Tong, J. Christopher Culberso, Robert P. Sheridan and, 

Feuston‡ BP (2003) Random Forest:  A Classification and Regression Tool for Compound Classification 

and QSAR Modeling. doi: 10.1021/CI034160G 

105.  Lei T, Li Y, Song Y, Li D, Sun H, Hou T (2016) ADMET evaluation in drug discovery: 15. Accurate 

prediction of rat oral acute toxicity using relevance vector machine and consensus modeling. J 

Cheminform 8:6 . doi: 10.1186/s13321-016-0117-7 

 


