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Abstract 

The pathogenesis of MS involves alterations to multiple pathways and processes, which represent a 

significant challenge for developing more effective therapies. Systems biology approaches that 

study pathway dysregulation will offer benefits by integrating in molecular networks and dynamic 

models with current biological knowledge for understanding disease heterogeneity and response to 

therapy. In MS, abnormalities have been identified in several cytokine signaling pathways, as well 

as those of other immune receptors. Among the downstream molecules implicated are Jak/Stat, NF-

Kb, ERK1/3, p38 or Jun/Fos. Together, these data suggest that MS is likely to be associated with 

abnormalities in apoptosis / cell death, microglia activation, blood-brain barrier functioning, 

immune responses, cytokine production, and/or oxidative stress. While current MS drugs target 

some of these pathways, others remain untouched. Here, we propose a pragmatic systems analysis 

approach that involves the large-scale extraction of processes and pathways relevant to MS. This 

data serves as a scaffold upon which computational modeling can be performed to identify disease 

subgroups based in the contribution of different processes. Such an analysis, targeting these relevant 

MS signaling pathways, offers the opportunity to accelerate the development of novel individual or 

combination therapies. 
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Introduction 

Multiple Sclerosis (MS) is a chronic disease that is known to involve both inflammatory and 

neurodegenerative responses. Despite the significant progress made in recent decades, we are still 

relatively far from achieving a comprehensive understanding of the pathogenesis of this disease. 

The revolution in molecular biology, immunology and genetics, along with the development of new 

high-throughput technologies has driven the production of large amounts of data in recent years. 

However, while numerous genes and proteins have been associated with the disease, significant 

gaps remain in the quest to understand the pathological mechanisms responsible for MS. Although 

there is still hope that new studies will reveal specific genes, proteins or cells that will explain an 

important proportion of the causes of the disease, current perspectives suggest that we already have 

identified the majority of cells and molecules involved, and that what is urgently needed is to 

integrate the available and any future data into a comprehensive dynamic picture of MS1.  

 

Unfortunately, knowing that a gene or cell type is associated with MS is far from providing an 

explanation about the disease. This is related to the fact that genes or proteins associated with MS to 

date are not mutated and therefore they do play the physiological role expected for them, 

complicating the analysis2. Moreover, in a complex disease such as MS, genes, proteins and cells 

dynamically interact with each other in response to the stimuli and challenges the immune and 

nervous system face3. This quantitative and dynamic information is extremely difficult to capture 

from patients and even from animal models. Second, each individual harbors a different genetic 

background and also the development of the immune and nervous system is customized for their 

environment during development, being one of the basis of disease heterogeneity. Therefore, 

without the integration of molecular information in pathways and considering molecular and 

cellular heterogeneity, it will be difficult to achieve a good understanding of the pathogenesis of 

MS. At the individual patient level, it will be critical to collect personalized data to customize the 

analysis to pave the way towards stratified medicine. 
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Systems biology approaches may offer important benefits integrating current biological knowledge 

with clinical information and data on therapeutic responses, thereby allowing models to be 

generated that might help explain the pathogenesis of the disease3, 4. Therefore, in this review we 

will focus on how a systems biology approach applied to medicine (systems medicine) from the 

pathway perspective, incorporating molecular information about MS pathogenesis and drug targets, 

could improve our understanding of the disease and help in the development or identification of 

new improved therapies.  
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Pathways regulating MS pathogenesis: a puzzle of the immune system, the CNS and missing 

pieces  

Decades of cellular and molecular research in the field of MS have revealed many genes, proteins 

and cell subpopulations of the immune system associated with the disease, and such information has 

expanded massively with the new omics technologies. In order to identify the pathways involved in 

a given disease, abundant information is available in databases such as Gene-Disease Association 

Database, the Protein Sequence Database, the Comparative Toxicogenomics Database, the Online 

Mendelian Inheritance in Man, the Genetic Association Database, or the Literature-derived Human 

Gene-Disease Network. Moreover, genetic susceptibility for MS has been revealed by genome 

association studies (GWAS) and the ImmunoChip study in MS, which have identified more than 

100 SNPs associated with the disease5, 6, which have been implicated mainly in immune system 

pathways (leukocyte activation, apoptosis, and positive regulation of macro-molecule metabolism, 

JAK-STAT signaling pathway, acute myeloid leukemia, and T cell receptor signaling)7. Moreover, 

several databases containing information about pathways are available such as the Kyoto 

Encyclopedia of Genes and Genomes (KEGG), Reactome, PathwayCommons or the 

ConsensusPathDB. Finally, chemoinformatic resources such as DrugBank, ChEMBL and Drug 

Information Online contain information about drugs, including their targets within human 

pathways. By combining the information available in these databases, more than 40 pathways 

associated with MS can be found (Fig. 1A). The overall picture obtained reveals the involvement of 

a wide range of cellular processes and pathways implicated: apoptosis / cell death, microglia 

activation, blood-brain barrier functioning, immune response, cytokine production, or oxidative 

stress. In addition, the search of these cellular processes can be combined with the targets of MS 

treatments, such as fingolimod, dimethyl-fumarate or interferon-beta. The targets of these therapies 

can be included by identifying the pathways that link them to the processes above, namely lipid-

mediated signaling and its crosstalk with survival and NF-Kb pathways, antioxidant pathways and 

the Stat-mediated IFNb response, respectively. Interestingly, pathway analysis revealed certain 
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processes that are not yet targeted by current therapies, e.g. the Notch pathway 8-10. Another 

pathway related with MS is vitamin D metabolism, and at present there are several trials testing the 

efficacy of vitamin D supplementation	
  11.  

 

New roles in MS of components in known pathways 

Once data is retrieved from databases, bioinformatic tools allow identification of interactions 

between genes, proteins and cells that can be used as hypotheses (Fig1B). For instance, and of 

pivotal clinical importance, these tools help to study the involvement of CNS pathways in MS 

pathogenesis. MS is a condition associated with substantial neuronal and axonal damage, and this 

neurodegeneration probably drives long-term neurological disability12. Hence, pathways that are 

related to neuronal death and axonal damage may be of particular interest for the development of 

neuroprotective therapies, an approach pursued for decades without success to date. Because our 

current understanding of the immune system is significantly more advanced than that of the CNS, 

automatic searches of databases have been likely to reveal significantly more pathways associated 

with the immune system than the nervous system. Moreover, the study of MS has been focused 

strongly on its immune aspects, as well as on the development of immunomodulatory medicines 

that target the inflammatory process and prevent relapses. Fortunately, the picture is now changing, 

and some of the pathways associated with MS relate to CNS damage, including apoptosis, oxidative 

stress, or microglia activation. Potential neuroprotective therapies under development are aimed to 

target such pathways such as green tea catechin epigallocatechin-gallate, trophic factors, 

Methylthioadenosine or drugs enhancing remyelination 13-16. 

 

Patient-to-patient genetic variability hinders understanding of signalling pathways involved in 

MS. 

It is striking that the recent massive genetic studies (e.g. GWAS, Immunochip) explain so little of 

individual disease risk5, 6.  It is also surprising that no single MS therapeutic yet has had well 
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validated genetic stratification. We believe that this fact, common to many complex diseases, is at 

least in part due to the lack of a functional, network-based perspective to the pathogenesis of the 

disease. Signaling networks are very robust to variation in cells and their environment to enable 

cellular functioning. For instance, it has been shown that even clonal populations strongly vary in 

the concentration of the same protein 17. The cellular function regulated by that protein needs to 

remain unaltered for healthy cellular behavior, therefore a number of network motifs grant 

robustness to signaling networks such as negative feedback loops 18.  Other variations to which 

signaling pathways can be robust are genetic polymorphisms. Therefore, including genotyping 

data when modeling signaling pathways of MS patients is key to understanding MS pathogenesis.  

 

Furthermore, some pathways may not be etiologically relevant because they are associated due to 

co-segregation of alleles with diseases. One approach for integrating the role of genetic 

susceptibility in systems biology methods is by considering that risk alleles mildly modify the 

parameters governing the functioning of the pathways. Therefore, one single allele may not have a 

significant effect in a given pathway, but the collection of all the risk alleles in a given individual 

may influence the function of immune pathways to the level of producing autoimmune activation. 

These considerations may help to improve the prediction of autoimmune response at the individual 

level. The same reasoning may apply to the fact that no drug stratifies by any single risk allele, 

although this may change if new therapies target MS associated genes and one of the alleles 

modulate the biological effects of the drug. 

 

In summary, understanding how each individuals’ genetic polymorphisms lead to their specific 

signaling network activity would enable characterization of the different MS phenotypes. This 

would, however, suggest a further question: how does patient-to-patient variability in signaling 

activity affect drug efficacy? To answer this question, signaling networks need to be elucidated 

not only depending on donor genetic variability, but also in a cell-specific manner, thereby 
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determining how each pathway contributes to the cell phenotype (pro-inflammatory, 

degeneration, repair), and to identify the missing steps (molecules and interactions) that 

participate in such MS pathways. For example, IL-10 is one of the main immunosuppressor 

cytokines but clinical trials with IL-10 failed to show benefits in MS, probably because IL-10 

receptor signaling is at least partially deregulated in immune cells19, and this can influence the 

individual response. We envision that a fine mapping of specific pathways such as cytokines 

pathways in specific cell types (e.g. CD4, CD8, B cells) in parallel with large high throughput 

studies will allow us to improve pathway annotation. Coupled computational modeling and 

experimental validation will enable characterization of signaling networks in a cell-type, donor 

and genetic variant specific manner, as reviewed in detail below. 

 

Other challenges in pathway analysis 

The fact that database searches identify many pathways associated with MS in immune cells 

might suggest that there is significant cross-talk between the major pathways within the same 

cell, with important proteins participating in several signaling cascades (Jak/Stat, NF-Kb, 

ERK1/2, p38, Jun/Fos). Crosstalk within pathways in the same cell is complex and thus difficult 

to study only based on existing experiments. Second, there is a substantial gap in our 

understanding of how such crosstalk interactions are translated into a cell-type specific response 

at the system level (e.g., interferon-beta produces different effects on macrophages and T cells, 

which are related with different clinical effects). Third, it is particularly difficult to make sense 

out of the existing MS data, since it is a disease that affects the arguably two most complex 

tissues/organ systems in our body, i.e. the immune system and the CNS, as described above. 

Fourth, annotation of gene function is still incomplete, and the role of the same genes in the CNS 

is often even less well understood or as yet unknown. For example, TNFα may have detrimental 

effects in the immune system in MS but they might also be beneficial in the CNS during 

remyelination 20. Indeed, TNFα promotes oligodendrocyte progenitor proliferation, as well as 
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remyelination, which probably explain why the application of the TNF-antagonist lenercept 

produced an unexpected deterioration of MS 21. Finally, a principal limitation in pathway analysis 

using existing data for functional annotation is that these approaches do not provide a 

mechanistic model that can be simulated, hence hindering the prediction of novel signaling 

mechanisms. To solve the challenges described here, combined analysis of newly acquired 

experimental data and mathematical models can be used22.	
  Next,	
  we	
  review	
  in	
  detail	
  such	
  

predictive	
  models. 
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Predictive and mechanistic models to understand MS pathogenesis and therapies 

The past decade has seen an explosion in the information regarding the cellular networks that 

transmit and process signals from the cell’s environment. To gain novel understanding of the basic 

mechanisms that the cell uses to integrate these signals, as well as how such mechanisms are 

impaired by disease, mechanistic –mathematical- models are a powerful tool	
  23. The first step to 

mathematical modeling is a literature search to gather the current understanding regarding the 

molecular process of interest, in this case MS. To that end, we can query public resources, a process 

that yields the pathways known to be involved in MS, which in turn are combined to form a 

signaling network. Signaling networks can be used as initial scaffolds upon which we can formulate 

mechanistic hypothesis and evaluate similarity with experimental data and disease-driven changes 

(Fig. 2, upper row). Therefore, experimental data needs to be acquired that measures as many 

readouts as possible relevant to the disease of study, i.e. present in the signaling network. To that 

end, phosphoproteomic measurements are key in the analysis of signaling pathways because 

measuring abundance of phosphorylated proteins closely indicates propagation of a signal through a 

pathway and can be used in functional models24. Previous work in the field has provided clear 

examples that phosphoproteomic analysis is able to provide accurate models of some pathways in 

cells such as hepatocytes 25.  Bead-­‐based	
  ELISA	
  assays	
  of	
  xMAP	
  technology	
  (Luminex,	
  Austin,	
  

TX)	
  are	
  well	
  suited	
  for	
  this	
  task	
  24,	
  enabling	
  measurement	
  of	
  the	
  abundance	
  of	
  a	
  large	
  number	
  

of	
  phosphorylated	
  proteins	
  in	
  the	
  MS	
  pathways	
  above-­‐mentioned,	
  in	
  immune	
  cells	
  of	
  

individual	
  patients	
  of	
  differents	
  cohorts.	
  Combining	
  phosphoproteomics	
  with	
  genotyping	
  in	
  

mathematical	
  models,	
  both	
  the	
  activity	
  of	
  MS	
  pathways	
  and	
  the	
  genetic	
  variability	
  that	
  may	
  

explain	
  the	
  patient-to-patient difference in terms of response to treatment	
  can	
  be	
  studied	
  (Fig.	
  2,	
  

upper	
  row).	
  Once a signaling network has been assembled via literature search, and the data to 

compare it has to been measured, mathematical approaches enable formalization of the network as a 

mechanistic model. Intuitively, the formulation as mathematical model of such a signaling network 
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addresses two limitations: they are neither specific to individual patients (or even often to specific 

cell types), nor are they computable, i.e., can be used to predict the outcome of perturbations with 

drugs and ligands.  

 

Several mathematical modeling approaches have become well established in the field of systems 

biology and can be applied to signaling pathways, ranging from logic to physicochemical models 	
  

26. The lack of quantitative information for building the models can be bridged by using logic 

(Boolean) modeling, which includes only causal information and that due to this simplicity, has 

many fewer parameters (quantitative properties) to evaluate. This advantage can be used to 

represent large signaling networks that can be generated with limited data 27. To implement logic 

models, tools such as CellNOpt	
  28 enable formalization of the signaling network as logic model and 

subsequent simulation. Next, these tools enable calibration of the model, which is performed by 

changing the network topology, i.e. the shape of the network in terms of the interactions between 

the present signaling intermediates. These changes consist in introducing or removing interactions, 

and systematic comparison of the simulations upon different topologies against the experimental 

data predicts the topology that best fits the data. The simplicity in logic modeling that enables 

simulation of large networks at the same time hinders highly detailed modeling of small networks. 

In more detailed analyses, appropriate tools are physicochemical models that describe the 

underlying biochemical reactions explicitly 23, 29, 30. Here the model parameters are quantitative 

characteristics such as kinetic rates of the reactions that they represent, which are revealed by model 

calibration against the experimental data. In both modeling approaches, the main challenge lies in 

calibrating the model in order to make the model specific for MS, while at the same time 

determining the factors contributing to patient-to-patient variability. To address patient-to-patient 

variability, instead of starting from a single signaling network one solution is to calibrate an 

ensemble of networks featuring a high number of different starting topologies in order to test many 

different hypotheses that are compared separately to the xMAP and genotype of single patients31	
  ,	
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including	
  in	
  these	
  signaling	
  topologies	
  the	
  mechanisms	
  that	
  grant	
  robustness	
  to	
  signaling	
  

pathways,	
  such	
  as	
  negative	
  feedback	
  loops.	
  Thereby,	
  we	
  could	
  determine	
  which	
  of	
  the	
  

ensemble	
  of	
  topologies	
  best	
  fits	
  each	
  individual	
  patient	
  (Fig	
  2,	
  middle	
  row). Overall, the 

modeling of signaling pathways in MS, using either logic networks or mathematical models, offers 

the opportunity to predict new signaling mechanisms that help better understand disease 

pathogenesis. For example, a recent mathematical model of the type 1 interferon pathway revealed 

the translocation of Stat-1 to the nucleus as the most critical step in the signaling of IFN-b, a finding 

that could not be predicted solely based in molecular analysis but required dynamic simulations32. 

 

Drug development and combination therapy in predictive models of MS  

One obvious question is if recent technological developments have provided a large amount of data 

about MS, why is drug discovery still so complex and provides so limited results? Although the 

limitations of the drug discovery process have been reviewed in detail33, several specific issues 

regarding how biological information is translated into models of the disease and pathways are of 

importance. In the process of developing useful pathway models for drug development it is critical 

to take in consideration many aspects that at present are not well covered, such as (i) the availability 

of quantitative and kinetic data from human/patients; (ii) integration of individual heterogeneity and 

genetic background for defining the response to therapy, or (iii) the need to develop approaches for 

integrating and simulating complex networks of not just cells but also tissues. As described in Fig. 

2, here we propose that coupling several omics and genotyping to mathematical models of signaling 

networks can address these issues. Further, existent drugs can be repurposed to target MS-related 

components by including their targets in a signaling network that can then be formalized as a 

mathematical model and simulated. This would enable to test millions of different options in terms 

of topology of signaling networks, therapeutic regimens, and drug/target combinations. This should 

allow prediction of the signaling mechanisms by which these existing drugs could be repurposed to 
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MS, discard therapeutic approaches that may not work and point at the ones that deserve careful 

experimental and clinical testing. 

 

Given the complexity and heterogeneity of MS, combination therapies that modulate various 

pathogenic pathways simultaneously are an attractive treatment strategy 34. A synergistic effect of 

two drugs with different mechanisms of action may potentially improve efficacy, safety and 

tolerability. By contrast, defining the optimal combination of drugs requires a more comprehensive 

understanding of the networks of pathways in different cells initiating and driving the progression 

of MS, an effort that can be addressed using systems biology techniques 35. The integration of 

clinical, biological and pharmaceutical data in computational models that reproduce the complexity 

of such diseases can be used to identify synergistic effects by evaluating the downstream effects of 

drugs 36. 

 

Finally, another significant challenge in improving drug development is predicting side-effects of 

therapies. Predictive toxicity was something highly theoretical until recently, but in the last years 

new significant insights have been provided by developing new algorithms combining drug 

databases and safety databases. Prior knowledge extracted from such databases can be introduced in 

mathematical models (Fig. 2) that are starting to provide useful predictions regarding potential side-

effects that can be tested in preclinical or early clinical phases of drug development 37, 38	
  . However, 

this complex issue is still far from being solved. 

 

Conclusions 

The pathogenesis of MS is complex, involving hundreds of genes and proteins that act in numerous 

pathways and evolve along time and disease progression, each of which can contribute to the 

phenotype. These genes and proteins may respond distinctly to different therapies, and even behave 

differently in different patients. In order to integrate current knowledge and generate a 
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comprehensive model of MS pathogenesis, pathway analysis represents a promising strategy. 

Combining experimental and medical data with distinct systems biology approaches should provide 

new insights on disease pathogenesis, allow us to screen in silico new drugs for repurposing, as well 

as test combinations of drugs, before exposing patients to therapy. 
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Figure legends 

Figure 1. Signaling pathways associated with MS. A) An example of the pathways implicated in 

MS that can be indentified from databases. Right column shows the heatmap of the pathways 

associated with MS and the left columns the heatmap of the pathways associated with each of the 

drugs. On the right, each cluster is followed by the list of the pathways it includes (in bold the 

pathways specifically target by a drug). Blue squares: known mechanisms of action for a given 

drug. Green box: pathways associated with MS but not targeted by any drug. B) Integration of 

signaling pathways implicated in MS in network models: the genes/proteins associated with MS are 

displayed in orange, drugs in green; and the main MS pathways targeted by therapies in yellow. 

Figure 2. Pipeline for the identification of new therapies based on the modeling of signaling 

pathways associated with MS and MS drugs. Flow from first to second row panels: 

experimental set-ups, such as proteomics and genotyping, can be tailored to interrogate MS specific 

signatures in terms of phosphoproteomics (rows, phosphorylation profile of specific proteins e.g. 

xMAP assays; Columns, MS-related treatments) and the risk variants. A literature search enables 

MS- and immune-specific pathways to be compiled and drug-protein networks can be assembled 

(the hot scale shows the density of proteins in the signaling pathways, and the upper layer shows 

green and blue clusters of proteins targeted by MS-related drugs). Flow from second to third row 

panels: logic and dynamic models can be constructed based on MS- and immune-specific signaling 

pathways. In order to study how signaling is deregulated in MS, one model can be calibrated 

against a patient-specific dataset, thereby yielding an ensemble of patient-specific models that 

enables common signaling mechanisms and those that explain patient-to-patient variability to be 

discriminated. In parallel, the signaling pathways and drug-protein networks can be used as an input 

for machine learning approaches in order to reposition existing drugs that can be used to infer new 

drug indications or to predict toxicity. From new drug indication to model: literature search of 

existing drugs and their targets, combined with search of those targets in MS-specific networks 

yields MS-specific drug-protein networks, which suggests new drug indications by identifying the 
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interactions from drug targets to MS networks. These newly-indicated drugs can then be introduced 

in the predictive models to understand their mechanisms of action in order to select those drugs 

with the best potential efficacy. 
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