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Abstract Discovering the causal mechanisms of biological systems is necessary to
design new drugs and therapies. Computational Causal Discovery (CD) is a field
that offers the potential to discover causal relations and causal models under certain
conditions with a limited set of interventions/manipulations. This chapter reviews
the basic concepts and principles of CD, the nature of the assumptions to enable it,
potential pitfalls in its application, and recent advances and directions. Importantly,
several success stories in molecular and systems biology are discussed in detail.
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3.1 Introduction

The winner of the 2011 ACM Turing Award—the Nobel Prize equivalent in
Computing—was Prof. Judea Pearl, a pioneer in probabilistic and causal reason-
ing. Among many other contributions, the theory of Causal Bayesian Networks that
he co-developed is now a standard tool for modeling, inducing, and reasoning with
probabilistic causality. Bayesian Networks are at the heart of numerous decision sup-
port and expert systems as well as the basis for machine learning algorithms. After
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several decades of heated debate about the possibility of causal discoverywithout—or
with a limited number of—controlled experiments, it seems that consensus converges
towards an affirmative answer.

Knowledge of causal relations is paramount in systems biology. Causal modelling
goes beyond traditional statistical predictivemodelling by allowing one to predict the
effects of actions and interventionson a system, e.g., the effects of treatingwith a drug,
knocking out a gene, or inducing a mutation in the genome. In contrast, non-causal,
predictive modelling is only valid when the system under study is observed under
the same experimental conditions and not otherwise manipulated. For example, gene
expressions A and B may be correlated: observing the expression levels of A allow
us to better predict the observed expression levels of B. But, it does not assure us that
A regulates B or the opposite. The difference between observing and intervening on a
system is essential for understanding causalmodelling. If A is the only regulator of B,
then the two genes are still correlated in a controlled experiment where A is activated
or suppressed; in contrast, the correlation disappears in a control experiment where
B is activated and suppressed at will by the experimenter, since the effect of A now
becomes irrelevant.

To establish causality, one traditionally needs to perform a manipulation (pertur-
bation, intervention) on the system [29]. In contrast, computational Causal Discovery
(CD) methods argue that given certain assumptions about the nature of causality one
can sometimes induce causal relations from observational data alone or a limited
number of manipulations/interventions. One can then analyse archived data, for-
going expensive, time-consuming, or even impossible experiments, and determine
certain aspects of the causal mechanisms. Exactly which aspects of the causal struc-
ture can be induced depends on the system under study and the available data. Given
the complexity of the cell, performing all the possible experiments to establish all
relations among every subset ofmolecular quantities, under all possible experimental
conditions, is impractical. CD may provide an alternative.

Causal models (not necessarily induced through Causal Discovery) are already
heavily employed in systems biology: biological pathways are a form of causal mod-
els that are indispensable in biological research. Pathways are manually assembled
from the literature,where relations are established by performing interventions.How-
ever, for the most part, such models are informal and have ambiguous semantics for
the edges: an edgemay imply a direct or indirect causation; amissing edgemay imply
lack of direct causation or a yet-to-be established relation. In addition, pathways are
largely qualitative; the strength and functional form of the causal relations is not
represented (some exceptions exist, such as well-characterized metabolic pathways
annotated with flux equations [100]). In contrast, models induced with CD methods
have specific formal causal semantics as well as quantitative information that enables
quantitative predictions.

In the rest of this chapter we present the basic concepts of CD, focusing on the
fundamental underlying assumptions and discussing its limitations and potential pit-
falls. We also present selected applications of CD in systems biology, demonstrating
the potential of this exciting field.
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3.2 The Nature of Causality

3.2.1 Definition of Causality

We use the notation A → B to denote our belief that “A causally affects B” (or,
“A causes B” for brevity). But, what exactly does this mean and how should it
be interpreted? Most of CD employs a probabilistic notion of causality. A and B
should denote two well-specified variables (interchangeably: measurable quantities,
features) which are measured on a population of objects, such as two protein concen-
trations in human T-cells.We consider simultaneousmeasurements of these variables
in a random sample of the population, from which we can estimate their joint prob-
ability distribution. Thus, for the purposes of this chapter, the data are assumed
cross-sectional: snapshots of the state of a cell without regard for the time of mea-
surement.

A → B denotes the fact that if an experimenter intervenes and changes the values
of A, the distribution of B will also change. This statement is inherently probabilistic:
Average-Cigarettes-Smoked-Per-Day causally affects Presence-Of-Cancer-by-Age-
60 because the distribution of Presence-Of-Cancer-by-Age-60 changes and the peo-
ple with value “Yes” become more prevalent. To a single individual, that means that
the probability of her getting cancer increases. Yet, causality as presently defined is
still deceptively simplistic. A may be causally affecting B only in a given context,
e.g., in the presence of another protein C . Thus, a better definition is probably that
A → B if there is conceivable intervention involving only A, and a context of some
other variables that are held constant, such that the distribution of B changes (rel-
ative to the distribution of B when the context is the same but A is not intervened
upon). The “intervention” may be just a thought experiment, technically impossible
with present technology. Yet, it has to be theoretically plausible. For example, the
statement Cancer → Protein is arguably undefined: we cannot intervene on the state
of the cell to make it cancerous without affecting anything else in the cell. Such
semantically vacuous statements often arise when variables that refer to different
abstraction levels are modeled together. In this case Cancer, a quantity that refers to
the cell as a whole, and the concentration of a protein are defined on a different time
and spatial scale.

Finally, notice that the concept of causation is required to define “intervention”,
used in the definition of causation; our definition is recursive! To break the vicious
cycle, notice that intervention requires defining causality from outside the system
(the experimenter) to within the system; causality as defined regards causal effects
within the system. In other words, given that we understand what it means for an
experimenter to intervene in a population of cells, we can define the causal relations
among molecular cell quantities. We can proceed with using causality in an opera-
tional way, the same way humanity is doing statistics while still arguing about the
philosophical issues of the semantics of probabilities.
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3.2.2 Direct Causation

We’ll need to distinguish between direct and indirect causality.We’ll say A is directly
causally affecting B relative to variables in the set O, if A remains a cause of B even
when all other modeled variables’ values are held fixed. Direct causation is relative
tothe observedvariables.Ahormonemaydirectly causally affect a genewhennothing
else is observed, but indirectly affect it when the status of cell membrane receptors
are observed.

3.2.3 Quantitative Causality

Relations A → B are qualitative and useful for human inspection and visualization
in the form of networks. But, quantitative relations are necessary tomake quantitative
predictions. If there are two or more direct causes of B (A → B and C → B), then
in general we cannot consider the relations independently. This is necessary because
A and C jointly determine the values of B. In general, we can model the values of
B with the structural equation:

B = f (Pa(B), U )

where Pa(B) are the direct causes of B (or parents of B) and U represents all
other non-modeled causes. If A and C are the only parents, then B = f (A, C, U ).
The difference from a non-structural equation is the special role of the left-hand-side:
the value of B is set (determined) by the values of PAB and U and not vice versa:
B cannot be moved to the right-hand-side. This special role of the left-hand-side is
equivalent to dictating that if we intervene on the values of the right-hand-side, the
left-hand-sidemay change, but not the other way round. The structural equation is not
symmetrical. Also notice that the equation is deterministic! However, the presence
of unknown values of U introduces uncertainty into the equation and induces a
probability distribution of the values of B. The form of function f is important. A
few examples follow, where I(•) is the indicator function taking values 1 when the
argument holds and 0 otherwise:

• B = a · A + b + ε, B’s concentration always increases with the same rate as A
increases. This is an example of a linear relation (strictly speaking, if b �= 0 it is
called an affine function). The term ε = ∑

i∈U Ui is the effect of all unmeasured
causes of B; it is not measurement noise.

• B = a · I (A > 100 and C > 100) + b + ε, B’s concentration follows a baseline
of b, and level a + b when both A and C are larger than 100. Thus, in order to
discover this relation one must observe or impose values of A and C larger than
100.

• B = a ·(A−100)2+b+ε, B’s concentration decreases as A increases if A < 100,
and increases as A increases if A > 100. The rate of increase or decrease of B (as
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A takes different values) is 2a A (the derivative of the equation) and thus it is not
constant but depends on the values of A.

Linear relations are perhaps the easiest to discover, step functions (as in the second
example) require observing the system in a suitable range of the parameters, and
non-linear functions (as in the last example) require more sophisticated modeling
approaches.

3.2.4 Necessary/Sufficient/Contributory Causes

Similarly to the distinction between necessary and sufficient conditions in logic,
causes are also distinguished among necessary and sufficient, with the additional
category of contributory causes:

• Necessary: a necessary cause is such that the effect will always imply the cause,
but the cause does not imply the effect. For example, passing some course implies
that you sat the examination, but sitting the examination does not imply that you
will pass.

• Sufficient: a sufficient cause is such that the cause always implies the effect, but
the effect does not imply the cause. For example, burning hydrogen and oxygen
will always result in water, but the presence of water does not imply combustion.

• Contributory: a contributory cause is any other cause whichmay result in an effect,
but of itself is neither necessary nor sufficient. For example, an intoxicated driver
may result in a crash, but intoxication does not imply a certain crash, and neither
does a crash always imply the driver was intoxicated.

The majority of cases for which causal analysis is useful concern contributory
causes. Single necessary causes are usually relatively easy to identify: these are the
“low-hanging fruit” for which experiment and intuition will readily recover causality
without recourse to causal analysis. Conversely, a collection of mildly contributory
causes is a harder problem to identify, and one for which causal methods applied to
large datasets prove useful.

3.3 Basics of Causal Discovery Algorithms

3.3.1 Causal Graphical Models

Agraphical representation is a usefulway of quickly seeing the structure of a complex
system. Intuitively, a set of causal relationships A → B can be readily represented as
a graphwhere nodes represent quantities and directed edges represent causal relation-
ships. Particularly, the formalism of Probabilistic Graphical Models (PGM) helps us
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define, in a more principled way, the mathematical characteristics of causal models.
Wewill mainly consider the Causal BayesianNetwork (CBN) andBayesianNetwork
(BN) frameworks, as these are some of the most known and widely employed PGMs.

3.3.2 Causal Bayesian Networks

A CBN consists of a graph G = {V, E} and a parameterization θ. The set V of
nodes represents the observed (modeled) quantities (a.k.a. variables), while E is a
set of directed edges A → B indicating direct1 causal relationships (where A is the
“cause” and B is the “effect”). The graph must consist only of directed edges and
contain no cycles (Directed Acyclic Graph, DAG). For any node A, any node that
can be reached by following directed edges is a descendant (effect), and any node
from which A can be reached is an ancestor (cause). The direct causes of a node
are named parents, while its directed effects are named children. A directed path
consists of a sequence of nodes where each node, except the first one, is the direct
effect of its predecessor in the sequence. An undirected path is a sequence of nodes
where each pair of subsequent nodes is connected by an edge without regard to the
direction of the edge. Whenever an undirected path {A → C ← B} exists with two
incoming edges into C , the node C is called collider on this path.

The parameterization θ defines the joint probability distribution of data generated
by a systemwith the causal structure of the network. The parameterization quantifies
the functional form of the causal relations among the variables. Adding a parame-
terization allows us to express whether relationships are linear or not, the effect size
of each interaction, and in general to make quantitative inferences. For a discrete
joint distribution (all variables being discrete) there is one parameter θi for each
combination of values of the variables:

P(V1 = vi1 , . . . , Vn = vin ) = θi (3.1)

A major assumption of the CBN framework is the Causal Markov Condition: each
node of V is independent of its non-descendants (non-effects) given its parents (direct
causes). In other words, the Causal Markov Condition asserts that indirect causes or
confounded quantities do not provide additional information for a variable, once the
values of the direct causes are known. Notice that, effects of V may provide addi-
tional information, even when all direct causes of V are known. The Causal Markov
Condition allows us to connect the causal structure (network) with the distribution
parameters. By the chain rule in probabilities we obtain:

P(V1 = vi1 , . . . , Vn = vin ) = �
j

P
(
Vj = vi j

∣
∣V1 = vi1 , . . . , Vj−1 = vi j−1) (3.2)

1Direct causation is defined in the context of all other modeled variables, i.e., a causal relation
mediated by none of the observed variables.
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Let’s assume without loss of generality that each variable in the equation above is
listed after its parents, i.e., if i < j , then Vj cannot be a parent of Vi (in other words,
we assume the variables are topologically sorted). Notice that this is always possible
for DAGs. By using the Causal Markov Condition in the above equation, we obtain:

P(V1 = vi1 , . . . , Vn = vin ) = �
j

P
(
Vj = vi j

∣
∣Pa(Vj ) = paq j ) (3.3)

That is, due to the Markov Condition for each variable Vj , all the variables in the
conditioning part have disappeared except the parents of Vj , denoted with Pa(Vj ).
The quantity paq j denotes the joint combination of values of the parents of variable
Vj . The causal structure now dictates the form of the joint probability distribution,
by entering the equation in the form of the parent sets Pa(V ) for each variable and
imposing a factorization of the joint distribution. Employing Eq. (3.1) to represent
an arbitrary distribution with n binary variables requires 2n − 1 parameters θi to
be specified. However, using Eq. (3.3), we only need to represent the distributions
P(Vj = vi j |Pa(Vj ) = paq j ) for each variable. If a causal system is sparse, e.g.,
each variable has at most 3 parents, then we need (2−1) ·23 parameters for each such
conditional distribution. So, in total, we need at most n · (k − 1) · k p, where n is the
number of variables, k the maximum number of values of each variables, and p the
maximum number of parents of a variable: knowledge of the structure of the causal
network, assuming it is sparse, allows an exponential reduction in the number of
distribution parameters required, and hence the dimension of the parameter space.

CBNs also assume Causal Sufficiency, which corresponds to asserting that there
are no external variables which are causes of two or more variables within the model.
These common causes are called confounders. The Causal Sufficiency assump-
tion implies that the following sub-graph is not present in the causal system under
study: X ← L → Y , where X and Y are modeled, and L is unobserved and not

Fig. 3.1 A simple graphical
model depicting the
(supposed) causal
relationships among
smoking, genetic
background, cancer and
Prostate-Specific Antigen
(PSA). The parameterization
of the distribution associated
with this network is
described in the text

Prostate 

Cancer

Smoking
Genetic

Background

PSA
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modeled. A truly causally sufficient model is in practice hard to construct, especially
in molecular biology where hundreds of thousands of molecular quantities may be
confounding factors. Causal Sufficiency is one of the most restrictive assumptions
of causal discovery. Fortunately, there exist more advanced generalizations of CBNs
that admit latent confounding variables (see Sect. 3.6).

Let’s employ an example in order to better explain the concepts above. Figure3.1
portrays the DAG of a small CBN. In this example, the probability of developing
Prostate Cancer is influenced by both Genetic Background [94] and Smoking [48],
while the presence of prostate cancer increases the probability of deregulation in
the expression of the Prostate-Specific Antigen (PSA, [50]). Let’s suppose that all
variables are binary, which means each variable can assume a value in the set {1, 0}.
Regarding the semantics of the values, “1” means, respectively, deregulated for PSA,
harmful for Genetic Background, yes for Smoking and present for Prostate Cancer.
In each variable the value “0” negates the meaning of value “1”. We can now para-
meterize this simple model as follows:

P(Smoking = 1) = πSmoking

P(Genetic Background = 1) = πGenetics

P(Prostrate Cancer = 1|Smoke, Genetics) = a1 ·Smoke+a2 ·Genetics+a0
P(P S A = 1|Prostate Cancer) = a4 · prostrate Cancer + a3

In this parameterization, having a harmful genetic background and being a smoker
are modelled as random events, whose respective probabilities are πSmoking and
πGenetics . Coefficients a0, a1, a2 quantify the extent to which Smoking and Genetic
Background affect the probability of developing cancer, while a3, a4 quantify how
Prostate Cancer changes the probability of PSA being deregulated.

Notice that all causal relationships are probabilistic (non-deterministic), i.e.,
Smoking and Genetic Background increase the probability of developing Prostate
Cancer, while the presence of cancer may deregulate PSA expression. The proba-
bilistic nature of the model is due to the existence of a number of factors Ui , i ∈ U
(e.g., physical activity, diet, medications, etc.) which influence the model’s quanti-
ties but are not measured. However, recall that the Causal Sufficiency assumption
requires that no external factor simultaneously influences two or more elements of
the model; this means that each variable can be affected by multiple Ui , but each Ui

can affect only one variable.

3.3.2.1 Inference in Causal Bayesian Networks

If the CBN is known (this includes both the structure and the parameterization), any
probabilistic inference is possible. In particular, any predictive or diagnostic query
of the form “what is the probability Vi will take/has taken value j given that we
observed certain values for other variables” is possible. Without loss of generality
let’s assume we observed V1 = v1, . . ., Vk = vk and we would like to compute the
conditional probability that Vk+1 = vk+1:
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P(Vk+1 = vk+1|V1 = v1, . . . , Vk = vk) = P(V1 = v1, . . . , Vk = vk, Vk+1 = vk+1)

P(V1 = v1, . . . , Vk = vk)

= �Vk+2,...,Vn P(V1 = v1, . . . , Vk = vk, Vk+1 = vk+1, . . . , Vn = vn)

�Vk+1,...,Vn P(V1 = v1, . . . , Vk = vk, Vk+1 = vk+1, . . . , Vn = vn)
(3.4)

where each index vi runs on all values in the domain of variable Vi . Each term in the
sums is computed by Eq. (3.3). Let’s resume the example presented in Fig. 3.1, and
assume that a specific patient has a deregulated PSA, is a smoker, and his Genetic
Background is not harmful. A clinician may be interested in assessing the probability
that the patient has Prostate Cancer, which can be evaluated by applying in turn
Eqs. (3.3) and (3.4):

P(Cancer = 1|Smoke = 1, P S A = 1Genetics = 0)

= P(Cancer = 1, Smoke = 1, P S A = 1, Genetics = 0)

�pc=0,1 P(Cancer = pc, Smoke = 1, P S A = 1, Genetics = 0)

= P(Genetics = 0) · P(Smoke = 1) · P(Cancer = 1|Smoke = 1, Genetics = 0) · P(P S A = 1|Cancer = 1)

�pc=0,1 P(Genetics = 0) · P(Smoke = 1) · P(Cancer = pc|Smoke = 1, Genetics = 0) · P(P S A = 1|Cancer = pc)

= (a1 · 1 + a2 · 0 + a0) · (a4 · 1 + a3)

(a1 · 1 + a2 · 0 + a0) · (a4 · 1 + a3) + [1 − (a1 · 1 + a2 · 0 + a0)] · a3

Assuming that Smoke sensibly increases the probability of cancer (a1 = 0.2, a0 =
0.01) and that PSA has a high sensitivity (a4 = 0.9, a3 = 0.1), the patient has a
high probability (0.727) of having Prostate Cancer. A similar inference would have
also been possible in the case information regarding Genetic Background was not
available, though the sums would have contained more terms (the number of terms
grows exponentially with the number of unobserved variables). In general, inference
is in the worst case an NP-complete problem, however efficient exact or approximate
algorithms do exist [71]. Thus, a CBN can predict/diagnose any variable or set of
variables given the values of any other set of variables. It is like having trained an
exponential number of predictive models, one for each variable subset as predictors.
This is a key factor that hasmadeCBNs popular in (clinical) decision support systems
where one may have a varying and limited number of observations for each patient.

The graph of a CBN can also provide all the (conditional) independencies implied
by the Causal Markov Condition. If faithfulness is assumed (see Sect. 3.4.1 for a def-
inition of faithfulness) the graph can also provide all (conditional) dependencies. In
other words, by examining the graph, one can determine which variables are con-
ditionally or unconditionally correlated. The property that connects the topology of
graphical/causal structure with the concept of conditional (in)dependence is called
d-separation; two sets of variables A, B (such that A �= B) are conditionally inde-
pendent given a third set C ⊆ V \ {A, B} if and only if they are d-separated by C in
G. Formally, d-separation is defined as follows: A, B are said to be d-separated given
a third set C if there is no undirected path U such that (i) every collider in U has a
descendent inC and (ii) no other nodes inC is inU . Intuitively, we can think about d-
separation as a criterion that tells us if the “flowof information” between twovariables
A and B is interrupted or not. For example, variables Smoking and PSA in Fig. 3.1 are
d-connected when conditioned on the empty set (the “flow” of information can
freely transfer from Smoking to PSA through the node Prostate Cancer), but they are
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d-separated when we condition on Prostate Cancer, since knowing its value makes
the information provided by Smoking superfluous in order to predict PSA. On the
other hand, Smoking and Genetic Background are d-separated in absence of a condi-
tioning set, but they becomed-connectedwhen conditioning onProstate Cancer,PSA
or both. In fact, in the latter casewe condition on all the colliders (or their descendants)
in the undirected path between Smoking and Genetic Background. Note that Smoking
and Genetic Background are independent, but knowing both the values of Smoking
and Prostate Cancer gives us some information on the value of Genetic Background,
and thus the two variables are not independent anymore. Hereafter we will denote
with dep(A, B|C) the presence of a conditional dependency between variables A
and B given the set C, while indep(A, B|C) will denote independence.

Finally, CBNs can make inferences unique to causal models: they can predict the
effects of interventions/manipulations/changes in experimental conditions. Given a
CBN we can determine the effect of knocking out a gene, the effect of administering
a drug, or the effect of changing any quantity modeled in the network. Conceptually,
such inferences are straightforward. The effect of the experimenter on the system
that sets the values of a variable Vk to v, removes the effect of any other variable
to Vk . This is modeled by removing all incoming causal edges to Vk and setting
P(Vk = v) = 1 and P(Vk = v′) = 0, for v �= v′ in the conditional probabilities
associated with the graph. The edge removal is called graph surgery; in the resulting
graph Vk will have no parents. The new joint probability distribution can now be
computed with Eq. (3.4), and hence any probabilistic query about the effect of the
intervention can also be computed. Interventions that deterministically set the values
of some specific variables are called hard interventions. When interventions have
a chance of not being effective, they are called soft interventions. In this case, the
intervention does not completely remove the causal effect of all other quantities, and
thus, a different treatment is necessary where the probability of effective intervention
is also modeled. In addition, when an intervention is not specific to a quantity but
may affect other quantities too, the intervention is called a fat-hand intervention and
also requires different modeling techniques [25].

The main reason for causal modeling and discovery is exactly to enable the pre-
diction of the effect of our actions onto the system. Causal models are the only
types of models that enable such inferences. Statistical causal models, such as CBNs
perform such inferences without modeling the underlying physical phenomena and
mechanisms of causality, while othermodels such asOrdinaryDifferential Equations
directly model these mechanisms.

3.3.2.2 Dropping the Causal Semantics: Bayesian Networks

It is rarely the case that a CBN can be constructed completely from prior knowledge.
Typically, suchmodels have to be learnt from data by algorithms that make numerous
assumptions (see Sect. 3.4.1 for a discussion). In cases when the causal assumptions
are not to be trusted, and the structure or parameters of the CBN is also not trusted,
one may still use the Bayesian Network framework without the causal semantics.
Similarly toCBNs,BNs consist of aDAGand aparameterization, but do notmake any
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causal claims or causal predictions. The Causal Markov Condition can be substituted
with the Markov Condition: each node is independent of its non-descendant given
its parents. Note the substitution of “direct causes” with “parents”, since in BNs the
term “cause” does not make sense anymore.

An edge X → Y in a BN should be interpreted strictly from a probabilistic
viewpoint: the edge denotes that X provides unique information for Y (possibly
given some other variables) and vice versa. The direction of the edges should also
not be interpreted causally; the direction is only employed to combine edges into
paths and determine implied probabilistic dependencies and independencies from
the network with the d-separation criterion. All probabilistic inferences possible
with CBNs are also possible with BNs, except for causal inferences: if the causal
semantics are dropped, one is not entitled to employ a BN to predict the effect of
manipulations into the system. BNs may predict our future observations based on
past observations, but not the effects of our actions.

Notice that, Bayesian Networks are only loosely related to some other Bayesian
statistical approaches in this volume, for example Bayesian model selection (See
Chapters [37, 49, 101]). Bayesian Networks treat probability in a “Bayesian” way,
i.e., to represent measures of belief (in contrast to the frequentist interpretation of
probabilities). They also make heavy use of the Bayesian Theorem to make infer-
ences. Both of these characteristics justify the term Bayesian. Bayesian model selec-
tion also treats probabilities asmeasure of belief; in particular, Bayesianmodel selec-
tion uses probability distribution on the set of possible models to express the a priori
belief on their validity (typically, favoring simpler models). However, Bayesian Net-
works serve to model and make inferences about joint distributions, while Bayesian
model selection aims to select the statistical model that achieve the best trade-off
between fitting the data and abiding to the prior beliefs.

3.4 Causal Discovery Approaches

Themain goal ofCausalDiscovery algorithms is reconstructing the network of causal
mechanisms underlying a given system, given a dataset D. The dataset D is usually
composed of a set of n observations measured over m variables. Such causal learning
algorithms have already proven useful to biologists as shown below in Sect. 3.5.

Unfortunately, reconstructing aCausalModel fromdata is not an easy task. Several
algorithms have been proposed in the last few decades, and all of them consist of two
stages: firstly, an appropriate causal graph is found, and secondly aparameterization is
estimated in accordance with the graph structure.While the second stage is relatively
straightforward (given a suitable assumption about the functional form of the causal
relationships), identifying the correct causal graph has proven to be NP-hard [14].
So far, two main approaches have been developed for reconstructing the graphs of
Causal Models, namely the Constraint-based and the Score-based (also known as
Search-and-Score) approach. The basic principles of the two main approaches for
learning CBN are the following:
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• Score-based: first introduced in [78], these methods are based on a score func-
tion S(G|D) measuring the fit of the graph to the data, while at the same time
favoring simpler structures. A prototypical score function is the Bayesian infor-
mation Criterion (BIC), defined as B I C(G|D) = |θ| · ln(n) − 2 · log (L(G|D)),
where log (L(G|D)) is the log-likelihood of the graph given the data, and |θ| is the
number of model parameters [93]. The score function is usually combined with
a search-heuristic that explores the space of possible graphs. A typical heuristic
is the greedy one: start with the empty graph (no edges) and then add, reverse or
delete the edge that maximally increases the score of the network (i.e., the fit to
the data) at each step.

• Constraint-based: this approach relies on estimating some of the conditional
(in)dependencies in the data distribution P from the data D through perform-
ing hypothesis tests of conditional independence. Typically, for discrete variables
the X2 or the G2 tests are employed [63], while for continuous variables testing
the partial linear correlation are employed based on the Fisher z-transformation
[28]. The results of the hypothesis tests constrain the graph to reconstruct: in the
resulting graph G, two variables X, Y should be d-connected given Z if and only
if indep(X; Y |Z) in the data. In fact, it can be proven (assuming faithfulness, as
defined in Sect. 3.4.1) that two variables are connected by an edge if and only if
there is no set of variables Z , such that indep(X; Y |Z). Constraint-based methods
usually start with a fully connected, undirected graph and progressively remove
edges whenever a new conditional independency is discovered [98].

Typically for a given dataset there will be multiple solutions (i.e., networks) that
are Markov equivalent, i.e., they imply the same set of conditional independencies
and thus cannot be distinguished based on testing independencies on the data. Under
typical scoring functions, these networks receive equivalent scores. Intuitively, each
such network provides an equally good causal explanation for the data. The issue of
Markov Equivalence in learning causal structures is a point that an analyst should
keep in mind. The set of equivalent networks has some invariant characteristics, e.g.,
edges and directions upon which all solutions agree, and some variant characteristics
upon which different solutions disagree. Even when all causal assumptions hold, the
analyst is warranted to make claims only about the invariant characteristics. For-
tunately, for CBNs the representation of the set of equivalent networks is compact:
they can be represented with another type of network called the Completed Partially
DAG (CPDAG) or essential graph [13] and the invariant characteristics can be iden-
tified from this graph. Particularly, CPDAGs contain two types of edges, directed and
undirected. The first type represents arcs that are similarly (invariantly) oriented in
all Markov Equivalent solutions, while the latter represents edges whose orientation
varies among equivalent networks. Inmore complicated causal formalisms discussed
in Sect. 3.6, the set of equivalent solutions cannot be compactly represented. See also
Chapters [37, 49, 101] for further discussions onmodel identifiability and (Bayesian)
model selection.

Causal Discovery algorithms can also be used for variable selection, i.e., iden-
tifying the smallest subset of quantities that can provide the optimal prediction or
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diagnosis for an outcome variable of interest T (this is equivalent to molecular signa-
ture identification). Under certain conditions, the set of variables optimally predicting
the value of an outcome or molecular quantity T is what is called theMarkov Blanket
of T : the set of direct causes, direct effects, and direct causes of direct effects [108].
Algorithms that can identify the Markov Blanket of T from data without knowledge
of the underlying CBN exist and have proved to be some of the most effective signa-
ture identification algorithms from biological data [3]. Importantly, these theoretical
results connect molecular signatures for prediction or diagnosis with the causal
structure of the system under study: the most predictive quantities have a specific
causal interpretation.

3.4.1 A Discussion on Some Typical Causal Discovery
Assumptions and Practical Issues

We now focus in more detail on the most common assumptions of typical causal
discovery algorithms and discuss their implication in the context of causal discovery
in biological systems.

(Causal) Markov Condition: in a DAG G each node is independent from any non-
descendant (non-effect) given its parent (direct causes). This condition formalizes our
“common belief” about how Causality operates, i.e., indirect causes or confounded
effects do not provide additional information, once the direct causes are known. For
example, in the network X ← W → Y → Q → R, we expect that once we know Y
(the direct cause of Q), neither X (a confounded variable) nor W (an indirect cause)
provide additional information for Q. Notice that, observing the effect R of Q still
provides additional information for the value of Q. Interestingly, while the Causal
Markov Condition is (explicitly or implicitly) accepted and employed “all the time
in laboratory, medical and engineering setting” ([98], p. 38), whether it holds in the
sub-atomic systems studied by quantum physics it is still under debate [70]. This
assumption is what allows the algorithms to discover direct causal relations and drop
edges from the causal network being reconstructed. While relatively uncontested in
practice, the Causal Markov Condition may appear to be violated due to measurement
error (see below).

Acyclicity: CBN and other PGMs assume that no node in the graph can be a
cause of itself, either directly or through other variables. CBNs are not able to repre-
sent feedback loops, and in some biological applications this limitation can be quite
restrictive. However, some approaches have been developed that do not require this
assumption [41]. Typically, formalisms that admit the presence of feedback cycles
assume only linear relations. In the presence of both non-linear relations and feed-
back chaotic phenomena may arise that significantly complicate the problem and
the applicable algorithms. Thus, one must substitute one assumption for the other to
make causal discovery possible.
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Fig. 3.2 Simple example of
a feed-forward network X Y

Z

Causal sufficiency: no pair of nodes shares a common, unmeasured cause. In
statistical terms, we assume that there are no latent confounders that may introduce
correlations that are not explained by the measured variables. Specifically, consider
the network X ← L → Y . Because L is a confounder of X and Y , we expect the
latter pair of variables to be correlated (dependent). If L is not observed, it is not
modeled in the network. There are only two networks with variables X and Y that
entail a dependency and fit the data: X → Y and X ← Y . Both of them are Markov
equivalent and correctly represent the data distribution. But, their causal semantics
are wrong: X does not cause Y nor vice versa. The network with the correct causal
semantics is “X (no edge) Y ”. There is no way to correctly simultaneously represent
both the probabilistic semantics and the causal semantics of the network without
admitting new, unobserved variables in the network. Causal Sufficiency is one of the
most restrictive assumptions in CBNs particularly for systems biology where there
are millions of possible molecular quantities that may be confounding the observed
quantities. For this reason some PGM frameworks have been recently developed
(e.g., Maximal Ancestral Graphs [85]) that generalize CBNs to admit and reason
over the presence of hidden confounders.

Faithfulness: a distribution P is faithful to a DAG G if it entails all and only the
conditional independences implied by G. This assumption turns out to be important
particularly for the efficiency of Causal Discovery algorithms, in order to search
and identify all solution networks. One interpretation of faithfulness is that the set
of conditional independencies is stable under infinitesimal perturbations of the data
distribution [79]. For example, consider the following feed-forward gene network
(Fig. 3.2):

X regulates Y both directly as well as indirectly through Z . The two paths for
regulating Y may be competing with each other: X up-regulating Y directly, X up-
regulating Z which in turn down-regulates Y . If the causal effects of each regulation
are just so finely tuned it is possible that the association between X and Y completely
disappears even though X causes Y . Such fine tuning of the parameters of the dis-
tribution seems unlikely (and it is infinitely unlikely under certain assumptions, see
[98], p. 66) and leads to independences that are unstable: they become dependencies
if the parameters of the distribution are slightly perturbed. Faithfulness dictates that
this fine tuning is not present in the data distribution. Thus, whenever X causes Y
in a network directly or indirectly or through multiple causal paths, we assume the
variables are dependent.

Faithfulness seems innocent at first glance, but there are several pitfalls. First, in
practice a distribution may be faithful but “close to unfaithfulness”; in the example
above, the association between X and Y may not disappear completely but may be
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too small to be detected with typical sample sizes. Second, while fine-tuning of the
parameters seems unlikely to occur by chance, there is evidence that natural selec-
tion leads to systems which may be unfaithful; in particular, the presence of negative
feedback cycles may lead to associations that disappear [22]. Deterministic relations
also violate faithfulness! It seems that randomness (i.e., natural occurring pertur-
bations) is required to allow causal discovery, which is philosophically intriguing
to say the least. For example, consider the network X → Y → Z , where X and
Y are deterministically related, e.g., they always have equal values. In that case, X
provides for Z the same information as Y and so indep(Y ; Z |X) holds which is not
entailed by the Markov Condition. There are algorithms that do not assume faithful-
ness for learning CBNs [54]. However, simultaneously dropping the acyclicity and
faithfulness assumptions requires sophisticated theory and algorithms [41].

There are some additional assumptions that are often not declared explicitly, but
that should be carefully taken into consideration:

No measurement error: the variables are measured without error. This is a subtle
assumption that is required to learn CBNs, often not realized by practitioners who
apply these techniques. In other words, to allow causal discovery we need to assume
that the variance of the measurements of a variable X stems from our uncertainty
about (marginalizing over) all other causes of X , and is not due to measurement
error. Consider the effect of measurement error: let’s assume we measure X ′ =
X + eX, Y ′ = Y+ eY, Z ′ = Z + eZ, where the last terms are the measurement noise
terms. Let’s assume the true structure is X → Y → Z . Thus, based on the Causal
Markov Condition we expect that indep(X; Z |Y ). However, we observe the noisy
versions of the variables, so what we test instead is indep(X ′; Z ′|Y ′). If the variance
of eY is larger than eX , it may turn out that X ′ does provide additional information
for Z ′ given Y ′. This is equivalent to the Causal Markov Condition being violated. A
more relaxed assumption is that all error terms have the same variance, which would
lead to noisy versions of the variables that still maintain the same independencies as
the true, underlying network involving only the original variables.This observation is
particularly important for measurements by biotechnologies that do have significant
measurement error, such as micro-array gene expression data,where gene expression
may have very different variance of measurement errors.

Effect of data transformations (discretization, averaging): as above, this issue
regards the connection between the actual quantities that we are modeling and the
quantities measured and contained in the data. For example, it is common for a prac-
titioner to discretize the data before applying a causal discovery method. However,
depending on the discretization, the set of dependencies and independencies in the
transformed data distribution may be changed compared to the original [61, 68].
Again, this may appear as a violation of the Causal Markov Condition on the trans-
formed data. Another important case of potentially harmful transformation is that of
averaging. Averaging takes place in almost every mass-throughput technology. For
example, in micro-array gene expression data one tries to induce causal relations and
networks among gene expressions in a single cell, e.g., that X → Y . However, what
is measured in the data are the average expressions X̄ and Ȳ of X and Y in millions
of cells. The independencies of a network is X → Y → Z defined on the single-cell
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quantities X, Y, Z are not necessarily the same as the independencies on the averages
X̄ , Ȳ , and Z̄ [15]. This observation favors causal discovery from single cell data (or
in general, measurements that are not averaged) versus other biotechnologies.

No selection bias and case-control studies: A basic assumption for causal discov-
ery is that the samples are not selected for inclusion in the data based on an effect
of the modeled variables. Let’s consider the case where two genes X, Y regulate the
size of the cell Z : when both genes are high the cell is larger with high probability.
In addition, we assume the two genes to be independent from each other. Thus, the
true network is X → Z ← Y . Now, let’s imagine that a researcher measures these
genes in a collection of cells including mostly in large cells (perhaps because small
cells are harder to detect and isolate given the available equipment). In the selected
population whenever X is high, Y is also high with large probability: the two gene
expressions are correlated in the selected population. This correlation is an artifact
of the data sampling and not present in the general cell population. Cytometry data
is a particular type of data with possible selection bias as an effect of the gating
process and classification to different cell types. Another striking example of selec-
tion bias is case-control data. In case-control studies, half the samples (cases) have
been selected for inclusion based on the effect (disease) of the modeled variables.
In the previous example, let us change the semantics of Z to being the presence or
absence of a disease and X, Y two independent causes of disease. In all cases of dis-
ease, when X is high, Y is high with high probability, so they appear correlated even
though they are not correlated in the general (unselected) population. Epidemiolo-
gists try to alleviate these spurious correlations by matching cases and controls based
on some of the variables (age, gender, race, etc.). If cases and controls are matched
in the example above, the spurious association between X and Y would disappear.
However, matching cannot be achieved at a molecular level for every variable (e.g.,
gene expression) that is modeled and so one has to be particularly careful with causal
discovery in case-control data. Some methods for learning causal networks [7] try
to account for selection bias introduced by unmatched case-control study design.

It should also be noted that standard Causal Discovery algorithms assume that
samples are independent and identically distributed (i.i.d.) and that they are all
measured under the same experimental conditions and at same the point in time
(cross-sectional data). Other algorithms exist for dealing with other types of data and
information, e.g., data measured under different experimental conditions [19, 51],
in different points in time [30] or for co-analyzing data in the context of prior causal
knowledge [8].

Finally, practical issues also determine the success of causal discovery:
Statistical errors: statistical errors in the results of the conditional independence

tests, or equivalently statistical fluctuations in the score of networks to the data may
result in learning networks or relations that are wrong. In fact, in a large network it is
almost certain that some parts of the networkwill be erroneously induced. Robustness
against statistical errors and sample sizes depends on the learning method. Employ-
ing the most appropriate hypothesis testing procedure or scoring function for the
given data is paramount. Inappropriate tests or score functions may introduce sys-
tematic reasoning errors. For example, if functional relations are non-linear but linear
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hypothesis tests are used, some conditional (in)dependencies may not be detectable
even with large sample sizes. Methods for assessing the reliability of each feature of
the network (e.g., presence of an edge or an edge direction) do exist and should be
employed. Some of them employ bootstrapping, i.e., learning with resampled data.
However, notice that bootstrapping provides the confidence given by the method for
a given feature (e.g. edge in the network); bootstrapping does not provide an absolute
confidence for the feature. For example, if a method systematically reports a false
edge because it employs inappropriate tests for the specific data, bootstrapping will
also return high confidence on this edge.

Non-linear relations: non-linear relations in continuous data present particular
problems to causal discovery. For example, consider the case when two quantities do
not interact, unless a third quantity is present in a sufficient concentration. If the data
do not contain samples where this third quantity is indeed in high concentration, the
causal relation will be undetected. Equivalently, for discrete data, a correlation may
be present only for specific values of the variables that never appear in the dataset
and hence will not be detected by any algorithm.

3.5 Causal Discovery in Systems Biology: Success Stories

Despite the philosophical, theoretical, and algorithmic problemsdescribed above,CD
can work when applied with care, and assumptions, technicalities and limitations are
duly taken into consideration. The following success stories from systems biology
provide evidence for this.

3.5.1 Inferring Causal Relationships Among Genotype
and Quantitative Traits

In recent years, computational methods have been introduced for identifying causal
relationships among genetic characteristics and quantitative traits in observational
data. These methods were named differently by their respective authors, e.g.,
Likelihood-based Causality Model Selection (LCMS, [91]) or Trigger (Transcrip-
tional Regulation Inference from Genetics of Gene ExpRession, [12]). For simplic-
ity, hereafter we will collectively refer to all these methods as Causal Quantitative
Trait Loci (CQTL) algorithms.

Specifically,CQTLsmethods attempt to reconstruct the causal interactionbetween
a genome marker L and two quantitative traits, namely T1 and T2, all measured in
the same segregating population. Each quantitative trait can represent the expression
value of a given gene, a quantitative phenotype, or any other continuousmeasurement
on the population of interest. CQTL’s cornerstone assumption is that a statistical
association between the genetic marker L and the traits of interest must denote a
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Fig. 3.3 Possible Causal Models among a genetic marker L and two quantitative traits T1 and T2
given that the Mendelian Randomization assumptions hold and that all quantities are associated
with each other. The node H represents one or more hidden confounders

causal effect of L on the associated trait. This assumption is justified by the the-
ory developed in the context of Mendelian Randomization [23, 47]. In a nutshell,
Mendelian Randomization methods assume that the random re-composition of the
genome during conception can be considered equivalent, from a statistical point of
view, to the randomization procedures performed during Randomized Control Trials
(RCTs). Consequently, any statistical association between the genetic information
and the traits/phenotype of interested cannot be affected by latent confounders, i.e.,
must denote a causal association.2 All Quantitative Trait Loci (QTL) studies [66] are
based on Mendelian Randomization and its assumptions.

Thus, given that (a) the Mendelian Randomization assumptions hold (i.e., T1 and
T2 cannot cause L), (b) the Causal Markov and Faithfulness conditions hold as well,
and (c) L , T1 and T2 are found in the data all statistically associated with each other
(i.e., the following dependencies hold: dep(L , T1|∅), dep(L , T2|∅), dep(T1, T2|∅)),
then only a very restricted number of causal structures (see Fig. 3.3) are admissible.
Each causal model is represented as a CBN, where the node H represents one or
more unknown, latent confounders.

Canwe further screen out themodels presented in Fig. 3.3 and identify the unique,
actual causal structure that generated the data at hand? Using the d-separation

2Linkage disequilibrium, pleiotropic effects and other factors can invalidate the Mendelian Ran-
domization approach; these issues are better explained later in the text.
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criterion above and assuming faithfulness, if L and T2 are not statistically asso-
ciated given T1 (i.e., indep(L , T2|T1) holds), then the true causal model must be
L → T1 → T2.

In more detail, each model where L and T2 are connected through a direct edge is
incompatible with indep(L , T2|T1), since T1 cannot d-separate T2 and L . This leaves
models (1), (7) and (8) as the only possible candidates. In the two latter models, T1 is
a collider in the path L → T1 ← H → T2, and thus conditioning on T1 makes L and
T2 dependent. Thus, the single causal model in agreement with all the assumptions
and (in)dependencies encoded in the data is model (1).

Similarly, indep(L , T1|T2) holds only when the true underlying causal model is
L → T2 → T1.

Thus, the causal relationships among a genetic marker and two quantitative traits
can be identified, in principle, by assessing whether a limited number of condi-
tional (in)dependencies hold in the data. Particularly, studies focusing on large pan-
els of genomics markers/quantitative traits (e.g., GenomeWide Association Studies)
can opportunistically apply CQTL methods on each possible triplet of the form
{L , T1, T2}, and potentially discover a large number of causal relationships.

The first theoretically-sound algorithm able to identify, under a well-defined set
of assumptions, causal triplets L → T1 → T2 where L is known to be “uncaused”
was introduced by Cooper in 1997 [18].3 The first applications of CQTL methods in
biology appeared only a decade later: the work presented in Schadt et al. [91] was
one of the first studies demonstrating CQTLs effectiveness on a specific biological
problem.

Particularly, Schadt and co-authors investigated the causal relationships between
a genome-wide panel ofmarkers (L), transcript abundance levels in the liver (T1) and
obesity-related traits (T2) in mice. They referred to model (1) and (2) in Fig. 3.3 as
Direct Causal model andReactive Causal model, respectively, while all other models
were collectively indicated as the Independent Causal model. Amodel selection pro-
cedure, namelyLCMS (Likelihood-basedCausalityModel Selection),was employed
for identifying the most plausible causal model for each triplet {genomic marker,
transcript abundance level, obesity related trait}. The LCMS procedure belongs to
the class of Search-and-Score algorithms, and employs the Akaike Information Cri-
terion (AIC, [1]) as the score metric: AI C = 2k − 2ln(L), where k is the number of
parameters of each model and ln (L) its log-likelihood.

Chen and co-authors [12] developed a Constraint-based CQTL algorithm. Partic-
ularly, they demonstrated the Causal Equivalence Theorem, i.e., if the Faithfulness
and Causal Markov Condition hold, then:

The causal relationship L → T1 → T2 exists and there are no hidden vari-
ables causal for both T1 and T2 if and only if the following three conditions hold:
dep(L , T1|∅), dep(L , T2|∅), and indep(L , T2|T1).4

3Statistical algorithms for identifying and quantifying mediation effects were known even earlier
[58, 97]. However, these algorithms usually assume some particular (linear) distributional model
and “fell short of providing a general, causally defensible measure of mediation” [80].
4Notably, the “Causal Equivalence Theorem” is identical to the LCD procedure presented in [18].
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The authors employ the Causal Equivalence Theorem in order to derive a method,
namely Trigger, which provides probability values p̂1,2 and p̂2,1 for the causal struc-
tures L → T1 → T2 and L → T1 → T2, respectively.

More recently, Millstein and co-authors have proposed another Constraint-based
CQTL algorithm, the Causal Inference Test (CIT, [67]), which evaluates a larger
set of (conditional) dependencies and independencies than Trigger. Particularly, the
following conditions must be satisfied for accepting the Direct Causal Model:

CIT Condition 1: L and T2 are associated
CIT Condition 2: L and T1 are associated given T2
CIT Condition 3: T1 is associated with T2 given L
CIT Condition 4: L is independent from T2 given T1

A p-value for each of the four CIT conditions can be calculated by applying a suitable
statistical test of (conditional) dependency, while the maximum among the four p-
values, namely pDC M , is employed as a global statistic for assessing if the four
conditions can be jointly accepted. A global p-value pRC M for the Reactive Causal
model L → T2 → T1 can be derived in a similar way.

Once pDC M and pRC M have been provided, the CIT procedure applies the fol-
lowing rules to distinguish among the possible causal models:

1. If pDC M < α and pRC M > α, then the Direct Causal Model is accepted
2. If pDC M > α and pRC M < α, then the Reactive Causal Model is accepted
3. If pDC M > α and pRC M < α, then the Independent Causal Model is accepted
4. If pDC M < α and pRC M > α, then no call is made

where α is a threshold for accepting statistical significance (e.g.,α = 0.05). Interest-
ingly, CIT does not distinguish among the Independent Causal Model and the case
when L is not associated with T1 or T2.

CQTL methods have been applied in several studies in order to shade light on
specific biological problems. The spread of CQTLmethods has also been boosted by
the availability of free, open source implementations, whose most notable examples
are the R package cit (implementing the CIT method), the Network Edge Orienting
(NEO) software [4], that implements a score-based CQTLs method, and the R pack-
age qtlnet, that implements a CQTL algorithm able to take in account and exploit
complex correlation structures among multiple traits/phenotypes [72].

A recent example of a successful CQTL study has been presented by Gutierrez-
Arcelus et al. [32]: the interaction between DNA sequence, DNA methylation and
gene expression was investigated with the CIT method in fibroblasts, T-cells and
lymphoblastoid cells extracted from the umbilical cord of 204 babies. This study
showed that, when the two alleles of a gene are not equally expressed in a given type
of cell, gene expression is mainly regulated by DNA sequence variation, with little
or no influence by DNA methylation.

Liu et al. [55] employed the CITmethod for disentangling the causal relationships
among genome, DNAmethylation and Rheumatoid Arthritis. By using the CIT algo-
rithm, the authors found 535 genome—arthritis causal interactions that are mediated
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by methylation, out of the initially 4016 initially considered associations between
genome markers and the rheumatoid arthritis phenotype.

Some controversial CQTL results have been reported in another publication [44].
In this work the authors studied the genome characteristics and expression profile of
leukocyte cells from 284 Moroccan individuals. By applying a basic CQTL method,
it came out that the SNP rs11987927 seems to trans-regulate the expression of the
ZNF71 gene which, in turn, regulates back the transcript abundance of the MYOM2
gene, i.e. the gene where rs11987927 is located. The authors were not able to show
whether this counterintuitive result is trustworthy or is instead due to measurement
errors [88] or to other causes (e.g. the presence of feedback cycles).

This last example reminds us that the CQTL approach has, obviously, some lim-
itations. Particularly, the limitations affecting Mendelian Randomization [74] affect
as well all CQTL studies. Mendelian Randomization assumes that the choice of the
mating partner is not affected by the genome. Population stratification is another
possible source of bias for Mendelian Randomization and CQTL studies. It can be
the case that allelic frequencies and phenotype distributions vary similarly across
different populations, even in absence of any causal relations. Consequently, artifi-
cial genome-phenotype associations could be detected if the population under study
is composed by different sub-populations. Biological redundancy and adaptation to
unfavorable genetically-determined phenotypes can hide genome-phenotype causal
interactions. Markers that are physically close to each other on the genome tend to
be highly associated (a phenomenon known as linkage-disequilibrium) and these
associations can lead to the false identification of causal markers that are merely
close to the real cause of the phenotype. Highly co-linear (associated, correlated)
quantities are close to determinism and violations of Faithfulness (see Sect. 3.4.1
above). Genomic markers can have pleiotropic effects, i.e., simultaneously affecting
several traits. If the effect of the pleiotropic marker on each trait is small, it may be
necessary to jointly consider all the traits in order to detect the marker-traits causal
associations. Furthermore, genomic modifications driven by reverse transcription [9]
may ingenerate cases where the observed genomic profiles are actually influenced by
the traits under study. Finally, to the best of our knowledge, all CQTLmethods devel-
oped so far assume that all genomemarkers follow the same genomic model (usually
the additive or co-dominant one), even if assuming the wrong genomic model can
lead to a decrease of statistical power [5]. Methodological approaches have been
proposed in order to mitigate the effect of some of these limitations, particularly in
order to detect causal markers in condition of strong linkage disequilibrium [73] and
pleiotropic effects [115].

Despite these limitations, CQTL studies have proven to be able to identify actual
casual relationships in a number of different biological context. The main factors
enabling CQTL effectiveness are:
Incorporation of prior, biological knowledge: the (apparently) innocuous infor-
mation that “nothing causes L” is actually pivotal in order to dramatically reduce the
number of possible causal models. This means that CQTL methods explore a very
small space of possible models thanks to the adoption of Mendelian Randomization
assumptions.
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Opportunistic approach: CQTL methods are usually applied on a large number
of triplets, and whenever a Direct or Reversal causal model cannot be identified,
they forgo making a decision. Therefore, the CQTL approach can be thought of as
“explorative analysis”, useful for discovering novel causal associations which can
be subsequently experimentally validated.
“Local” causal discovery: a number of difficulties arise when Causal Discovery
methods are applied with the intent to learn a complete network of all direct causal
relations, i.e., the CBN among all quantities in the data. Errors in statistical infer-
ences can “propagate”, and erroneously orientate edges even in distant regions of the
reconstructed network. Conversely, the CQTL approach focuses on a small system
formed by solely three quantities, and thus they do not suffer of the issues arising
when large networks are induced.
Causal Sufficiency is not assumed: the CQTL approach is “robust” with respect
to the presence of latent confounders: no unmeasured variable can affect the asso-
ciation between L and any of the two traits (given the Mendelian Randomization
assumption), while if the two traits are both affected by the same latent confounder
then the CQTL algorithm will simply forgo making a decision.
Computational feasibility: CQTLalgorithms require performing a relatively limited
number of statistical (conditional) association tests. Efficient implementations of
CQTL algorithm can be easily realized, and CQTL can be applied on hundreds of
thousands of triplets in a reasonable time.

Future developments for CQTL methods seem to move in the direction of data
integration for network reconstruction. The CIT algorithm was originally proposed
as a method for reconstructing causal interaction networks. The QTLnet algorithm
[72] tries to reconstruct the interaction network among genomemarkers andmultiple
traits. Cai et al. [10] have developed a Structural Equation Model method, namely
the Sparsity-aware Maximum Likelihood (SML) algorithm, for reconstructing gene
regulatory networks by exploiting genetic perturbations. Finally, in a recent review
[90], the author points out that causal triplets provided by CQTL methods can be
used for deriving priors for (Causal) Bayesian Network reconstruction algorithms.

3.5.2 Reconstructing Protein Signaling Pathways

Co-ordination of complex cellular activities requires a well-orchestrated propaga-
tion of information. In living organisms, this information is transmitted across cells
through chemical signals which enter the cell and cause a cascade of chemical, spa-
tial and physical modifications of intracellular compounds. This procedure is broadly
described with the term cell signaling, and a cascade of responses to a certain extra-
cellular stimulus is generally called a signaling pathway, though many argue that
presenting a signaling pathway as an isolated set of responses to a specific stimulus
may be too simplistic.
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Such pathways are typically reconstructed by manually synthesizing pathway
components. Each pathway component is discovered through the aggregation of
several studies examining the relationship in question under different experimental
designs.

Signaling pathways are usually represented as graphs, where the nodes represent
participating compounds and the edges represent direct causal links. Different shapes
and colors are used to denote different types of participating molecules, and different
edges are used to discriminate different types of causal influence.

Bayesian networks, being able to capture both causal and probabilistic relations
in multivariate systems, seem fitting to model and quantify signaling pathways. In
a ground-breaking paper published in 2005, Sachs et al. [89] applied a Bayesian
network learning algorithm to reconstruct a known signaling pathway in T-cells.

The authors used multi-parameter flow cytometry data measuring 11 phosphory-
lated proteins and phospholipids – all known participants in T-cell signaling – under
9 different experimental conditions in naïve cd4+ T-cells. A score-based algorithm
for learning Bayesian networks from a mixture of observational and experimental
data [19] was then employed to infer the causal structure and the joint probability
distribution of the measured variables.

Each experimental condition included a general or target-specific stimulatory
condition, sometimes coupled with a target-specific inhibitor. In total, 5 activators
and 5 inhibitors were used. All perturbations were modeled as “ideal” interventions
[79] (i.e., hard interventions, not fat hand interventions), where the concentrations
of the target molecules are set solely by the manipulation procedure (i.e. the selected
inhibitor/activator completely determines the value of the target variable).

The data were discretized into 3 bins, representing “low”, “basal” and “high”
concentration values, using an algorithm designed to preserve the joint distribution
of the variables [33] before being used with the BN learning algorithm. To ensure
statistical robustness, the algorithmic process was repeated 500 times with random
initial graphs. The output model included only edges present in more than 85% of
the resulting graphs.

The returned network consists of 17 edges and is impressively similar to a con-
sensus signaling pathway manually curated from the literature. Out of the 17 edges
identified, 15 edges represent causal links that are well-established in the literature
and 2 represent causal links that are not well-established but have been reported at
least once. The algorithm failed to discover 3 edges that were expected based on
the literature review. However, were they included, these edges would create feed-
back cycles, which cannot be modeled with Bayesian networks. The causal direction
of identified edges was correct, with the exception of a single arc that was found
reversed (Fig. 3.4).

To further evaluate the validity of the predicted relations, the authors performed
an experiment to test one of the causal links that was found by the algorithm but
was not sufficiently backed up by the literature. Specifically, the model included
a direct causal link from Erk to Akt, a connection previously reported only in
colon cancer cells [31, 114]. The model entails that a perturbation of Erk will influ-
ence the abundance of Akt, while it will have no effect in the abundance of PKA.
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Fig. 3.4 Network inferred from flow cytometry data. The network is a consensus average of 500
high-scoring networks. Only edges present in more than 85% of the networks are included. Out of
17 edges, 15 are well established in the literature and 2 are reported but not well established. One
of the edges is found reversed. The resulting network missed three edges that were expected based
on the literature review. Figure from [89]

The authors validated this by inhibiting Erk with a suitable siRNA. True to the
model’s prediction, Akt activity was reduced (p < 9.4× 10−5), while PKA activity
remained uninfluenced (p < 0.28).

Despite the impressively accurate pathway reconstruction and the experimental
validation of a previously unknown predicted arc, to the best of our knowledge,
this paper remains the only case study of Bayesian network learning for automatic
network reconstruction. To understand the reasons automatic causal discovery is
still sparsely used in bioinformatics, let us discuss the main factors enabling causal
discovery in flow cytometry data:
Network perturbations. An important factor in the success of this method is the
inclusion of network perturbations, which are particularly important for correctly
identifying the directionality of arcs. To test the significance of including experimen-
tal data sets, the authors test the algorithm on a data set consisting of 1200 samples
measured without intervention. The resulting network contains only 8 out of the 18
expected edges (compared to 15 when the complete data set is used). In addition,
all identified edges are undirected, demonstrating the significance of experiments in
identifying causal relations. Nevertheless, we do note that the set of perturbations is
still quite limited compared to the full set of experiments required to fully generate
the structure without the use of CBN methodology.
Large sample size. Bayesian network learning methods require large sample sizes,
while typical experimental designs in molecular biology are usually limited to pro-
ducing just enough samples to ensure the technical soundness of the procedure. Flow
cytometry, measuring the abundance of proteins in single cells, results in hundreds
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(a)

(b) (c)

Fig. 3.5 Networks inferred from: a A data set consisting from observations alone. b A data set
consisting of 420 randomly selected samples from the original data set. c A data set consisting of
420 data points, each of which is an average of 20 randomly selected samples from the original data
set. In all three cases, the resulting network is far less accurate compared to the one resulting from
the complete data set. We can therefore infer that the inclusion of experiments, the large sample size
and the lack of averaging effects are crucial for accurate network reconstruction. Figure from [89]

of data points in each experiment, enabling the detection of causal relations in noisy
multivariate data. The authors show the importance of large sample sizes by applying
the same algorithmic procedure on a truncated version of the original data consisting
of 420 randomly selected samples. The resulting network is shown in Fig. 3.5b. It
consists of 14 edges, out of which only 8 are expected and only 1 is reported.
Single cell measurements. A key obstacle in applying Bayesian networks in mole-
cular biology data is that the measurements are usually averages of quantities in cell
tissues. Using averaged measurements for Bayesian network learning is known to
be problematic [15], since the correlation structure of measured quantities may not
be preserved. Flow cytometry measurements are single cell measurements, and are
therefore suitable for this type of inference. To illustrate this point, the authors sim-
ulate a western blot data set over the same variables by selecting at random 20 data
points at a time and averaging them, creating a data set of 420 samples in total. The
resulting network, shown in Fig. 3.5c, displays a further decline in accuracy: Out of
16 edges, only 6 belong to the expected ones.
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Causal sufficiency. In this work, the authors aim to provide a proof-of-concept
of the use of Bayesian network in analyzing multivariate flow-cytometry data by
reconstructing a well-studied pathway inmammalian T-cells. In doing so, the authors
pick 11 compounds in the cell that are not confounded (in the context of the set
of measured compounds), thus satisfying one of the most difficult assumptions of
Bayesian networks, that of causal sufficiency. While the authors do not test how
decisive this factor is for the success of the method, it is well known that violation of
the causal sufficiency assumption causes errors that propagate through the network.
Over the past few years, there has been a growing body of work on causal models
for causally insufficient systems, some of which are discussed in Sect. 3.6. However,
thesemodels are for themost part developed anddisseminated in themachine learning
community, and remain fairly unknown in the field of molecular biology.

Overall, several attractive features of the flow cytometry technology render it
an ideal test-bed for causal Bayesian network learning. Compared to other high-
throughput molecular biology techniques, flow cytometry data have vast sample
sizes, do not suffer the unwelcome effects of averaging, and samples can easily
be perturbed with in-vitro, close-to-ideal interventions. Unfortunately, flow cytom-
etry technology can only measure up to approximately 20 variables simultaneously,
limited by the number of distinguishable fluorescents. This number prevents themea-
surement of all variables participating in known pathways, let alone the numerous
cellular compounds for novel pathways. However, the recently developed technique
of mass cytometry, where antibodies are tagged with rare isotopes instead of flu-
orescents, allows measuring up to 30 variables, with a theoretical limit of circa 60
variables [75]. Moreover, the demonstration of the problematic effects of using aver-
aged data along with the development of novel technologies has resulted in growing
availability of single-cell genomic data [83, 111], promising a bright future for auto-
matic causal discovery in Bioinformatics.

3.5.3 Estimating Causal Effects in High-Dimensional,
Observational Data: The Intervention Calculus
when the DAG Is Absent Approach

Identifying cause-effect relationships is one of the main goals of Causal Discovery
methods. However, in some cases assessingwhether a causal relationship holds is not
sufficient, and one also desires to quantify the size of the causal effect. For example,
once it has been established that a gene regulates a particular protein, it may also
be relevant to know what variation should be expected in the level of the protein’s
abundance (effect) for a given variation in the level of the expression of the gene
(cause).

Estimating the size of a causal effect is not a trivial task, although it becomes
feasible when the true causal structure is known. Pearl [78] proposed a technique,
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named “do-calculus”,5 which, given a DAG and a suitable parameterization, allows
estimating the magnitude of the causal effect between any pair of variables X, Y
modeled in the DAG. Unfortunately, in almost all biology-related, real-world prob-
lems the actual underlying causal structure is not known, and its reconstruction is
often prohibitive, as discussed in Sect. 3.4.

Recently, Maathuis and co-authors [56] proposed a method for estimating a lower
bound on the size of the causal effect between two quantities by using a worst-
case analysis. Their method, namely IDA (Intervention calculus when the DAG is
Absent), has at least two appealing features: (a) it is able to estimate causal effects’
lower bounds solely on the basis of observational data, i.e., without requiring data
from experimental perturbations, and (b) can scale up to high-dimensional settings
involving thousands of variables.

The basic idea underlying the IDA algorithm is the following: first, let’s assume
that the underlying causal mechanism that has generated the data can be represented
as a DAG, and that no latent confounders are present (i.e., we assume causal suffi-
ciency). Then, the size of the causal effect X → Y between any pair of quantities
included in the data can be estimated with the following steps:

1. Identify the CPDAG P that best fits the distribution of the data at hand. Recall
from Sect. 3.4 that a CPDAG is a compact representation of the set of DAGs
that are Markov equivalent, i.e., the set of DAGs that cannot be distinguished
among each other solely on the basis of the available (observational) data. P can
be identified by applying any suitable Causal Discovery method, e.g., the PC
algorithm [98].

2. Calculate the effect size E S(X → Y ) for the causal relationship X → Y sep-
arately for each DAG represented by P . The minimum absolute value among
these effect sizes is the lower bound for the effect size of the causal relationship
X → Y .

The apparent simplicity of the IDA algorithm hides an insidious technical issue:
the number of DAGs included in P can become intractable even in the case of small
systems (e.g., a few tens of measured quantities). For this reason, IDA exploits some
sophisticated theoretical results in order to avoid a complete enumeration of the
DAGs included in P , while ensuring the correctness of the final results. Moreover,
IDA assumes that the data follow amultivariate normal distribution. This assumption
is not strictly necessary for the general soundness of the algorithm, but leads to a great
simplification of the calculations, since multivariate normality implies linearity of
the causal effects. Under the multivariate normal distribution assumption the effect
size ES of the causal relationship X → Y does not depend by the specific value of
X and can be expressed as:

E S(X → Y ) = E (Y |do(X = x + 1)) − E (Y |do(X = x))

5Explaining the details of the do-calculus is beyond the scope of this chapter. Interested readers can
refer to Pearl’s original publication.
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(a) (b)

(c)

Fig. 3.6 Graphical representationof IDAoperation.aExample causal network involvingfivenodes.
Causal effects are assumed to be linear,withweights specified on each edge.bCPDAGreconstructed
by the PC algorithm from 1000 samples simulated from the example causal network. Undirected
edges denote arcs that are reversible. c DAGs corresponding to the reconstructed CPDAG. For each
DAG the effect size of the causal relationship 1 → 5 is reported, as calculated with the do-calculus.
The minimum among these values (0.235) is a lower bound of the real effect size. All simulations
were performed with the R package pcalg [46]

where E (Y |do(X = x)), in the language of the do-calculus, represents the expected
value of the random continuous variable Y if the value of X is forcefully set, through
an external intervention, to a fixed value x over the whole population. If all quantities
are scaled in order to have zero mean and unitary standard deviation, E S(X → Y )

would represent the expected variation of Y for a variation of X equal to its standard
deviation.

It should also be noted that IDA can be considered a conservative algorithm,
performing a “worst case scenario” analysis, since it returns the minimum absolute
value among the calculated size effects. Figure3.6 shows a graphical representation
of the operation of IDA.6

Themain drawback of the IDA algorithm is that it is based on a set of assumptions
that are unlikely to hold in real settings, particularly Causal Sufficiency and multi-
variate normality. Overall, it is not well understood how the results of the algorithm
may change whenever one or more of these assumptions is violated.

6An implementation of the IDA algorithm is available in the R package pcalg [46].
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Despite these limitations, IDA has proved to be effective in identifying and quanti-
fying causal relationships from observational data. In a subsequent, ground-breaking
publication [57],Maathuis and co-authors applied IDA on two different sets of obser-
vational data: a compendium of expression profiles of Saccharomyces Cerevisiae,
and the set of simulated gene expression data from the DREAM4 competition In Sil-
ico Network Challenge [60] For both sets of data, m “true” causal relationships were
estimated and quantified through gene knock-out experiments, while q “predicted”
causal relationships were obtained by applying the IDA algorithm on the observa-
tional data. For both the Saccharomyces Cerevisiae and the DREAM4 data the sets
of true and predicted causal effects had an overlap statistically significantly larger
than the one that can be expected by random guessing. The overlap was statistically
significant for different values of q and m. Moreover, when contrasted against two
state-of-the-art correlation-based algorithms, (the Lasso and Elastic Net regressions
[116]), the IDA algorithm largely outperformed both methods in correctly ranking
putative causal relationships; in fact, the correlation-based algorithms’ predictions
were only as good as random guessing. The importance of these results was high-
lighted in an editorial in the same issue of Nature Methods [11].

An additional application of the IDA algorithm on another real-world problem
was also reported [45]. In this work the researchers employed a slightly modified
version of IDA (able to deal with binary variables) in order to identify the factors
causally influencing the level of general health perception in a sample of spinal cord
injury patients. The results of the study confirmed, once more, the capability of IDA
in identifying and quantifying causal relationships from observational data.

The factors enabling effective causal discovery with the IDA approach are the
following:
Worst case analysis: IDA provides a “worst-case” estimation of the causal effects.
This means that only causal relationships strongly supported by the data will be
retrieved.
Opportunistic approach: similarly to the CQTL algorithms, IDA is an explorative
analysis whose main scope is identifying novel causal relationships, rather than
confirming existing ones.
Ranking of putative causal associations: causal associations discovered by IDA
are associated with their respective effect size. This means that researchers can rank
the putative causal relationships provided by the IDA algorithm according to their
estimated effect sizes, and eventually retain/experimentally validate only the top
ones.

Finally, it is worth noting that some extensions of IDA were recently published.
Le and co-authors presented a version of IDA modified to detect and quantify
microRNA/mRNA causal relationships [53]. The Causal Stability Ranking (CStaR)
method [99] employs the IDA algorithm and a re-sampling based stability selection
method [65] to identify, out of a list of possible candidates, the factors that causally
influence a given outcome.
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3.6 Future Directions

In the previous sections,we presented some introductory concepts related to causality
and causal discovery. We also briefly presented (Causal) Bayesian networks, which
are one of the main tools for causal discovery without randomized control experi-
ments. Finally, we discussed some of the most prominent and successful applications
of causal discovery in the field of molecular biology. Despite years of research in the
field of causal discovery and the increasing availability of public data, the applica-
tions remain limited and are often contrived examples rather than methods of global
applicability. In this section, we explain some of the reasons thereof, and discuss
recent developments in causal discovery that may help tackle some of the problems
in applied causal discovery, and present some future directions for a unified, robust
and integrative approach in causal discovery.
Admitting Latent Confounding Factors: The theory ofBayesian networks relies on
the assumption of causal sufficiency, i.e. that no two variables included in the model
shares an unobserved common cause (latent confounder). In most real scenarios, this
assumption is somewhat arbitrary, since the possibility of a latent confounder can
rarely be excluded [87]. The presence of latent confounders is a common source
of error in the output of Bayesian network learning algorithms, and an even more
common source of criticism and mistrust for causal discovery.

Over the past few years, however, several causal models that do not rely on the
assumption of causal discovery have been developed. Semi Markov causal models
(SMCMs, [103]) are causal models that implicitly model hidden confounders using
bi-directed edges. Like Bayesian networks, SMCMs consist of a joint probability
distribution over a set of variables and a causal graph over the same set of variables.
The graph is an acyclic directed mixed graph, where nodes represent variables and
edges represent causal relations: A directed edge (→) denotes a direct causal relation
(in the context of variables included in the model), while a bi-directed edge (↔)

denotes that the variables in question share a latent common cause. Two variables can
share both a directed and a bi-directed edge. Under the causal Markov condition and
faithfulness, conditional (in)dependencies entailed in the distribution correspond to
graph properties of the graph according to the criterion of m-separation, an extension
of d-separation in BNs. While obtaining a parameterization of a mixed graph is
possible for discrete variables [27, 86] there exists no algorithm that can reverse-
engineer a semi-Markov causal model from data.

Maximal ancestral graphs (MAGs, [85]) constitute a different approach in mod-
eling causality in causally insufficient systems. Maximal ancestral graphs are ances-
tral mixed graphs, meaning they contain no directed or almost directed cycles: An
almost directed cycle occurs when A ↔ B and there exists a directed path from A
to B. Every pair of variables A, B in an ancestral graph is joined by at most one
edge. The orientation of this edge represents (non) causal ancestry: A bi-directed
edge A ↔ B denotes that A does not cause B and B does not cause A, but (under the
faithfulness assumption) the two share a latent confounder. A directed edge A → B
denotes causal ancestry: A is a causal ancestor of B. Thus, if A causes B (not
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Fig. 3.7 Causal insufficiency. a A causal Bayesian network over variables A, B, C, D, L. b The
semi-Markov causalmodel over the (causally insufficient) set of variables,A,B,C,D. cThemaximal
ancestral graph over the same variables

necessarily directly in the context of causal variables) and the two are also con-
founded, there is an edge A → B in the corresponding MAG. Figure3.7 illustrates
an example of a marginal SMCM andMAG for the same underlying causal Bayesian
network. Some features of a MAG are not identifiable from the joint probability dis-
tribution alone. Classes ofMAGs that correspond to the same probability distribution
form a Markov equivalence class. The FCI algorithm [98, 112] is a constraint-based
algorithm that can learn all the invariant features of Markov equivalent MAGs from
passive observational data. The algorithm is shown to be sound and complete.
Admitting Feedback Cycles: Another long debated assumption of causal Bayesian
networks is acyclicity; i.e., the lack of feedback loops in the system under study.
While some may argue that causal processes are acyclic over time, in many practical
settings we only have cross-sectional, non-temporal data, hopefully having reached
equilibrium. Particularly in molecular biology feedback is a well-known regulatory
mechanism and thus, acyclicity a problematic assumption.

To address this shortcoming of causal Bayesian networks, several approaches
have been introduced, most of which resort to the parametric assumption of lin-
earity. Richardson and Spirtes are the authors of the first general constraint-based
algorithm for learning linear cyclic models, the Cyclic Causal Discovery algorithm
[84]. The algorithm however is not complete. Schmidt andMurphy present a method
for learning discrete cyclic models [92], but their method heavily relies on experi-
mental data. Moreover, the authors present no theoretical results for their algorithms
completeness and identifiability status. Itani et al. introduce generalized Bayesian
networks [96], an extension of Bayesian networks for cyclic systems with discrete
variables, and present a learning algorithm. The method relies on experimental data
to both identify data and to apply BN learning algorithms in data where the cycles are
broken by perturbations. All of the methods above employ the assumption of causal
sufficiency. Hyttinen et al. present a method for learning linear cyclic model from
a series of experiments in causally insufficient systems [41], along with sufficient
and necessary conditions for identifiability. Unfortunately, this method also relies on
linearity, which is generally known not to hold in biological systems.
Local and Opportunistic Learning: Given the limitations, difficulties, and pitfalls
of CD, learning complete large networksmay degrade quality of learning and present
large computational demands. Local Causal Discovery takes a different approach.
There are at least two types of causal discovery. The first, pioneered by Cooper
and colleagues attempts to identify (all) marginal graphs (i.e., representing the
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distribution of a subset of the variables) of some special interest. For example, in [18]
all triplets leading to a CBN of the form L → T1 → T2 when L is known not to have
any causes within the system under study are identified. As discussed in Sect. 3.5.1
this work preceded the CQTL studies and was re-discovered independently later.
This is the smallest graph that postulates a new causal relation T1 → T2 without
assuming Causal Sufficiency, due to the prior knowledge that nothing causes L (we
do not consider L → T1 or L → T2 as new interesting causal postulates since if
nothing causes L and L is correlated with T1 or T2 then the causal relation should
hold trivially). When prior knowledge is not available, the smallest marginal graph
that postulates a causal relationship without assuming Causal Sufficiency is called a
Y-structure and is of the form X → Q ← Z,Q → W. If this CBN is induced from
the data, then Q → W even if Causal Sufficiency is violated (the CBN of course
also claims X → Q but this may not be the case if Causal Sufficiency is violated).
Algorithms to identify Y-structures appeared in [59]. Another type of Local Causal
Discovery is the reconstruction of focused regions of the underlying causal graph
around a variable of interest, e.g., a specific gene, without the need to reconstruct the
complete network. The first such method was [62], later receiving more attention in
[81, 110]. Such local CD algorithms are closely related to variable selection as the
Markov Blanket of a variable is the part of the network relevant for variable selection
[3]. The difference between the two types of local causal discovery is that the first
learns marginal networks, while the second learns sub-networks. For example, if the
true network is X → Y → Z → W , and nothing causes X , then the method by
Cooper [18] will return 3 triplets: X → Y → W,X → Z → W , and X → Y → W
corresponding tomarginalizing (treating as latent) one variable at a time. Themethod
learning regions in [110] with target Z will return the network Y → Z → W (if
the region is restricted to be only the nodes adjacent to Z). The latter is a sub-graph
of the original graph (in general, local discovery may not orient the same edges as
global discovery). Local Causal Discovery forgoes learning complete networks to
save computational time or to make more robust inferences with fewer assumptions.
We also use the term opportunistic learning to denote all methods that perform a reli-
ability, confidence, robustness estimation of findings and focus only on the findings
for which the method is confident on. The CQTL methods presented above heavily
use these ideas.
Integrative Causal Analysis: in recent years, the proliferation of publicly-available,
on-line data repositories allow the possibility of co-analyzing large amounts of data
and information. This is particularly evident in some fields, for example System
Biology, where on-line data repositories are well-established [2, 6] and researchers
are encouraged to share their raw data along with their results and findings. Typi-
cally, however, data from different studies cannot be pooled together naively and be
jointly analyzed, even when all studies examine the same biological system. Any dif-
ference in recording conventions, study design or experimental procedures requires
sophisticated statistical approaches in order to be addressed. A non-exhaustive list of
approaches that attempt to address these issues includesMeta-Analysis [76], Transfer
Learning [77], Statistical Matching (also called Data Fusion) [24] and Batch-Effect
removal [52]. Each of these approaches is characterized by its own scope, advantages
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and weaknesses. In general the integrative analysis of heterogeneous datasets is still
an open problem and a field of active research.

Integrative analysis from a causal perspective takes a specific form. The key obser-
vation in this approach is that all data measuring the same biological system stem
from a single causal mechanism. Each study maybe measuring different quantities,
under different experimental conditions or sampling methodologies, yet there should
exist a causal model that can produce all these datasets. Thus, to co-analyze a collec-
tion of datasets coming from heterogeneous studies one searches for a causal model
(or all causal models) that simultaneously fit and can explain all data. Over the past
few years, several methods for extending causal analysis to the integrative analysis of
heterogeneous datasets have been introduced. We collectively refer to these methods
as Integrative Causal Analysis (INCA). A major advantage of INCA is that it can
model the effect of interventions, e.g. the knock-out of a gene in one dataset and
treatment with a hormone in a second one, to enable the co-analysis of datasets over
different experimental conditions.

INCAmethods can address different types of heterogeneity. Several INCAworks
have focused on the problem of overlapping variable sets, i.e., co-analyzing data sets
that have only a subset of the included variables in common. In this setting the scope
of the analysis is usually to infer information regarding the causal mechanism defined
over the union of all measured variables. A first pioneering work was published in
2002 by Danks [20], who proposed a two-stage approach consisting in separately
learning a Bayesian Network from each study and then using a set of rules for
extracting information about the underlying causal structure. Successive methods
generally follow a similar two-stage approach, but usemore expressive causalmodels
in the first stage (e.g. MAGs) and employ more sophisticated rules that are able deal
with conflicts arising from inconsistencies among the models [17, 21, 104, 106].

Studies often differ because they were conducted under different experimental
conditions. In this setting, naively pooling data from different studies together can
lead to the creation of spurious correlations or to the disappearance of present asso-
ciations among the measured variables [51]. Several works propose modifications
of Search-and-Score and Constraint-based algorithms able to deal with mixtures
of observational and experimental data. Cooper and Yoo [19] propose a Bayesian
score able to incorporate information about the different experimental settings, while
Hauser andBühlmann [34] investigate the concept ofMarkovEquivalence in the pres-
ence of experimental interventions and propose a learning algorithm on that basis.
Eaton and Murphy [25] model interventions as special nodes of the network, and
proposed an algorithm that attempts to infer the actual effects of each intervention
directly from the data. Constraint–based algorithms for mixtures of experimental
data are proposed in [16, 102], but they are limited to specific experimental settings.
Sufficient conditions for checking conditional (in)dependencies in data coming from
different experiments were proposed in [26, 51]. Other approaches assume specific
functional forms for all interactions among variables [39, 41]. These approaches
are even able to deal with hidden confounders, but their application is limited by
their strict assumptions regarding functional forms among variables. Finally, some
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algorithms first learn a provisional causal structure from observational data, and then
employ experimental information in order to refine the learned model [35, 64].

A particular type of heterogeneity is obtained when the same information is
recordedwith different encodings, for example smoking informationmaybe recorded
as a binary (yes/no) or a continuous variable (number of packets a day).When a direct
conversion is not possible, more sophisticated approaches must be employed [107].

Recent developments in Integrative Causal Analysis focus on co-addressing mul-
tiple sources of heterogeneity at the same time: several works attempt to integrate
datameasured over overlapping variable sets and in different experimental conditions
[40, 42, 43, 105].

One of the main, unresolved issues in the INCA field is the efficacy of the current
methods on real data. While significant efforts have been spent on laying down
the theoretical foundations of this field, several algorithmic and methodological
improvements are necessary before applying these methods on real data analysis
tasks. A first attempt in applying INCA methods on real-world, large datasets has
produced evidence that INCA methods can actually provide meaningful results and
even outperform current statistical methods [109]. Bridging the gap between theory
and practice is crucial for the future of integrative causal analysis.
CD Based on Functional-Form Analysis: So far we have mainly discussed causal
discovery methods based on the analysis of conditional (in)dependencies. These
methods query the joint probability distribution for (in)dependencies either directly
(constraint-based methods) or indirectly (search-and-score methods) to identify all
causal structure that fit the data. Recently, a different approach on causal discovery
has been developed, one that is based on the exploiting possible asymmetries of causal
relations. The methods assume Causal Sufficiency and acyclicity, thus if X and Y
are correlated, either X → Y or Y → X . Expressed as structural equations, either
X = f (Y, ε) or Y = f (X, ε), where the disturbance term ε is the effect of all other
factors. It turns out that one can distinguish between the two possibilities if either ε
is non-Gaussian, or f is non-linear [36]. While the assumptions of linear relations
and Gaussian residual term ε is probably the most common set of assumptions in
statistics, it turns out that any departure from these assumptions allows the discovery
of the directionality of causation!

A specific case follows. Assume that X and Y are variables and X causes Y in a
linear manner, thus Y = βY X X + εY , where εY follows a non-Gaussian distribution.
Also assume that we have obtained a set of measurements of both X and Y and
we want to identify the causal structure of the variables. By assuming linearity,
additive disturbance terms ε, and causal sufficiency, we can fit both models using
simple linear regression, and obtain estimates for botĥβXY and̂βY X . Based on these
estimates, we can then calculate the disturbances εX and εY for both models. These
disturbances will be independent with each other if the fittedmodel is the correct one,
and dependent if the fitted model is the reverse one. A graphical depiction of this
principle for uniform distributions of disturbances is shown in Fig. 3.8. LiNGAM
[95] automates this procedure, inferring a unique causal model from observational
data. LiNGAM is limited to linear relations, but this assumption has been relaxed in
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Fig. 3.8 The key idea for LiNGAM and similar algorithms: true structural equation Y = βYX X+
εY, where εY follows a uniform distribution. a Regression with Y as the dependent variable (true
model). b Regression with X as the dependent variable (reverse model). c Estimated ε̂Y versus ε̂X
based on the model shown in (a). The disturbances are and independent. d Estimated ε̂Y versus ε̂X
based on the model shown in (b). The disturbances are dependent. Figure from [38]

a subsequent body of work [36, 82, 113] to include non-linear relations. However
learning such relations requires non-linear optimization techniques and appropriate
independence measures [69].

This class of methods is more powerful than traditional causal discovery methods,
in the sense that with the functional form assumptions (e.g., linear relations, additive
disturbances, non-Gaussian disturbances) causal models are fully identifiable (no
statistical indistinguishability). Moreover, the methods also work under unfaithful-
ness. On the other hand, all methods in this category require large sample sizes and
rely on some kind of parametric assumption, and have been shown to be unreliable
when this assumption is violated. Nevertheless, these ideas add a new direction and
dimension to the way we think about, treat, model, and induce causality and could
soon lead to practical results.

3.7 Discussion

Inducing causal models or relations from data is necessary to fully understand bio-
logical mechanisms and design new drugs and therapies. Traditional means for such
inferences rely on performing interventional experiments. CausalDiscoverymethods
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attempt tomake such inferences from observational data alone or with a limited set of
such interventions by making assumptions that connect the notion of causality with
quantities estimable from the data. The analyst should be aware and conscious of the
explicit and implicit assumptions employed by the tools and algorithms that are used
and whether they are appropriate for the type of biological data at hand. Despite the
inherent theoretical and practical difficulties of the task, there are several successful
applications of Causal Discovery methods in systems biology that demonstrate the
potential of the field. In addition, recent theoretical and algorithmic breakthroughs
promise to further improve the successful application of causal discovery on systems
biology.
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