
THE CHALLENGES OF SYSTEMS BIOLOGY

Reverse Engineering of Gene Networks with
LASSO and Nonlinear Basis Functions

Mika Gustafsson,a Michael Hörnquist,a Jesper Lundström,b

Johan Björkegren,b and Jesper Tegnérb,c

aDepartment of Science and Technology, Linköping University, Norrköping, Sweden
bDepartment of Medicine, Center for Molecular Medicine, Karolinska

Universitetssjukhuset, Stockholm, Sweden
cDepartment of Physics, Linköping University, Linköping, Sweden

The quest to determine cause from effect is often referred to as reverse engineering
in the context of cellular networks. Here we propose and evaluate an algorithm for re-
verse engineering a gene regulatory network from time-series and steady-state data.
Our algorithmic pipeline, which is rather standard in its parts but not in its integra-
tive composition, combines ordinary differential equations, parameter estimations by
least angle regression, and cross-validation procedures for determining the in-degrees
and selection of nonlinear transfer functions. The result of the algorithm is a complete
directed network, in which each edge has been assigned a score from a bootstrap pro-
cedure. To evaluate the performance, we submitted the outcome of the algorithm to the
reverse engineering assessment competition DREAM2, where we used the data corre-
sponding to the InSilico1 and InSilico2 networks as input. Our algorithm outperformed
all other algorithms when inferring one of the directed gene-to-gene networks.

Key words: reverse engineering; network inference; nonlinear; DREAM conference;
LARS; LASSO

Introduction

To identify cellular mechanisms of impor-
tance for a biological process or a disease is
an essential endeavor for science. To accom-
plish this enterprise, it is central to uncover the
structure and dynamics of the web of interac-
tions between genes, proteins, and metabolites.
Recent progress in high-throughput technolo-
gies has emphasized the need for developing ef-
ficient and accurate algorithms for reconstruct-
ing such networks from experimental data.1

Here we formulate this problem using a sys-
tem of ordinary differential equations (ODEs)
to reverse engineer a regulatory gene-to-gene
network from gene expression data sampled
during steady state and time series.

Address for correspondence: Michael Hörnquist, Linköping Univer-
sity, Department of Science and Technology (ITN), 601 74 Norrköping,
Sweden. Voice: +46 11363381. micho@itn.liu.se

Several frameworks for modeling gene reg-
ulatory networks have been proposed. De-
pending on size of the network and available
data, these models range from Boolean net-
works,2 today with thousands of nodes,3 to
detailed descriptions of the biochemical reac-
tions with only a few units.4 In between these
two extremes, there are both graphical models
(including Bayesian networks) and information-
theoretic models.5 A special class of gene reg-
ulatory network models, which has gained
some popularity, comprises the linear, time-
continuous models based on systems of
ODEs.5 The first study of this kind, to
the best of our knowledge, was the pa-
per from 1999 by D’haeseleer and cowork-
ers.6 This framework has since been re-
visited on numerous occasions with many
variations on the ODE theme (see Ref. 7 and
references therein). Here we follow this tra-
dition with two modifications. First we use

The Challenges of Systems Biology: Ann. N.Y. Acad. Sci. 1158: 265–275 (2009).
doi: 10.1111/j.1749-6632.2008.03764.x C© 2009 New York Academy of Sciences.

265



266 Annals of the New York Academy of Sciences

nonlinear transfer functions to preprocess the
data before the actual network inference. Our
rationale is to reduce prediction errors and
thereby increase the performance of the model.
Second, our algorithm can use both steady-
state and time-series data.

A central problem in the field has been how
to assess the quality and applicability of the
plethora of reverse-engineering algorithms. In-
terestingly, no consensus has been obtained re-
garding which methods are most efficient, and
not even on how their efficiency should be
measured, although there are some comparison
studies published.8 It is no understatement that
this state of affairs is confusing not only for the
experimental biologist but also for the experi-
enced engineer. Therefore, it was very welcome
when the Dialogue for Reverse Engineering As-
sessments and Methods (DREAM) Initiative,
resulting from a conference in 2006,9 pushed
the notion of a competition to let researchers
in the field show how well their methods per-
formed in an objective test.10 Importantly, this
exercise also addresses the fundamental prob-
lem of how to measure performance and the
role of prediction error in this process.

The organization of this paper is the fol-
lowing: In section Data, we briefly review the
conditions given by the DREAM Initiative for
challenge 4 in the competition. In the follow-
ing section, Method, we present our reverse-
engineering algorithm, and in the Results
section, the performance is presented and eval-
uated using the networks that generated the
data and which became available after the com-
petition. Finally, in Discussion and Outlook, we
address what can be learned from a competi-
tion of this kind and emphasize some direc-
tions in which we think future research should
develop.

Data

The data come from two different artificial
networks, referred to as InSilico1 and InSilico2
in the competition launched by the DREAM

Initiative.9 For completeness of the paper, we
quote from the web page:

Description: These datasets were pro-
duced from a gene network with 50 genes,
where the rate of synthesis of the mRNA
of each gene is affected by the level of
mRNA of other genes.

InSilico1-heterozygous.xls contains
steady state levels for the wild-type and
50 heterozygous knock-down strains
for each gene (+/−). Values of gene
expression are provided for a standard
condition (steady states).

InSilico1-null-mutants.xls contains
steady state levels for the wild-type and
50 null mutant strains for each gene
(−/−). Values of gene expression are
provided for a standard condition (steady
states).

InSilico1-trajectories.xls contains time
courses (trajectories) of the network recov-
ering from several external perturbations.
There are 23 different perturbations and
26 time points for each one.

Hence, for each network there are
51 + 51 + 23 × 26 = 700 different data points
for each gene, whereas the full network consists
of only 50 genes. The sheer number of data
points makes the reverse-engineering problem
more tractable, but also less realistic, as com-
pared with the in vitro or in vivo situation. More-
over, from the observation that all expression
values are non-negative we infer that the val-
ues cannot be interpreted as log ratios. Finally,
the distribution of the raw data suggests it has
not been contaminated by noise or outliers.

Method

The basic assumption we utilize is that both
the time-course and the steady-state data can
be described by a set of N ordinary differential
equations. Since all data points can be consid-
ered gene-by-gene, the network inference fac-
torizes into N independent problems. Hence



Gustafsson et al.: Reverse Engineering of Gene Networks 267

each equation represents the dynamics of a sin-
gle gene in the network. We therefore make the
following ansatz:

dxi

dt
(t ) =

N∑
j =1

∑
a

w ijaf a [x j (t )] − λi x i (t ),

i = 1, . . . , N . (1)

Here xi (t) denotes the expression level of gene
i at time t and wija is the net effect of gene j

on gene i mediated by the function fa. These
functions fa are generally nonlinear functions
of “typical” behavior, called transfer functions,
to be determined later. It might be beneficial
to use more than one transfer function for each
gene, and therefore we index them by the letter
a. The last term corresponds to degradation,
which means that λi has to be non-negative.
The left-hand side is the effective dynamics
of the mRNA concentration for gene i, that
is, the transcription rate minus the degradation
rate.

The work flow of our reverse-engineering al-
gorithm is presented in Figure 1. Our repeating
procedure is as follows. Step 1, data are prepro-
cessed; Step 2, pick a transfer function from a
predefined list; Step 3, perform the network
inference; and Step 4, compute the prediction
error given the network and present transfer
function. Then repeat steps 2–4 until the list of
transfer functions is exhausted. In detail:

Step 1: First we estimate the time-derivatives
using a spline approximation of the origi-
nal data. Here interpolating cubic splines
with no further constraints on the oscilla-
tions are utilized, since there seem to be
no outliers in the trajectories.

Step 2: We pick one transfer function fa from
a predefined list. To set the stage for cross-
validation, we exclude one sixth of the
data for the assessment in Step 4 of the
particular choice of function fa.

Step 3: At the core of the reverse-engineering
algorithm, the box in Figure 1 called the
“Inference Engine,” we perform the in-
ference, described in detail below, using
a six-fold cross-validation procedure for

FIGURE 1. Structure of the reverse-engineering
algorithm.

model selection, that is, for determining
the in-degree, by minimizing the external
error. After determination of the network
structure and the actual values of the co-
efficients, we exit the inference engine.

Step 4: We assess the chosen transfer func-
tions by estimating the prediction error
from the hidden data. This estimation is
performed as a cross-validation (six-fold)
on the excluded data from Step 2, that
is, we repeat Steps 2–4 six times for an
estimation of the prediction error.

Then we have another repetition of Steps
2–4 for the next transfer function, as il-
lustrated in Figure 1 (dashed curve to



268 Annals of the New York Academy of Sciences

the right), until the list of functions is ex-
hausted. Eventually, we choose the func-
tion that results in the least prediction
error, and get the corresponding network
as a final result.

We form the list from which the transfer func-
tions are selected from a general (prior) knowl-
edge of mathematical models within biology
with growths, saturations, and so on. Explicitly,
we first pick f 1 from the set:

{
C , x , x 2,

1
1 + x

,
1

1 + x 2
, e −bx,

log(1 + x ),
1

1 + e −c x
,

1
1 + e −x 2 ,

}
(2)

where C is a constant, b = − 1, 0.5, 1, 2, 3 and
c = 1, 1.5, 2, 3, . . ., 25. We find f 1(x ) = e −x ,
and with this function chosen, we proceed in a
greedy fashion to find f 2 from the same set (2).
Eventually, we end up with the form

f 2(x ) = 1
1 + e −22x

. (3)

Note we use the same functions for all genes.
Also, the function f 2 is quite close to a Heavi-
side function, which reflects the idea that some-
times a gene can simply be considered to be ei-
ther “on” or “off” and due to its boundedness
puts an upper limit on how much one gene can
influence another.

The actual data fit for finding coefficients,
the box called the “Inference Engine” of
Figure 1, is performed as a least square prob-
lem with a certain constraint explained below.
The choice of least squares is motivated by
computational convenience and our observa-
tion that there seem to be no noise or out-
liers in the dataset. As previously noted, the
reverse engineering problem factorizes and we
can therefore consider the regulation of each
gene independently. By indexing the times for
the measurements as tk, k = 1, . . . , K , where
K is the total number of measurements for all
series and steady-state data, we can write the

objective function as:
∑

k

[
dxi

dt
(tk )

−
(

−λi x i (tk ) +
∑
j �=i

∑
a

w ijaf a [x j (tk )]
)]2

(4)
That is, we search for the values of λi and wija,
j = 1, . . ., N ; j �=i which minimize (4) for all
i = 1, . . ., N . However, note that when the
time-derivative dxi

dt
is zero, for example, for all

steady-state data, the minimum for the corre-
sponding term is simply obtained for all param-
eters λi and wija equal zero. In order to avoid
this problem, we rewrite the objective function
as:∑

k

[
x i (tk )

−
(

− 1
λi

dxi

dt
(tk ) +

∑
j �=i

∑
a

w ija

λi

f a [x j (tk )]
)]2

(5)
The number of experiments exceeds the num-
ber of genes, which makes the minimization
problem well-posed even without further con-
straints. However, all coefficients will be non-
zero with probability one unless we perform
some kind of model selection. Our choice
is equivalent to using the LASSO—the least
absolute selection and shrinkage operator,13

which here means the constraint∣∣∣∣ 1
λi

∣∣∣∣ +
∑
j,a

∣∣∣∣w ija

λi

∣∣∣∣ ≤ μi . (6)

The constraint μi is increased from zero, where
all coefficients are zero, up to a value when all
of the coefficients with probability one are non-
zero (in general, the number of non-zero coef-
ficients can never exceed the number of exper-
iments, but here we have enough experiment
for every coefficient to be well determined even
without any constraints). Each case of a certain
number of non-zero coefficients is evaluated
by estimating the prediction error by a six-fold



Gustafsson et al.: Reverse Engineering of Gene Networks 269

cross-validation. The actual values of the co-
efficients are found using the forward-selection
method LARS, Least Angle Regression,11 in a
form implemented by Vanden Bergen.12 LARS
is an efficient implementation of LASSO,13

which has been explored earlier for reverse
engineering of gene networks.7 Note that al-
though LARS is a forward-selection method,
it still has the ability to discover multivari-
able dependencies, while excluding correlated
columns for stability reasons. This is of partic-
ular importance here when we are mainly in-
terested in the presence of individual edges in
the network. We pick the network that results
in the least prediction error.

For some occasions, the factor λ−1
i is inferred

to have the value zero. That value is not valid
for the model, because it corresponds to an
instantaneous degradation and it also renders
it impossible to determine the nominators of
the coefficients w ija

λi
. For these rare occasions,

we employ the formulation in (4).
As a final step in our reverse-engineering

procedure, we apply a bootstrap procedure for
obtaining a score for each edge. This is per-
formed for the chosen transfer functions, and
we only need to concentrate on the Inference
Engine from Figure 1. In detail, we repeat the
following procedure 10,000 times: We sam-
ple 700 experiments, with replacement, from
the total set of data, and apply the Inference
Engine. Each time an edge in the network is
picked, that is, each time the corresponding ele-
ment wija is inferred to be non-zero, we increase
the score of the edge by one unit. Eventually,
these scores form the basis for our submitted
networks to the DREAM competition.

Results

After the predictions upload deadline, it was
disclosed that the data originated from simu-
lations run on the COPASI (COmplex PAth-
way SImulator) platform.14 The underlying dy-
namical equations were of multiplicative type,
where an activating factor was of the form

x i/(x i + C 1) and a repressing factor followed
C 2/(x i + C 3), with C 1, C 2, and C 3 as con-
stants. The equations also included a degra-
dation term of the same form as we assumed.
The topology of the first network turned out
to be of the Erdös-Renyi (ER) type15 with a
Poissonian degree distribution, illustrated in
Figure 2, while the second network was
of Barabási-Albert (BA) type15 displaying a
power-law degree distribution, illustrated in
Figure 3. Here we discuss our results from
knowledge of these networks. This is clearly
different when inferring networks from biolog-
ical experiments when we do not have any true
answer to evaluate our prediction.

The procedure described above resulted in
two lists of predicted edges, one for each net-
work. The lists are sorted according to our con-
fidence in the prediction of the presence of the
edge (obtained from the score of the bootstrap,
described above). The scoring metrics for the
DREAM competition were:9

Scoring Metrics: We will score the results using
the area under the precision versus recall curve for
the whole set of predictions. For the first k predic-
tions (ranked by score, and for predictions with the
same score, taken in the order they were submitted
in the prediction files), precision is defined as the
fraction of correct predictions to k, and recall is the
proportion of correct predictions out of all the pos-
sible true connections [. . .]. Other metrics such as
precision at 1%, 10%, 50%, and 80% recall, and
the area under the receiver operating characteristic
(ROC) curve will also be evaluated.

The performances of our algorithm, accord-
ing to the scoring functions, are shown in
Figures 4 and 5 for each network, respectively.
Worth noting is that our assumed functional
form of the equations were quite different from
the ones utilized for producing the data, but still
the algorithm performs reasonably well. An ef-
fective biological regulatory gene-to-gene net-
work is probably best described with a wider
class of equations than these biochemically in-
spired forms utilized by COPASI. Thus, it is im-
portant that the reverse engineering works gen-
erally and not only for the same hypothesized



270 Annals of the New York Academy of Sciences

FIGURE 2. The first of the two networks from which data were provided. The degree
distribution of both in-degrees and out-degrees follows a Poissonian curve, that is, the network
is of the Erdös-Renyi (ER) type.

form as used for the data generation. Ob-
viously, our algorithm had the best perfor-
mance on the BA-network, which is promis-
ing since it is generally believed that biological
networks are more similar to those than to ER-
networks.15 This difference in performance be-
tween the ER- and BA-networks is interesting
and deserves further study. Right now, we
mainly note that many units in the BA-network
were regulated by only one other unit, that
is, combinatorial regulations were quite rare,
which might have been beneficial for our re-
sult. Indeed, in the DREAM competition, our
algorithm was outstanding for the BA-network
(the areas under the precision-recall and ROC
curves were 0.26 and 0.75, respectively, com-

pared with the second scoring algorithm, which
obtained the values 0.15 and 0.66), but only
scored second for the ER-network (areas un-
der curves were 0.13 and 0.72, where the top
performance gave 0.20 and 0.81).

A closer inspection reveals that we have also
identified several coregulated genes as one reg-
ulating the other. For example, in the net-
work InSilico1, we conjecture with score 1 (see
Table 1) that the nodes 20 and 25 regulate each
other. From Figure 2, lower left corner, we see
that both these nodes are negatively regulated
by node 19, but there is no direct edge between
them. In other cases we have failed to identify
an intermediate regulatory gene in a pathway.
A typical example of what occurs is in InSilico2,



Gustafsson et al.: Reverse Engineering of Gene Networks 271

FIGURE 3. The second of the two networks from which data were provided. The degree
distribution of both in-degrees and out-degrees follows a power-law, that is, the network is of
the Barabási-Albert (BA) type.

when we with score 0.994 suggest that node
12 regulates node 48. This is true, as seen in
Figure 3, upper middle part, but through a
cascade with node 10 as an intermediate unit.
In both cases, the edges are judged as simply
“wrong,” but still the result might be useful if
the purpose of a large-scale inference is to find
communities of genes involved in a certain pro-
cess16 or if we search for affected targets for
some drug. The exact relationship between the
genes is then a question for a more refined
analysis. Therefore, we also show in Table 1
the undirected distance in the real net between
the 24 most probable pairs of nodes from each
network in our reverse engineering. To use the
directed distance here would be misleading, since
we are mainly looking for co-regulated genes,

and between such the directed distance is ir-
relevant, and can even be infinite in case the
network is not strongly connected. In the case
of a perfect inference, all these distances should
of course be unity, but we can see that even
if we “miss,” the mistake is not that big. The
mean values for these 24 edges are 1.96 and
1.46 for the ER- and BA-networks, respectively.
One should compare these numbers with the
mean distances for the entire networks, which
are 2.91 and 2.43, respectively.

Finally, we can also study the signs of our
inferred edges in the networks and compare
them with the true models. The correspon-
dence turns out to be less satisfactory, which
probably is a result of our ansatz, where terms
could be negative indicating repression of the



272 Annals of the New York Academy of Sciences

FIGURE 4. Precision versus recall and ROC
curves for our reversed-engineered network for In-
Silico1, the ER-network. The area under the former
curve is 0.129 and under the latter 0.722.

gene, while for COPASI all factors except the
self-degradation were positive, and the ones
corresponding to repression just had a nega-
tive derivative.

Discussion and Outlook

Normally, one of the great challenges for re-
verse engineering is to find suitable ways to
assess the quality of an algorithm. There is no
generally accepted way of doing this, but this
time, though, we have a “gold standard” against
which we can measure the precision of the
inference.

FIGURE 5. Precision versus recall and ROC
curves for our reversed-engineered network for In-
Silico2, the BA-network. The area under the former
curve is 0.256 and under the latter 0.753.

In contrast to the case of real data, here the
number of experiments (time-points at which
we have data) exceeds the number of genes,
thereby rendering the problem well-posed even
if all coefficients wija should turn out to be non-
zero. Nevertheless, this is a useful exercise, since
this kind of “best-case scenario” gives us a first
quality judgement. If an algorithm does not
even work properly here, it should be practically
useless for real data since the inference problem
then is less tractable.

Of course, a man-made network cannot
contain all features of a biological network,
which has been under evolutionary pressure
for billions of years. This is partly because we



Gustafsson et al.: Reverse Engineering of Gene Networks 273

TABLE 1. Scores of the 24 top-ranked interactions
from the reverse engineering, together with their
undirected distance in the true networks and the
nodes they connect

Network InSilico1 Network InSilico2

Score Dist From To Score Dist From To

1 1 1 3 1 1 10 36
1 2 20 25 1.000 1 45 10
1 2 25 20 0.999 1 12 42
0.999 1 3 1 0.999 1 27 37
0.998 3 46 15 0.999 2 50 36
0.996 1 36 11 0.999 1 10 45
0.995 3 37 40 0.998 1 20 44
0.991 3 4 15 0.998 1 10 50
0.991 3 18 46 0.997 1 27 29
0.990 5 23 26 0.994 2 12 48
0.989 1 8 32 0.986 1 12 17
0.988 1 43 27 0.982 2 36 50
0.987 2 19 43 0.971 1 2 47
0.986 3 15 4 0.966 1 10 25
0.982 1 32 27 0.964 3 34 48
0.982 1 34 41 0.959 2 45 36
0.978 1 11 36 0.942 2 47 3
0.977 3 40 37 0.940 2 5 21
0.977 1 38 4 0.917 2 50 25
0.974 2 43 19 0.912 1 1 47
0.974 3 46 18 0.909 2 10 41
0.973 1 19 21 0.908 2 50 45
0.970 2 19 8 0.903 1 2 21
0.970 1 41 34 0.899 1 1 31

probably have not uncovered all features of the
biological systems, and partly for purely prac-
tical reasons—it is hard to pay attention to all
features. For instance, for a long time it has
been acknowledged that real biological net-
works are both modular17 and contain motifs.18

Nevertheless, although such structures can both
be an obstacle for the reverse engineering as
well as something one might take advantage
of, the assessment of the algorithms has to start
somewhere.

Another aspect, not considered here, but of
utmost importance for any large-scale problem,
is that of computational efficiency. Although the
CPU-power available is always increasing, the
need for analyzing data is always larger, and
proper choices of algorithms and implementa-

tions remain important parts for any computa-
tional science, as discussed further in Ref. 19.

In retrospect, we notice that our nonlinear
function f 1 probably was too linear for the
range within which most of the data were pro-
vided. This resulted in the objective function
(5) to pick coregulated genes as one (or both)
being regulated by the other, especially when
the derivative term was zero or close to zero.
Thus, our desire to utilize the steady-state data
as well gave us many false positives. There
are some suggestions on how to tackle this
problem,21,22 but these were not utilized here.
Again, we come to a conclusion well-known
among theorists, that data in time-series are su-
perior to steady-state data. Unfortunately, time-
series data are hard to obtain for experimental
biologists, and we need to continue the explo-
ration of how the steady-state data can also be
utilized.

Another issue, not addressed here, is the per-
formance of our algorithm on data contam-
inated with noise and outliers. This was not
part of the DREAM challenge this time, but
we intend to get back to this very important
question in the future.

In summary, the present algorithm has
shown considerable promise, but still there are
at least four directions within the ODE concept
for reverse engineering of directed networks.

• First, we need a more systematic way to
find a suitable basis set of functions. Now,
we utilized a form of greedy approach, but
when the size of the data set increases, not
even this will be possible.

• Second, the huge amount of expression
data available consist mainly of steady-
state data, that is, not much is in the form
of time-series. This has to be taken into
account, if possible, when formulating an
effective algorithm for reverse engineering.
To simply discard all these data would be
too much waste.

• Third, tightly connected to the second
point, is the fact that often the num-
ber of genes/units in the network greatly



274 Annals of the New York Academy of Sciences

exceeds the number of measurements. In
this perspective, the DREAM competi-
tion was an unrealistic dream for everyone
working with reverse engineering. Even if
we also consider steady-state data, we have
to find suitable ways to tackle this situa-
tion since it is highly unlikely the situation
will change in the near future. This in-
cludes the issue of integration of various
types of data. Although this was not the
issue for the present two networks for the
DREAM competition, we believe this is
very important in the future development
of systems biology. Especially when deal-
ing with large-scale genome-wide reverse
engineering, this has to be considered to
help overcome the lack of expression data.

• Last, but not least, we find it essential to re-
flect upon the impact of the objective func-
tion on the design of a reverse-engineering
algorithm. Here we have relied on the no-
tion of prediction accuracy. However, it
has become increasingly clear within the
machine-learning community that a re-
duction of the prediction error does not
imply a control of the false discovery rate,
FDR.20 Different algorithms, each having
a small prediction error, are as a rule ex-
pected to have different FDRs, and differ-
ent sets of edges will therefore be selected.
This is a problem that will be put in the
forefront thanks to the DREAM initiative.

Finally, we would like to thank the organizers
of DREAM for providing one good forum for
assessment of algorithms. Despite all kinds of
criticisms that can be directed against a compe-
tition of this sort, and despite all shortcomings
one can see in the presented in-silico networks,
we still hold this has been an excellent service
to the whole community of systems biology. We
are looking forward to the next round.

Acknowledgments

We acknowledge Pedro Mendes and Gus-
tavo Stolovitzky for letting us use Figures 2

and 3 (PM) and 4 and 5 (GS), respectively. We
also acknowledge financial support from the
Centre for Industrial Information Technology
at Linköping Institute of Technology, Sweden
(MG and MH) and from the PhD school in
medical bioinformatics (FMB) (JL).

Conflicts of Interest

The authors declare no conflicts of interest.

References

1. Tegnér, J. & J. Björkegren. 2007. Perturbations to
uncover gene networks. Trends Genet. 23: 34–41.

2. Kauffman, S.A. 1969. Metabolic stability and epi-
genesis in randomly constructed genetic nets. Theor.

Biol. 22: 437–467.
3. Karlsson, F. & M. Hörnquist. 2007. Order or chaos

in Boolean gene networks depends on the mean frac-
tion of canalizing functions. Phsyica A 384: 747–
757.

4. Werner, M., I. Ernberg, J. Zou, et al. 2007. Epstein-
Barr virus latency switch in human B-cells : a physico-
chemical model. BMC Syst. Biol. 1: 40.

5. Margolin, A.A. & A. Califano. 2007. Theory and lim-
itations of genetic network inference from microarray
data. Ann. N. Y. Acad. Sci. 1115: 51–72.

6. D’haeseleer, P., X. Wen, S. Fuhrman & R. Som-
ogyi. 1999. Linear modeling of mRNA expression
levels during CNS development and injury. In Pa-

cific Symposium on Biocomputing, Vol. 4. R.B. Altman,
A.K. Dunker, L. Hunter, et al., Eds.: 41–52. World
Scientific Publishing Co. Singapore.

7. Gustafsson, M., M. Hörnquist & A. Lombardi. 2005.
Constructing and analyzing a large-scale gene-to-
gene regulatory network-lasso-constrained inference
and biological validation. IEEE/ACM Trans. Comput.

Biol. Bioinform. 2: 254–261.
8. Bansal, M., V. Belcastro, A. Ambesi-Impiombato &

D. di Bernardo. 2007. How to infer gene networks
from expression profiles. Mol. Syst. Biol. 3: 78.

9. Stolovitzky, G., D. Monroe & A. Califano. 2007. Di-
alogue on reverse-engineering assessment and meth-
ods. The dream of high-throughput pathway infer-
ence. Ann. N. Y. Acad. Sci. 1115: 1–22.

10. DREAM, Dialogue on Reverse-Engineering As-
sessment and Methods (2007), project webpage:
http://wiki.c2b2.columbia.edu/dream/index.php/
The_DREAM_Project.

11. Efron, B., T. Hastie, I. Johnstone & R. Tibshirani.
2004. Least angle regression. Ann. Stat. 32: 407–499.



Gustafsson et al.: Reverse Engineering of Gene Networks 275

12. Vanden Berghen, F. 2005. LARS Library: Least An-
gle Regression Stagewise Library. The MATLAB im-
plementation is utilized here. Unpublished.

13. Tibshirani, R. 1996. Regression Shrinkage and se-
lection via the Lasso. J. Roy. Stat. Soc., Ser. B 58: 267–
288.

14. Hoops, S., S. Sahle, R. Gauges, et al. 2006. COPASI
— a complex pathway simulator. Bioinformatics 22:
3067–3074.

15. Barabási, A.-L. & Z. Oltvai. 2004. Network biology:
Understanding the cell’s functional organization. Nat.

Rev. Genet. 5: 101–113.
16. Gustafsson, M., M. Hörnquist & A. Lombardi. 2006.

Comparison and validation of community structures
in complex networks. Physica A: Stat. Mech. Appl. 367:
559–576.

17. Hartwell, L.H., J.J. Hopfield, S. Leibler & A.W. Mur-
ray. 1999. From molecular to modular cell biology.
Nature 402: C47–C52.

18. Milo, R., S. Shen-Orr, S. Itzkovitz, et al. 2002. Net-
work motifs: simple building blocks of complex net-
works. Science 298: 824–827.

19. Gustafsson, M. & M. Hörnquist. 2008. Integrating
expression data, protein-protein interaction data and
TF-binding data for improved quality in reverse engi-
neering of gene regulatory networks. In Computational

Methods in Gene Regulatory Networks. S. Das, D. Caragea,
S. Welch & W. Hsu, Eds. IGI Global, Hershey, PA.

20. Nilsson, R., J.M. Peña, J. Björkegren & J. Tegnér.
2007. Consistent feature selection for pattern recog-
nition in polynomial time. J. Mach. Learn. Res. 8: 589–
612.

21. Rice, J.J., Y. Tu & G. Stolovitzky. 2005. Reconstruct-
ing biological networks using conditional correlation
analysis. Bioinformatics 21: 765–773.

22. Basso, K., A.A. Margolin, G. Stolovitzky, et al. 2005.
Reverse engineering of regulatory networks in human
B cells. Nat. Genet. 37: 382–390.


