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Abstract

We introduce a definition of algorithmic symmetry able to capture
essential aspects of geometric symmetry. We review, study and apply
a method for approximating the algorithmic complexity (also known as
Kolmogorov-Chaitin complexity) of graphs and networks based on the
concept of Algorithmic Probability (AP). AP is a concept (and method)
capable of recursively enumerate all properties of computable (causal)
nature beyond statistical regularities. We explore the connections of al-
gorithmic complexity—both theoretical and numerical— with geometric
properties mainly symmetry and topology from an (algorithmic) information-
theoretic perspective. We show that approximations to algorithmic com-
plexity by lossless compression and an Algorithmic Probability-based method
can characterize properties of polyominoes, polytopes, regular and quasi-
regular polyhedra as well as polyhedral networks, thereby demonstrating
its profiling capabilities.

Keywords: Kolmogorov-Chaitin complexity; algorithmic probability; al-
gorithmic Coding Theorem; Turing machines; polyominoes; polyhedral
networks; molecular complexity; polytopes; information content; Shan-
non entropy; symmetry breaking; recursive transformation.

∗An online implementation to estimations of graph complexity is available online at http:
//www.complexitycalculator.com
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1 Connecting information and symmetry

The literature on the subject of finding connections between symmetry and
complexity is sparse, in particular in connection to information theory and al-
gorithmic complexity.

In [13], a relation between symmetry and entropy was suggested in the con-
text of molecular complexity, thereby establishing connections between low sym-
metry and low entropy or higher (classical—as opposed to algorithmic) infor-
mation content.

A measure of structural complexity must not be based on classical symme-
try. The use of symmetry in the realm of complexity is justified only in the
context of combinatorial complexity, establishing equivalences among the diver-
sity of elements of an object with symmetry by way of statistical regularities.
An illustrative example is an object such as the mathematical constant π, which
would appear random to an observer uninformed about its deterministic origin,
and which has no apparent symmetry even though it is often, if not always,
involved in aspects of symmetry related to, e.g., thesphere. The constant π,
however, can be briefly described algorithmically (by a formula or a computer
program), and therefore is considered to be of low complexity [24]. It is clear
then that classical and algorithmic information theory measure different prop-
erties. However, Shannon entropy does not provide a method to have access to
the probability distributions thereby heavily relying on ensemble assumptions
to which an object in question is supposed to belong.

There is therefore a need for tools to extract meaningful generalizations from
graphs and networks in, for example, computational chemistry. The concept of
symmetry has traditionally been important in areas ranging from pure math-
ematics to biology and molecular complexity in chemistry. In developmental
biology, for example, symmetry is a powerful tool to transfer information and
build organisms by self-replication communicating information across long dis-
tances. In chemistry, symmetries of a molecule and of molecular orbitals forming
covalent bonds, have been studied extensively.

In [21, 22] we explore connections related to structure networks of chemi-
cal compounds with toxicological applications. Here, in the current paper, we
provide a unified and robust platform for estimating the algorithmic complexity
of a graph on the basis of algorithmic information theory that is applicable to
both abstract objects—e.g. geometric ones such as polyominoes, polytopes, and
graphs.

We test this notion in terms of simplicity and complexity and in our analysis
we find connections between symmetry and complexity. We will then examine
properties of symmetry captured by graph descriptions, in order to test and
illustrate the algorithmic measure of algorithmic complexity for graphs and
networks.
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1.1 Polyominoes

A polyomino is a collection of cells of equal size that share at least one side. One
can think of polyominoes as an extension of dominoes. Polyominoes are familiar
because of their use of Tetrominoes (polyominoes of size 4) as introduced in the
game of Tetris. The goal of the game of Tetris can actually be defined as the
reduction of the Tetromino complexity by tiling, and while solutions to Tetris
can easily be achieved by minimization of the spaces between Tetrominoes, the
method of algorithmic complexity, by means of finite approximations to algo-
rithmic probability (AP), provides a (numerical as well as practical) alternative
to the solution of Tetris other than by the minimization of spaces, with the
alternative solution by means of algorithmic complexity producing interesting,
efficient packings through minimization of shape complexity by producing tilings
of low complexity.

1.2 Polyhedra, polytopes and polyhedral networks

Definition 1. A polytope is a geometric object with flat sides, and may exist in
any general number of dimensions n as an n-dimensional polytope or n-polytope.

For example, a two-dimensional polygon is a 2-polytope and a three-dimensional
polyhedron is a 3-polytope.

Definition 2. A Platonic solid is a regular, convex polyhedron.

There are 5 polyhedra that can have the properties of a Platonic solid in
3-dimensions and 13 that are Archimedian.

Definition 3. An Archimedean solid is a semi-regular convex polyhedron com-
posed of regular polygons meeting in identical vertices, excluding the 5 Platonic
solids and also the prisms and antiprisms.

Definition 4. Every n-polytope has a dual structure, obtained by interchanging
its vertices for facets, edges for ridges, and so on, generally interchanging its
(j − 1)-dimensional elements for (n − j)-dimensional elements (for j = 1 to
n− 1), while retaining the connectivity or between elements.

As an example, the tetrahedron is dual to itself, the cube is dual to the
octahedron, and icosahedron is dual to dodecahedron. Thus, to find the direct
symmetry group of all the 5 Platonic solids it suffices to find the groups of the
tetrahedron, cubes, and dodecahedron.

Definition 5. An n-polyhedral graph (or c-net) is a 3-connected simple planar
graph on n nodes.

1.3 Basics of Graph theory

Definition 6. A graph is an ordered pair G = (V,E) comprising a set V of
nodes or vertices and a set E of edges or links, which are 2-element subsets of
V .
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Definition 7. A graph is planar if it can be drawn in a plane without graph
edges crossing.

Planarity is an interesting property because only planar graphs have duals.

Definition 8. A dual graph of a planar graph G is a graph that has a vertex
corresponding to each face of G, and an edge joining two neighbouring faces for
each edge in G.

Dual polyhedra share the same symmetry axes and planes.

Definition 9. A uniform polyhedron is a polyhedron which has regular polygons
as faces and is vertex-transitive on its vertices, that is, there is an isometry
mapping any vertex onto any other.

Every convex polyhedron can be represented in the plane or on the surface
of a sphere by a 3-connected planar graph.

In what follows, we will use the terms nodes and vertex, and links and edges,
interchangeably.

2 Methodology

2.1 Computability/recursivity

In computability theory, computable (or Turing-computable) functions are also
called recursive functions. Computable functions are the mathematical formal-
ization of the intuitive notion of an algorithm.

Definition 10. A function f : Nk → N is computable if and only if there is a
Turing machine that, given any k-tuple x of natural numbers, will produce the
value f(x).

In other words, a function is computable if there exists an algorithm (a Turing
machine) that can implement the the function.

Definition 11. A set of natural numbers is called recursively enumerable if
there is a computable function f such that for each number n, f(n) is defined if
and only if n is in the set.

Thus a set is recursively enumerable if and only if it is the domain of some
computable function.

Operations or transformations that are recursively enumerable simply im-
plies that such operations can be implemented as a computer program running
on a universal Turing machine.
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2.2 Group-theoretic symmetry

Definition 12. Let X be an object in R3. A symmetry axe l of X is a line
about which there exists θ ∈ (0, 2π) such that the object X is rotate by an angle
θ which appears to be identical to X.

Definition 13. A symmetry plane P of X is a reflected mirror image of the
object X appearing unchanged.

In group theory, the symmetry group of an object is the group of all trans-
formations under which the object is invariant under composition of the group
operations. Here we consider symmetry groups in Euclidean geometry and poly-
hedral networks.

For example, given an equilateral triangle, the counterclockwise rotation
by 120 degrees around the centre leaves the triangle invariant as it maps every
vertex and edge of the triangle to another one occupying exactly the same space.

Definition 14. The direct symmetry group of an object X, denoted Sd(X), is
a group of symmetry of X if only rotation is allowed.

Definition 15. The full symmetry group of an object X, denoted S(X), is the
symmetry group of X of rotations and reflections.

A (full) symmetry group is thus a set of symmetry-preserving operations,
such as rotations and reflections. Dual polyhedra have the same symmetry
group. For example, a tetrahedron has a total of 24 symmetries, that is, |S(T )| =
24.

While symmetry groups are continuous or discrete, here we are interested
in recursively enumerable discrete symmetry groups and actions such that for
every point of the space the set of images of the point under the isometries in
the full symmetry group is a recursively enumerable set.

In what follows we will use this recursively enumerable variation of the group-
theoretic characterization of mathematical symmetry, symmetry will be taken
thus as a space or graph-theoretic invariant under recursively enumerable defined
transformations.

The direct and full symmetry groups of tetrahedra, cubes and octahedra,
and dodecahedra and icosahedra are, respectively, A4 and S4, S4 and S4 × Z2,
and A5 and A5 × Z2 suggesting a natural but limited symmetry partial order,
the largest the group subindex the more symmetric. However, it is not clear
how to compare different types of symmetry.

In the case of the sphere, it is characterized by spherical symmetry, a type of
continuous symmetry as it has an infinite number of symmetries (both for rota-
tions and reflections), here we will only require that the scalars and reflections
lines involved are recursively enumerable.

Here we will advance a notion of symmetry based both on group theoretic
and algorithmic information to find the correspondences between each other.
As a result, we will provide a proposal of a total order of symmetry.
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2.3 Information theory

A random configuration of, let’s say a gas in a room, has little symmetry but
high entropy, but a specific symmetric configuration will have high entropy
because any change will destroy the symmetry towards a more likely disordered
configuration. But the extent to which entropy can be used to characterize
symmetry is limited to only apparent symmetry, and it is not robust in the face
of object description, due to its dependence on probability distributions [25].
Entropy measures the uncertainty associated with a random variable, i.e. the
expected value of the information in a message (e.g. a string) in bits. Formally,

Definition 16. The Shannon entropy of a string x is defined by:

−
n∑
i=1

p(xi) log2 p(xi)

Shannon entropy allows the estimation of the average minimum number of
bits needed to encode a string (or object) based on the alphabet size and the
occurrence of the alphabet symbolsbased on a probability distribution. Despite
its limitations, classical information theory (Shannon entropy) can be consistent
with symmetry. One of its main properties is the property of symmetry given
by H(x1, x2, . . . , xn) = H(xτ(1), xτ(2), . . . , xτ(n)), where τ is any permutation
from 1 to n, and this property also holds for variations of H such as block
entropy, where the string bits are taken up by tuples, e.g. bytes. In other
words, H remains invariant amidst the reordering of elements. While entropy
may look as if it preserves certain properties for symmetrical objects, it also
fails to some extent to characterize symmetry. For example, s1 = 0000011111
and s2 = 1101001011 have H(s1) = H(s2) because there is a permutation τ
that sends s1 onto s2 and vice versa. However, H misses the fact that s2 looks
significantly less symmetrical than s1, which has a reflection symmetry at the
centre bit. When taking 2-bit elements as units for H, hence applying what
we will call block entropy denoted by H2 for blocks of size two bits), this is
solved and H2(s1) < H2(s2), but then we will miss possible 2-bit symmetries,
and so on. Taking Hb for b = 1, . . . , n where n = |si|. We will see that
for algorithmic complexity, there are nearly similar results, but with far more
interesting subtleties.

2.4 Graph entropy

We will define the Shannon entropy (or simply entropy) of a graph G represented
by its adjacency matrix A(G) by

Definition 17. H(A(G)) = −
∑n
i=1 P (A(xi)) log2 P (A(xi))

where G is the random variable with n possible outcomes (all possible adjacency
matrices of size |V (G)|). For example, a completely disconnected graph G with
all adjacency matrix entries equal to zero has entropy H(A(G)) = 0 because
the number of different symbols in the adjacency matrix is 1. However, if a
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different number of 1s and 0s occur in A(G), then H(A(G)) 6= 0. In general
we will use Block Entropy in order to detect more graph regularities (through
the adjacency matrix) at a greater resolution. But for Block Entropy there is
an extra factor to be taken into account. The adjacency matrix of a graph is
not invariant under graph relabellings. This means that the correct calculation
of the Block Entropy (not relevant for 1-bit Entropy) of a graph has to take
into consideration all possible adjacency matrix representations for all possible
labellings. Therefore,

Definition 18. The Block Entropy of a graph is given by:

H(G) = min{H(A(gL))|GL ∈ L(G)}

where L(G) is the group of all possible labellings of G.

2.5 Algorithmic complexity

The algorithmic (Kolmogorov-Chaitin) complexity of a string x is the length of
the shortest effective description of x. There are several versions of this notion.
Here we use mainly the plain complexity, denoted by C(x), and the conditional
plain complexity of a string x given a string y, denoted by C(x|y), which is the
length of the shortest effective description of x given y. The formal definitions
are as follows. We work over the binary alphabet {0, 1}. A string is an element
of {0, 1}∗. If x is a string, |x| denotes its length. Let M be a universal Turing
machine that takes two input strings and outputs one string. For any strings x
and y,

Definition 19. The algorithmic complexity of x conditioned by y with respect
to M is defined as,

CM (x|y) = min{|p| such that M(p, y) = x}.

We will often drop the subscript M in CM (x|y) because of the invariance
theorem, and we will also write C(x) instead of C(x|λ) (where λ is the empty
string). If n is a natural number, C(n) denotes the algorithmic complexity of
the binary representation of n. Prefix-free complexity K is defined in a similar
way, the difference being that the universal machine is required to be prefix-free.
That is, only self-delimited programs are valid programs; no program is a prefix
of any other, a property necessary to keep 0 < m(s) < 1 a (semi-) probability
measure.

2.6 Algorithmic probability

Algorithmic Probability is a seminal concept in the theory of algorithmic infor-
mation. The algorithmic probability of a string s is a measure that describes
the probability that a valid random program p produces the string s when run
on a universal Turing machine U . In equation form this can be rendered as
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Definition 20.
m(s) =

∑
p:U(p)=s

1/2|p|

That is, the sum over all the programs p for which U outputs s and halts.

The Algorithmic Probability [15, 11] measure m(s) is related to algorithmic
complexity K(s) in that m(s) is at least the maximum term in the summation
of programs, given that the shortest program carries the greatest weight in the
sum.

Definition 21. The Coding Theorem further establishes the connection between
m(s) and K(s) as follows:

| − log2m(s)−K(s)| < c (1)

where c is a fixed constant independent of s. The Coding Theorem implies
that [8, 6] one can estimate the algorithmic complexity of a string from its
frequency. By rewriting Eq. 1 as:

Km(s) = − log2m(s) + c (2)

where O(1) is a constant. One can see that it is possible to approximate K by
approximations to m (such finite approximations have also been explored in [14]
on integer sequences), with the added advantage that m(s) is more sensitive to
small objects [9] than the traditional approach to K using lossless compression
algorithms, which typically perform poorly for small objects (e.g. small graphs).

As shown in [20], estimations of algorithmic complexity are able to dis-
tinguish complex from random networks (of the same size, or asymptotically
growing), which are both in turn distinguished from regular graphs (also of the
same size). K calculated by the BDM assigns low algorithmic complexity to reg-
ular graphs, medium complexity to complex networks following Watts-Strogatz
or Barabási-Albert algorithms, and higher algorithmic complexity to random
networks. That random graphs are the most algorithmically complex is clear
from a theoretical point of view: nearly all long binary strings are algorithmi-
cally random, and so nearly all random unlabelled graphs are algorithmically
random [20].

2.6.1 The Coding Theorem and Block Decomposition methods

The Coding Theorem Method (CTM) [9, 18] is rooted in the relation provided
by Algorithmic Probability between frequency of production of a string from
a random program and its Kolmogorov complexity (Eq. 1, also called the al-
gorithmic Coding theorem, as distinct from another coding theorem in classical
information theory). Essentially it uses the fact that the more frequent a string
(or object), the lower its algorithmic complexity; and strings of lower frequency
have higher algorithmic complexity.
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Here we report results that would not have been possible if they were not
specific enough to correctly identify small patterns that represent signatures of
the algorithmic content of an object by using CTM and BDM. We show that
the AP-based measures either constitute an equivalent or a superior alternative
to other more limited measures, such as lossless compression algorithms, widely
used as estimators of algorithmic complexity, and to Shannon entropy and re-
lated measures that are based on traditional statistics and require that broad
assumptions be encoded in their underlying probability distributions.

The Block Decomposition method (BDM) consists in determining the al-
gorithmic complexity of a matrix by quantifying the likelihood that a random
Turing machine operating on a 2-dimensional tape (also called a termite or
Langton’s ant [12]) can generate it and halt. The Block Decomposition Method
(BDM) decomposes the adjacency matrix of a graph into smaller matrices for
which we can numerically calculate its algorithmic probability by running a
large set of small 2-dimensional deterministic Turing machines, and therefore
its algorithmic complexity upon application of the algorithmic Coding theorem.
Then the overall complexity of the original adjacency matrix is the sum of the
complexity of its parts, albeit a logarithmic penalization for repetitions, given
that n repetitions of the same object only add log2 n complexity to its overall
complexity, as one can simply describe a repetition in terms of the multiplic-
ity of the first occurrence. The following graph complexity definition will also
introduce BDM.

2.7 The algorithmic complexity of a graph

We define the algorithmic complexity estimation of a graph as follows:

Definition 22. The Kolmogorov complexity of a graph G is defined as follows:

BDM(g, d) =
∑

(ru,nu)∈A(G)d×d

log2(nu) + CTM(ru) (3)

where Km(ru) is the approximation of the algorithmic (Kolmogorov-Chaitin)
complexity of the subarrays ru using the algorithmic Coding theorem (Eq. 2)
method that we denote by CTM, A(G)d×d represents the set with elements
(ru, nu) obtained when decomposing the adjacency matrix ofG into non-overlapping
squares of size d by d. In each (ru, nu) pair, ru is one such square and nu is its
multiplicity (number of occurrences). From now on KBDM (g, d = 4) may be
denoted only by K(G), but it should be taken as an approximation to K(G)
unless otherwise stated (e.g. when referring to the theoretical true K(G) value).

Considering relabellings, the correct evaluation of the algorithmic complexity
of a graph is given by:

Definition 23.
K(G) = min{K(A(GL))|GL ∈ L(G)}

where L(G) is the group of all possible labellings of G.
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One contribution of these algorithmic-based measures is that the 2-dimensional
versions of both CTM and BDM are native bidimensional measures of complex-
ity and thus do not destroy the 2-dimensional structure of an adjacency matrix.

By making a generalization of the algorithmic Coding theorem using 2-
dimensional Turing machines. This makes it possible to define the probability of
production of an adjacency matrix as the result of a randomly chosen determin-
istic 2-dimensional-tape Turing machine without any array transformations to
a string, thus making it dependent on yet another mapping between graphs and
strings, unlike our approach that natively deals directly with the complexity of
the graph adjacency matrix.

Most algorithms implementing a computable measure of graph complexity
are based either on a graph-theoretic/topological feature that is computable
or upon Shannon entropy. An example of an improvement on Shannon en-
tropy is the introduction of graph lossless compression such as Graphitour [2].
A drawback of graph compression is that lossless compression based on pop-
ular algorithms such as LZW (Gzip, PNG, Compress), that are traditionally
considered to be approximations to algorithmic (Kolmogorov) complexity, are
more closely related to Shannon entropy than to algorithmic complexity (which
we will denote by K). This is because these popular algorithms implement a
method that traverses an object looking for trivial repetitions from which a
basic grammar is produced based on frequency.

A major improvement in the means of approximating the algorithmic com-
plexity of strings, graphs and networks, based on the concept of algorithmic
probability (AP), offers different and more stable and robust approximations
to algorithmic complexity by way of the so-called algorithmic Coding theorem
(c.f. below). The method, called the Coding Theorem Method, suffers the same
drawback as other approximations of K, including lossless compression, related
to the additive constant involved in the Invariance Theorem as introduced by
Kolmogorov, Chaitin and Solomonoff [10, 7, 15], which guarantees convergence
towards K though its rate of convergence is unknown. The chief advantage of
the algorithm is, however, that algorithmic probability (AP) [15, 11] not only
looks for repetitions but for algorithmic causal segments, such as in the deter-
ministic nature of the digits of π, without the need of distribution assumptions.
As with π, a graph that is produced recursively enumerable will be eventually
characterized by algorithmic probability as having low algorithmic complexity,
unlike traditional compression algorithms that implement a version of classical
block Shannon entropy. In previous work, this kind of recursively enumerable
graph [25] has been featured, illustrating how inappropriate Shannon entropy
can be when there is a need for a universal, unbiased measure where no feature
has to be pre-selected.

The method studied and applied here was first defined in [16, 24] and is
in many respects independent of the observer to the greatest possible extent.
For example, unlike popular implementations of lossless compression used to
approximate algorithmic complexity (such as LZW), the method based on Al-
gorithmic Probability averages over a large number of computer programs found
to reproduce the output, thus making the problem of the choice of enumeration

10



less relevant compared to the more arbitrary choice of lossless compression al-
gorithm. The advantage of the algorithmic complexity measure is that when it
diverges from algorithmic complexity (because it requires unbounded increasing
computational power) it then collapses into Shannon entropy [24].

We have previously reported connections between algebraic and topological
properties using algorithmic complexity [20], where we introduced a definition
and numerical method for labelled graph complexity; and in applications to the
clustering capabilities of network superfamilies in [17], as well as in applications
to biology [23], where we also introduced a generalization of unlabelled graph
complexity. Here we carry further these information content approaches for
characterizing biological networks and networks in general. We provide theo-
retical estimations of the error of approximations to the algorithmic complexity
of graphs and complex networks, offering both exact and numerical approxima-
tions.

The algorithm here considered can deal with a variety of graph types includ-
ing directed graphs and weighted graphs. The resulting structure could be used
for representation and classification as we will see.

3 Results

3.1 Algorithmic characterization of geometric symmetry

It is not difficult to identify a group of (recursively enumerable) symmetries as
being of low conditional algorithmic (Kolmogorov-Chaitin) complexity because
a recursively enumerable transformation requires an encoding of fixed computer
program length implementing the recursively enumerable transformation.

Here we propose an algorithmic information characterization of symmetry:

Definition 24. We define a transformation of a recursively enumerable object
s to s′ as a transformation T such that there exists c = |U(p) = T | such that
|K(s′)−K(s)| ≤ c

where c is the length of a program that implements the transformation T on
a (prefix-free) Turing machine running program p, and so K(s′) = K(s) + c′

such that c′ ≤ c, i.e. K(s′) ∼ K(s). The Kolmogorov complexity of the most
symmetric geometrical object, the n-dimensional hypersphere can be given by:

Definition 25.

K(c) = min{p : p(r, n) = {x ∈ Qn : ‖x‖ = r}}

where x is a computable number. It can be seen that K depends only on the
dimension n and the radius r.

Let T (s) be the recursively enumerable symmetry group for object s. It
follows that if there is a recursively enumerable function t ∈ T such that s′ =
t(s) with t and a recursively enumerable function t−1 mapping s′ to s, then
|K(s)−K(s′)| < c. In other words, K is invariant.
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Figure 1: Symmetry breaking. Top: Starting from a growing complete graph
(perfect symmetry), removing a node produces another perfectly symmetrical
object (another smaller complete graph) hence preserving the symmetry. But
as soon as a random edge is deleted from the complete graph, the symmetry
is broken and information is generated as quantified by the difference between
the original algorithmic content of the complete graph and the mutated one
without a single edge. Bottom: In a random world, symmetry breaking does
not produce algorithmic information. Entropy and lossless compression both
fail to characterize these instances of graph-theoretic symmetry breaking.

For example, a tetrahedron s can be placed in 12 distinct positions by rota-
tion alone si for i ∈ {1, . . . , 12}. The 12 rotations form the rotation (symmetry)
group. Let t be one of these rotations. Without loss of generality, if t is recur-
sively enumerable, let p(t) be the program implementing t such that si = t(s),
then |K(s)−K(s′)| < |p(t)|.

Just as in Euclidean geometry, algorithmic complexity remains invariant
under symmetric transformations in any space using the same argument, with
the only requirement that t ∈ T is a recursively enumerable transformation
acting in a recursively enumerable space.

3.2 Algorithmic symmetry ranking

The above suggests a symmetry ranking of objects subject to symmetry compar-
ison that can be achieved numerically as demonstrated in Fig. . The algorith-
mic characterization of symmetry is a particular case of the more general case
of algorithmic complexity alone and is thus rather an application of algorith-
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(a)

(b) (c)

Figure 2: Adjacency matrices of net-form representation of simply connected
free polyominoes (without holes). They look very different from their cell rep-
resentations, yet the AP-based measure produces a robust classification in-
dependent of object description. Spearman rank correlation values between
the same polyominoes represented by simple arrays (a) or as graphs, and
thus as different arrays as represented by their adjacency matrices (b) were:
ρ = 0.99, p = 3.216 × 10−14 for AP-based ranking; ρ = 0.44, p = 0.0779 for
Compress; and ρ = 0.227, p = 0.38 and thus only statistically significant for the
AP-based ranking. The AP-based measure also assigns the same complexity to
qualitatively similar polyominoes (c), something that neither compression nor
entropy was able to do consistently, because of under- or over-sensitivity. (b)
and (d) display their AP-estimated value on top of each element. Some func-
tions from a library from Eric Weinstein’s MathWorld were adapted for our
purposes. [19]
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mic complexity to symmetry with the provisions of recursivity/computability
required.

Fig. 1 illustrates the way in which estimations of the algorithmic informa-
tion of graphs capture symmetry breaking, thereby demonstrating the ability of
these methods to characterize it. Fig. 1(top) shows how removing edges from a
complete graph drives the estimations much higher while removing nodes that
preserve the symmetries of the complete graph (by producing another com-
plete graph) and thus remaining stable for graphs of growing size. In con-
trast, Fig. 1(bottom) illustrates that random graphs are immune to symmetry
breaking, being deprived of symmetries to begin with, and both node and edge
removal have the same effect.

Fig. 1(top) illustrates how symmetry breaking generates information. The
results show how to detect and produce information content starting from a
highly symmetrical object (a complete graph). Similar results had been re-
ported in [20]. It also suggests how growing a symmetrical object converges and
cannot be the source of new information if unbroken; only symmetry breaking
can generate differences that produce information when moving a symmetrical
object from simplicity to complexity. Likewise, information from breaking a ran-
dom object does not produce information that could not already be generated
by the underlying source of random graphs.

3.3 Classification of polyominoes

When exploring free polyominoes (equivalent shapes under the symmetry group
are considered the same) of size 4 and 5 non-zero (black) cells, we found that the
classification by AP-based measures can yield more robust characterizations in
the sense that they are less variant amidst changes in the description of the same
object. In Fig 2, we classified the same set of polyominoes by their geometric
versus topological representations. In the case of the geometric representation,
we considered a binary array of black and white cells of length n×m such that
each row 1 . . . n and column 1 . . .m contains at least a non-zero element. The
topological representation is a network whose vertices represent the corners of
the geometrical representation and whose edges are cell boundaries, of which at
least one is shared with another cell. Spearman ranking correlation values are
given in Fig 2, establishing the ability of the AP-measure to deal with small
patterns in a robust but sensitive fashion, unlike the two other methods we
compared with (a lossless compression algorithm and Shannon entropy). The
compression algorithm used is Compress, based on a Unix shell compression
program, itself based on the LZW compression algorithm. LZW is the most
common lossless compression algorithm behind, e.g., png, zip, gzip. Shannon
entropy is applied to the arrays, with the space of all possible uniformly dis-
tributed binary arrays of the size of either the bitmap or the adjacency matrix
of the network representation as probability space.
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Figure 3: Top: Platonic solid networks with order parameter values (BDM,
Entropy and lossless compression by Compress). Bottom left: Different poly-
hedra sorted by algorithmic symmetry (BDM). Bottom right: Platonic graphs
and their duals classified by order parameters, duals are in same colour. Nu-
merical approximations of graphs and duals have similar values, as theoretically
expected, given that there is an algorithm of fixed size that sends a graph to its
unique dual and back.

3.4 Polytope profiling

Regular polyhedra or so-called Platonic solid networks are of low complexity
compared to the sphere, for which we showed that its complexity grows by
log2 n log2 r the r is the radius and n the dimension of a hypershpere.

Polygonal approximations to sphere rendering depend only on the number
of polygons used and therefore will tend to be of greater complexity than, say,
platonic solids. Platonic solids are rough approximations of spheres with low
polygon face count, and hence are lower bounds of any other sphere approxima-
tion.

Unlike the Platonic solids, that are all formed by a single polygon, each
Archimedean polyhedron is formed by two different polygons and they are thus
expected to be slightly more complex, as numerically shown in Fig. 3. It shows
the expected agreement between the classical information and algorithmic com-
plexity of objects of similar complexity, in particular graphs and their duals,
where vertices are exchanged for edges and edges for vertices from the original
graphs. Fig. 4 reports the change of complexity as a function of dimension
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Figure 4: Left: Numerical approximation of algoritmic complexity by BDM over
a polytope (hypercube) of growing dimensions. Graphs of different symmetric
groups have different growing numerical algorithmic complexity values.

and symmetric group over a hypercube of growing dimension and the set of all
graphs grouped by symmetric group extracted from GraphData[] in the Wolfram
Language.

4 Conclusions

The complexity of graphs has historically been based on graph-theoretic, and
more recently, Entropy-based indices. While some of them may continue to be
of interest in approaches to molecular similarity (such as QSPR and QSAR),
here we have instead explored more universal approaches to the problem of
feature-free approximations of the symmetry and complexity of a graph or net-
work. An essential ingredient for a complexity measure is that it integrates all
its properties, something that only a noncomputable approximating measure
such as CTM/BDM can achieve. We have shown suggestive connections be-
tween algorithmic information and symmetry in the context of geometric and
graph objects. We have demonstrated that we can properly characterize ob-
jects and that their characterization is robust when taking them as geometric
or as geometry-based networks in cases of study includong polyominoes and
polytopes going beyond group-theoretic characterizations and achieving better
results than those achieved by other means such as those based by lossless com-
pression and Shannon entropy.
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Appendix

Figure 5: Another illustration of the distribution of polyominoes according to
different order parameters. Entropy is sometimes too sensitive or insensitive,
lossless compression (Compress) is always too insensitive and the AP-based
measure BDM appears to be robust, assigning similar complexity and respecting
relative order as shown in Fig. 2.
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