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Summary: Systems biology is the comprehensive and quantitative
analysis of the interactions between all of the components of biological
systems over time. Systems biology involves an iterative cycle, in which
emerging biological problems drive the development of new technolo-
gies and computational tools. These technologies and tools then open
new frontiers that revolutionize biology. Innate immunity is well suited
for systems analysis, because the relevant cells can be isolated in various
functional states and their interactions can be reconstituted in a biologi-
cally meaningful manner. Application of the tools of systems biology to
the innate immune system will enable comprehensive analysis of the
complex interactions that maintain the difficult balance between host
defense and inflammatory disease. In this review, we discuss innate
immunity in the context of the systems biology concepts, emergence,
robustness, and modularity, and we describe emerging technologies we
are applying in our systems-level analyses. These technologies include
genomics, proteomics, computational analysis, forward genetics screens,
and analyses that link human genetic polymorphisms to disease
resistance.
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Systems biology

We define systems biology as a comprehensive, quantitative

analysis of the manner in which all of the components of a

biological system interact functionally over time. To practice

systems biology, one must capture and integrate global sets of

biological data from as many hierarchical levels of informa-

tion as possible. These could include DNA sequences, RNA

and protein measurements, protein–protein and protein–DNA

interactions, biomodules, signaling and gene regulatory

networks, cells, organs, individuals, populations, and ecolo-

gies. The data are then transferred to comprehensive databas-

es, where they are warehoused and annotated. Human minds

are incapable of inferring the emergent properties of a system

from thousands of data points, but we have evolved to intelli-

gently interpret an enormous amount of visual information.

The data are therefore transferred to visualization programs.

This is the initiation point for the formulation of detailed

graphical or mathematical models, which are then refined by



hypothesis-driven, iterative systems perturbations and data

integration. In this manner, the phenotypic features of the

system are tied directly to the behavior of the protein and

gene regulatory networks. Cycles of iteration will result in a

more accurate model; ultimately, these models will explain

the systems or emergent properties of the biological system of

interest. Once the model is sufficiently accurate and detailed,

it will allow biologists to accomplish two tasks never possible

before: (1) predict the behavior of the system given any

perturbation and (2) redesign or perturb the gene regulatory

networks to create completely new emergent systems proper-

ties. This latter possibility lies at the heart of preventative

medicine. Thus, systems biology is hypothesis driven, global,

quantitative, iterative, integrative, and dynamic.

Systems analysis can only be executed by an interdisciplin-

ary team of investigators that is also capable of developing

required technologies and computational tools. In this model,

biology dictates what new technology and computational

tools should be developed. This too is an iterative cycle,

however, as these tools open new frontiers in biology that

go well beyond the original question. Thus, biology drives

technology and computation, and, in turn, technology

and computation revolutionize biology (Fig. 1). Creative

interaction within an interdisciplinary team raises specific

challenges. Biological systems, as opposed to engineered

man-made systems, are not the result of a rational design

process, but rather the result of a random evolutionary

process that selects whatever works. For this reason, reverse-

engineering approaches that require a rational underlying

design will often be thwarted by biology. This is at variance

with the approaches and culture of non-biologists.

Basic concepts crucial to understanding complex

biological systems: emergence, robustness, and

modularity

Emergence

Complex systems display properties, often called ‘emergent

properties’ that are not demonstrated by their individual parts

and cannot be predicted even with a full understanding of the

parts alone. The arch is an example of an emergent property

that arises from simple constituents (Fig. 2). A comprehensive

analysis of the physical properties of rocks (or monitors) will

not predict that they give rise to an arch when assembled in a

specific context. Life, too, is emergent and not inherent in its

individual components. Mixing DNA, RNA, protein, carbohy-

drate, and lipid does not result in a functional biological

system. Life is a consequence of their organization and inter-

actions. A systems approach is necessary to understand how

the emergent properties that underlie life are derived from the

individual components of a biological system.

Robustness

Biological systems maintain phenotypic stability in the face of

diverse perturbations imposed by the environment, stochastic

events, and genetic variation. Robustness often arises as an

emergent property through positive and negative feedback

loops and other forms of control that constrain gene out-

puts. This feedback insulates the system from fluctuations

imposed on it by the environment. Robustness also emerges

Fig. 1. The iterative cycle of systems biology. Biology dictates what
new technology and computational tools must be developed to answer
specific questions. Newly developed technologies and tools in turn open
new frontiers, revolutionizing biology and generating new fields of
inquiry.

Fig. 2. Emergent properties. Biological functions, like the arch, emerge
from context-specific interactions of the constituent elements. Emergent
functional properties cannot be understood by analyzing the constituents
in isolation (adapted from an image posted anonymously at http://
cache.gizmodo.com/gadgets/images/monitor_arch.jpg).
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biologically through redundancy of pathways that achieve the

same function.

Modularity

A biologist defines a module in a network as a set of nodes

that have strong interactions and a common function. Modu-

larity can contribute to robustness by confining damage to

independent parts, preventing the spread of damage to the

entire network. Modularity can also contribute to evolution

of the system, where adaptation can be achieved by rewiring

connections between modules rather than reconstituting the

modules themselves.

A systems biology approach to studying innate immunity

The complex interactions within the innate immune system

that result in effective host defense under normal condi-

tions and inflammatory disease when perturbed can only

be dissected in a comprehensive way by systems biology

approaches. Immunology is particularly well suited for such

analysis, as the cells can be isolated in various functional

states and can be reconstituted in a biologically meaningful

manner. This contrasts with most other systems; for exam-

ple, it is very hard to dissociate the brain into individual

neurons and reconstitute the appropriate cellular interactions

in vitro.

We have attempted to understand the mechanisms that

enable macrophages to formulate appropriate responses to

pathogens. In this review, we highlight the salient features of

the system, discuss the tools and approaches we and others

have developed and are applying to gain novel insights into it,

and illustrate their application in uncovering gene regulatory

networks that control Toll-like receptor (TLR)-induced

signaling pathways.

The role of pattern recognition receptors in innate

immunity

As this volume is focused on pattern recognition receptors

(PRRs) in the innate immune system, a comprehensive discus-

sion of the specifics of these molecules and their signaling

pathways would be redundant. Rather, we describe some

features of the innate immune system in the context of emer-

gence, robustness, and modularity. In the later section, we

discuss how we are using the tools of systems biology to

obtain a preliminary understanding of the complex interac-

tions that gives rise to host defense.

The recognition, phagocytosis, and presentation of specific

pathogens by macrophages represent emergent properties that

arise from the concerted action of a number of receptors and

signaling pathways. Specific pathogen-derived molecules are

detected by chemotactic receptors on the macrophage, leading

to alterations in the cytoskeleton that culminate in directed

movement. The macrophage then uses its PRRs, which include

the TLRs, the nucleotide binding and oligomerization domain

(NOD)-like receptors (NLRs), and the retinoic acid-inducible

gene I (RIG-I)-like receptors (RLRs), to identify the nature of

the pathogen by recognizing specific pathogen-associated

molecular patterns (PAMPs). Fig. 3 shows all currently known

TLRs, NLRs, and RLRs and their cognate adapters (adapted

from 1). Phagocytic receptors, such as the Fc receptor,

the complement receptor, and DECTIN, bind the particle and

activate signaling pathways that lead to its internalization (2).

Upon internalization, the pathogen is degraded in a process

that culminates in the presentation of peptide fragments via

major histocompatibility complex class II (MHC II) as well as

activation of additional PRRs by pathogen breakdown prod-

ucts (3). It is not possible to predict the complex behavior

underlying chemotaxis, phagocytosis, and antigen presenta-

tion by having a complete understanding of each individual

receptor and its cognate signaling pathway in isolation.

Systems biology approaches will enable an understanding

of how the crosstalk between these pathways results in the

emergent properties that give rise to these functional

responses.

Crosstalk between phagocytic receptors and PRRs

It has long been known that phagocytosis can be uncoupled

from the induction of an inflammatory response (4, 5). For

example, phagocytosis of latex beads is not accompanied by

the production of arachidonic acid metabolites unless the

macrophages are primed with bacterial lipopolysaccharide

(LPS), in which case a synergistic response is observed (6).

Similar synergy also occurs for Fc receptor and zymosan-

induced phagocytosis but not for complement-induced

phagocytosis, which will not induce arachidonic acid metabo-

lite release even with LPS priming (6). This paradigm was

further extended by the demonstration that phagocytosis of

yeast by macrophages is triggered by DECTIN, while TLR2

stimulates the accompanying inflammatory response (7, 8).

These interactions are even more subtle when considering the

internalization of bacteria. When macrophages internalize

Gram-negative bacteria, tumor necrosis factor (TNF) is only

produced in the presence of TLR4. By contrast, TLR2 is

required for TNF production during phagocytosis of Gram-

positive bacteria (7). Additional subtlety exists as TLR2 signals
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exclusively via the adaptor myeloid differentiation primary

response gene-88 (MyD88), whereas TLR4 activates both

MyD88 and TRIF [Toll ⁄ interleukin-1 (IL-1) receptor (TIR)

domain-containing adapter protein inducing interferon-b

(IFN-b)] pathways, resulting in more complex, pathogen-

specific inflammatory responses (9).

Phagocytosis of fungal zymosan provides an example of

how phagocytic and PRR pathways can function as interlock-

ing pieces in their regulation of the macrophage response

(reviewed in 10). Zymosan is recognized by both TLR2 and

DECTIN. TLR2 signaling induces inflammatory cytokines

through the MyD88 pathway and activation of NF-jB but

does not induce reactive oxygen species (ROS), phagocytosis,

and only weak arachidonic acid release. DECTIN, which

recognizes b-glucan, activates Syk kinase, induces zymosan

phagocytosis, ROS induction, and weak arachidonic acid

release. When both TLR2 and DECTIN are activated, inflam-

matory cytokine induction, ROS production, and arachidonic

acid metabolism are all synergistically enhanced.

Interactions between PRR signaling and phagocytic

pathways extend beyond internalization and inflammation.

TLR signaling has been implicated in the enhanced maturation

of phagosomes (11), although this finding is controversial

(12). More importantly, the presence of TLR ligands within a

dendritic cell phagosome markedly enhances the MHC class

II-mediated presentation of antigens within that phagosome

(13). Thus, the entire set of functional macrophage responses

to pathogens are shaped and modulated by complex interac-

tions between PRR, phagocytic, and other pathways.

Crosstalk between PRRs

Macrophages are not confronted with purified PAMPs in

nature. Rather, they interact with complete pathogens that

present a cocktail of agonists to the numerous PRRs they

express (2, 14). These combinations of PAMPs enable the

innate immune cell to carry out ‘multiparameter analysis’,

which permits far greater accuracy in the determination of the

threat. For example, if TLR4 and the NLR IL-1b-converting

enzyme protease-activating factor (IPAF) are simultaneously

activated, the cell can compute that it has encountered a

Gram-negative flagellated bacterium that contains a type III

secretion system (15).

Additional complexity is illustrated by the flagellin detec-

tion system which comprises TLR5, a sensor for extracellular

flagellin (16), and the inflammasome-activating IPAF, a sensor

for cytosolic flagellin (15, 17, 18, reviewed in 19). Binding

of flagellin to TLR5 causes it dimerize and induces TIR domain

interactions that recruit MyD88, which induces activation of

IL-1 receptor-associated kinase-4 (IRAK4) and IRAK1 kinases,

Fig. 3. Currently known TLR, NLR, and RLR receptors, their cognate adapters, and primary agonists. Membrane-bound TLRs and their adapters
are shown in green. Cytoplasmic NLRs are shown in blue (for NOD1 and NOD2) and red (for the inflammasome NLRs and adapters). Cytoplasmic
RLRs are shown in yellow. The phagocytic PRR Dectin-1 is shown in purple (figure adapted from 1).
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several mitogen-activated protein kinases (MAPKs), and inhib-

itor of jB (IjB) kinases that culminate in NF-jB-dependent

inflammatory gene expression. Flagellin is also secreted into

the cytoplasm via the type III secretion systems of certain

bacteria (15). In the absence of cytoplasmic flagellin, IPAF

resides in a state in which the leucine-rich repeat (LRR) domain

binds to the NOD domain and inhibits oligomerization with

the NOD domains of other IPAF molecules. During infection,

the LRR binds flagellin, exposing the NOD domain, allowing

oligomerization and formation of a scaffold for recruitment

(20, 21) and activation of the caspase-1 inflammasome (22),

which processes IL-1b and IL-18 for secretion (23).

Dual sensing of flagellin by TLR5 and IPAF opens up the

possibility for a complex, two-step process of regulation.

When a macrophage encounters a Salmonella bacterium, TLR5

is initially stimulated by flagellin (in addition to activation of

TLR4 by LPS). This signal induces, among others, the mRNAs

encoding IL-1b and IL-18 and their precursor proteins. Once

the bacterium is in the phagosome, flagellin is injected into

the cytoplasm via the type III secretion system, and IPAF is

subsequently activated. This activity stimulates the assembly

of an IPAF inflammasome that activates caspase-1, leading to

the processing and secretion of mature IL-1b and IL-18 (23).

This mechanism may be a general one, as other NLRs, for

example Nalp1-3, have also been shown to induce processing

of IL-1b that had previously been induced by a TLR (for

example TLR4) (24–27). Conceptually, TLR signaling in the

absence of NLRs may constitute a ‘yellow alert’, indicating

that microbes have penetrated the physical barrier of the

epithelial layer. The inflammasome NLRs, when activated in

conjunction with the TLRs, may then trigger a ‘red alert’,

alerting the immune system to the presence of pathogens

which harbor more threatening virulence factors such as the

type III secretion system (19). Signaling by TLRs alone or by

NLRs alone does not initiate the red alert, and thus the red

alert emerges from the convergent activation of the two path-

ways. Greater complexity is exhibited by the system, because

the IL-1R signals exclusively through the adapter MyD88

(28), and thus signaling pathways activated by IL-1b parallel

those activated by the TLRs. IL-1b is not known to be capable

of activating the inflammasome itself, and thus paracrine

IL-1b signaling can propagate the yellow alert but not the red

alert, which is reserved for the infected macrophage. A similar

distinction between the reserved red alert status of the infected

cell and the yellow alert status for neighboring cells activated

by paracrine cytokine signaling has been postulated for viral

nucleic acid detection (29): cytotoxic lymphocytes and

natural killer cells must be able to distinguish between virus-

infected cells that should be targeted for apoptosis and cells

that have been activated into an antiviral state by paracrine

type I IFN signaling.

The system is even more complex than described due to

crosstalk arising from simultaneous engagement of multiple

TLRs and other receptor families. For example, flagellin is

highly immunogenic, being recognized by both antibodies

and CD4+ T cells over the course of Salmonella infection

(30). Thus, in the late stages of infection, antibody–flagellin

complexes can engage macrophage Fc receptors at the same

time that TLR5 is engaged by flagellin and TLR4 is engaged

by LPS. Furthermore, under these conditions both TNF and

IL-1b will be produced and activate shared components of

the TLR pathway via an autocrine mechanism. Simultaneous

engagement of multiple TLRs has been shown to give rise

to a number of synergistic responses (reviewed in 14).

For example, TLR7 can synergize with TLR3 or TLR4 for

IL-12p70 production in DCs. Viral RNA is recognized by at

least five PRRs [TLR3, TLR7, TLR8, melanoma differentiation-

associated gene 5 (MDA5), and RIG-I], and it is interesting

to speculate on how convergent detection can lead to

synergistic, virus-specific responses. Recent results from the

Akira laboratory (31) suggest that the adjuvant effects of

the double-stranded RNA (dsRNA) analog polyinosinic–

polycytidylic acid (polyI:C) arise from cooperative activa-

tion of TLR and cytoplasmic RLR pathways. Thus, pathogen

recognition by the innate immune system is perhaps best

considered as a process in which activation of several PRR

pathways in combination gives rise to an emergent, patho-

gen-specific response that seeks to neutralize the threat, alert

neighboring cells to the presence of microbes, and initiate an

appropriate adaptive immune response.

Robustness and modularity in innate immunity

While combinatorial PAMP detection by PRR pathways allows

macrophages to accurately determine threat levels posed by

invading pathogens, as described above, it also illustrates two

additional key properties of the innate immune system:

robustness and modularity.

To provide protection, the innate immune system must be

robust: pathogens must be detected and the immune system

alerted, even as evolution favors development of pathogen

strategies to evade detection. The large number of PAMPs that

may be detected by macrophage PRRs thus constitutes a

robust, ‘fail-safe’ detection system: if a particular PRR fails to

detect a pathogen, or if a pathogen evolves a strategy to evade

a particular PRR, it nevertheless will be detected by all of the
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relevant remaining PRRs expressed by the cell. This level of

robustness is revealed by gene-targeting studies, in which spe-

cific PRR knockouts or knockdowns fail to exhibit phenotypes.

For example, TLR3, which detects viral dsRNA, when ablated

does not result in universally enhanced susceptibility to viral

infection (32), presumably because signaling by other viral

RNA detectors (RIG-I, MDA5, and TLR7) is sufficient for pro-

tection. Similarly, we have demonstrated that inflammasome

activation in response to Listeria monocytogenes involves detection

by three or more cytoplasmic receptors: IPAF, NALP3, and

at least one other NLR utilizing the adapter ASC (apoptosis-

associated speck-like protein containing a C-terminal caspase

recruitment domain) (33).

Modularity in the PRR pathways is typified by the modular-

ity in the structures of the PRRs themselves. In the TLR family,

for example, a less conserved N-terminal LRR domain is cou-

pled to a more highly conserved C-terminal TIR domain (34)

by a single transmembrane domain. The LRR domains are so

variable that they cannot be aligned over large evolutionary

distances; alignment can only be accomplished using the TIR

domains. The TIR domain couples the TLR to the restricted set

of adapters [the linker adapters, MyD88 adapter-like protein

(MAL) and translocating chain-associating membrane protein

(TRAM), and the major signaling adapters, MyD88 and TRIF],

whereas the LRR domain is responsible for PAMP recognition.

Evolution of LRRs has resulted in an extraordinary diversity in

ligands detected by the TLRs, giving rise to six major TLR

families in vertebrates (34). Recent structural studies of TLR–

ligand complexes have revealed diversity in LRR ligand

binding mechanisms (reviewed in 35). While TLR2 ⁄ TLR1

heterodimer binding of Pam3CSK4 is achieved by hydrophobic

interactions at the boundary between central and C-terminal

domains (36), TLR3 dimers bind dsRNA at two regions near

the N-terminal and C-terminal ends (37).

Robustness in the innate immune system emerges not only

from the modularity of the PRRs and the pathways they acti-

vate but also from the feedback architectures of the pathways

themselves. Type I IFN induction by cytoplasmic viral sensors

in fibroblasts is an example of a positive feedback loop which

results in robust induction of an antiviral state (reviewed in

38). Cytoplasmic detection of viral RNA by the RLRs RIG-I or

MDA5 results in type I IFN induction by activated IFN regula-

tory factor-3 (IRF3) and IRF7 transcription factors (TFs). The

type I IFN then feeds back on the cells in an autocrine manner

to induce IRF7 to high levels. IRF7 then induces additional

type I IFN species and increases the expression of the sensors

RIG-I and MDA5 themselves, which presumably renders the

cell more sensitive to viral RNA. On the other hand, precise

control and robustness to intracellular noise is partly achieved

in PRR pathways by negative feedback loops. For example,

TLRs induce the expression of many genes that negatively

regulate the TLR pathways (reviewed in 39). In particular, the

ubiquitin-editing protein A20 (Tnfaip3) is both induced by

and is a negative regulator of TLR, RLR, and NLR pathways

(40–44), acting directly on key adapter molecules such as

tumor necrosis factor receptor-associated factor 6 (TRAF6),

TRIF, and receptor-interacting protein 2 (RIP2). A second

example of this type of regulation is illustrated by the

TF-activating transcription factor 3 (ATF3), which is induced

by TLRs and then inhibits gene induction stimulated by the

same TLRs (45) (discussed in detail below).

Systems approaches and innate immunity

In the above, we described how innate immunity exhibits the

key attributes which motivate a systems approach, namely

emergence, robustness, and modularity. Yet the biological

insights discussed above, minus the case of ATF3, were not

obtained through systems biology approaches. What role,

then, does systems biology play in the future of innate immu-

nity research? We believe it is fourfold. (i) Filling in the gaps

to create an integrated picture of PRR pathways and their

interactions. While a great deal is known about pathogen rec-

ognition, it is largely piecemeal and not comprehensive. Sys-

tems-level approaches, as described below, will flesh out the

networks and interactions to create a more complete under-

standing of innate immunity. (ii) Enhancing the rate at which

discoveries are made. While conventional single-gene meth-

ods will always be necessary to validate and extend predic-

tions, systems-level approaches can accelerate the speed of

hypothesis development, and the identification of novel com-

ponents of innate immune pathways. (iii) Clarifying how

functional emergent properties arise from biomolecular net-

works. As innate immunity pathways are delineated in greater

and greater detail, it becomes increasingly difficult to interpret

them intuitively and to understand how network interactions

control functional responses. Systems biology provides a quan-

titative framework in which the complex interactions may be

represented formally and system behavior may be investigated

computationally. (iv) Predicting the effects of genetic or envi-

ronmental perturbations on innate immune responses. As

descriptions of innate immune pathways become more and

more comprehensive and quantitative, systems biology tools

will make it possible to both predict and understand how

subtle variations in gene sequences, for example, give rise to

variations in human infections and inflammatory disease

susceptibility. In the paragraphs below, we describe emerging
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technologies in the context of their utility for facilitating a

systems-level understanding of innate immunity.

Technologies for the systems analysis of innate

immunity

As discussed above, in the systems biology paradigm, biology

drives technology and then technology revolutionizes biology

(Fig. 1). In the present section, we describe novel technologies

that will further enable a systems-level understanding of

innate immunity.

Genomics: DNA sequencing

The emergence of DNA sequencing and the impact it has had

on biology exemplifies the synergistic cycle of biology and

technology described above. A question regarding antibody

diversity was the original motivation for developing the first

automatic DNA sequencer (46). However, once it was built, it

ultimately enabled the Human Genome Project. Similarly,

improvements to automated DNA sequencing, with the objec-

tive of making complete genome sequencing faster and

cheaper, has led to the development of ‘next generation’

sequencing technologies (NextGen sequencing). NextGen

sequencing will have a fundamental impact on the analysis of

genomes as well as transcriptomes and gene regulatory

networks (described below).

NextGen sequencing represents a fundamental change in

sequencing approach from Sanger sequencing, which has been

in use for the past 30 years, and was highly optimized and

automated at an industrial scale for completion of the Human

Genome Project (47). Commercially available NextGen

sequencers are dominated by three systems: the 454 GS FLX

Genome Analyzer (Roche Applied Sciences, Indianapolis, IN,

USA), the Solexa 1G sequencer (Illumina, San Diego, CA,

USA), and SOLiD (Applied Biosystems, Foster City, CA, USA).

The specific technologies employed differ between the plat-

forms, but generally they all involve a massively parallel analy-

sis of individually amplified DNA molecules (48). The

sequencing output, in terms of read number and length, also

differs between the platforms. While modern Sanger sequence-

rs can read about 800 bp of 100 DNA samples in parallel, the

454 GS FLX produces about half a million reads that are 250 bp

in length, and the SOLiD and Solexa systems generate tens of

millions of reads that are about 35 bp in length. These differ-

ences in sequencing output dictate the suitability of the various

technologies for different applications, as described below.

While the shorter read lengths from NextGen sequencing

make assembly of genomic sequences de novo more difficult than

with conventional sequencing, results of ambitious sequencing

projects using these technologies are appearing in the literature.

454GSFLXhasbeenused for several ancientgenome sequencing

projects, including the wooly mammoth (49) and the Neander-

thal (50). The 454GS FLX system iswell suited for the analysis of

ancient genomes given that its read length is comparable with

the DNA sequence lengths recovered from fossils and that it can

generatehundredsof thousandsof readsper run,whichbecomes

necessary given the high level of DNA contamination found in

fossils (50). NextGen genome sequencing will undoubtedly

enable amuchdeeper understandingof immunology. For exam-

ple, comparison of the Neanderthal genome sequence with that

of human will provide insights into the recent evolution of the

human immune system that would otherwise be impossible to

obtain. In other sequencing applications, the 454 GS FLX system

hasbeenused to identify thousandsofmacaque singlenucleotide

polymorphisms (SNPs) (51), which will enable functional

association analyses in this important immunological model

organism. Novel immunologically relevant human DNA varia-

tions undoubtedly will be revealed by the data produced in the

1000 Genomes Project (http://www.1000genomes.org/),

which aims to sequence the genomes of 1000 people from

around the world. All three major next generation sequencing

companies are participating in this project, eachhaving agreed to

produce75billionbasepairs of sequenceduring thepilot phase.

Genomics: transcriptome analysis

Traditionally, transcriptome studies in innate immunity have

used microarrays with probes targeting the 3¢-regions of the

interrogated mRNAs. The motivation for this approach was

largely a practical one related to feature size constraints of the

chips. Recent developments in oligonucleotide array fabrica-

tion and the emergence of NextGen sequencing, however,

have resulted in the 3¢-arrays being superseded by exon-level

microarrays as well as transcriptome analysis by sequencing.

Given the importance of alternative splicing events in the

immune system (52), replacement of conventional arrays

with exon-level microarrays in typical transcriptomic analysis

is a key step for the analysis of gene regulation in immune

cells. On the Affymetrix GeneChip Mouse Exon 1.0 ST Array

(Affymetrix, Inc., Santa Clara, CA, USA), for example, feature

sizes have been shrunk from 11 lm (for the GeneChip Mouse

Genome 430 2.0 Array) to 5 lm, allowing over one million

exons to be tiled on a single array. Exon arrays can be analyzed

in two frameworks: ‘gene level’, where all the exon-specific

information is integrated into a single expression measure-

ment for each gene, and at the ‘exon level’. In both cases, the
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exon arrays have significantly added value compared with

conventional arrays. The gene-level framework gives expres-

sion values that are more representative of the overall gene

behavior. This is because it is an integrated measure of the

expression of all of the exons, not just the 3¢-end. By contrast,

gene expression measurements at the exon level allow detec-

tion of novel transcriptional events and transcript isoforms.

Exon arrays are fundamentally different from custom splicing

arrays, which are designed to detect specific exon–exon junc-

tions (53–56), and are therefore constrained to known cases

of alternative splicing. Exon arrays have been applied in

diverse studies ranging from colon cancer (57), neuronal

systems (58), to embryonic stem cells (59). In two recent

immunological studies, exon arrays were used to identify

candidate target genes of a novel CD45 splicing regulator iden-

tified using an siRNA screen (60) or N-ethyl-N-nitrosourea

(ENU) mutagenesis (Wu et al., unpublished data).

Despite the value-added and novel opportunities provided

by exon arrays, it is likely that they will be superseded by tran-

scriptomic application of NextGen sequencing (RNA-Seq)

(61). RNA profiling by hybridization has two major limita-

tions: (i) prior knowledge of the transcript sequences to be

measured is required and (ii) hybridization-based signals have

inherent limits in dynamic range (62). These limitations make

it especially challenging to detect novel or rare transcripts by

microarray analysis. Transcriptome analysis by NextGen

sequencing does not have these limitations: sequences are

detected de novo and transcript quantitation is digital, with a

five orders of magnitude dynamic range already being

reported (61). The strength of next generation sequencing

for transcriptome analysis derives from the very attribute

that render its application in genome assembly a challenge:

millions of short reads. Most immunological transcriptome

studies will involve analysis of a model organism for which

a high-quality genome sequence – a reference genome – is

available, and thus interpretation of next generation transcrip-

tome data simply involves mapping the millions of sequences

to unique genomic locations. Two recent RNA-Seq studies of

poly-adenylated transcriptomes, one in differentiating human

embryonic stem cells using the ABI SOLiD platform (63) and

one in several mouse tissues using the Illumina Solexa plat-

form (61), demonstrate the power of this approach. Coupling

NextGen sequencing with cap analysis gene expression

(CAGE) allows simultaneous detection of transcript levels and

transcription start site positions (reviewed in 64). Further-

more, NextGen sequence analysis can be applied to detect

novel micro-RNAs (miRNAs) (65) and other functional non-

coding RNA species, which is of special relevance given the

increasingly important role miRNAs have been shown to play

in immune regulation (reviewed in 66).

Genome-wide location analysis

The regulatory networks controlling innate immune cell behav-

ior during pathogen recognition will not be revealed by an

analysis of transcriptomes alone. To define this complex

circuitry, the dynamic localization of transcriptional regulators

and epigenetic chromatin modifications during the response to

infection must be measured. Genome-wide location analysis

refers to a maturing set of technologies that specifically provides

this information. ChIP-on-chip is one type of genome-wide

location analysis that combines standard chromatin immuno-

precipitation (ChIP) with microarray technology (67, 68). This

method permits the definition of the entire complement of

genes that are activated by a specific TF under a specific set of

conditions. ChIP-on-chip and similar genome-wide location

analyses have been applied in countless studies, revolutionizing

our understanding of how TFs and epigenetic modifications

control gene expression (reviewed in 68–71). Application of

genome-wide location analysis to gain insight into immune cell

gene regulation includes studies of forkhead box protein 3

(FOXP3) binding in regulatory T cells (72, 73), signal trans-

ducer and activator of transcription-1 (STAT-1) and STAT-2

binding in a cell line stimulated with IFN-a or IFN-c (74), and

LPS-induced promoter binding by NF-jB in cell lines (75, 76).

As in the case of transcriptome analysis, microarray-based

ChIP-on-chip will probably be superseded by NextGen

sequencing using a process called ChIP-Seq (77). This

approach does not require a priori designation of candidate

DNA binding locations and thus can provide a truly global,

unbiased view of genome-wide TF localization. Additionally,

ChIP-Seq may actually require less input DNA than ChIP-

on-chip (78), giving cost advantages, permitting analysis of

rare cell types, and reducing reliance on sequence amplifica-

tion methods that may skew or corrupt underlying sequence

distributions. A wide variety of ChIP-Seq applications have

already been reported, including analysis of IFN-c-induced

STAT-1 binding in a cell line (78), transcriptional regulatory

circuits in mouse embryonic stem cells (79, 80), and histone

methylation in human CD4+ T lymphocytes (81). Integration

of next generation sequencing-based ChIP-Seq and RNA-Seq

will yield fundamental insights into the genomic regulatory

programs governing the innate immune response to infection.

Proteomics

Obtaining a comprehensive understanding of the macro-

phage response will require more than delineation of the
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gene regulatory circuits that are activated upon pathogen

recognition. To determine the functional roles of innate

immune-regulated genes, we must determine how they are

post-translationally modified, where they localize subcellu-

larly, and what other proteins they associate with in space

and over time. Given that it is generally not possible to

predict these properties directly from protein sequence, a

systems-level approach which measures them directly is

required. Proteomics refers to a broad set of heterogeneous

and rapidly evolving technologies that provide this

information.

Quantitative mass spectrometry

The proteomics technologies we employ in our analysis of

macrophages rely heavily on quantitative mass spectrometry

(MS). Several different techniques have been developed and

we will only briefly review them here. The isotope-coded

affinity tag (ICAT) method (82) enriches for isotopically

encoded, cysteine-containing peptides and has the advantage

of decreasing sample complexity prior to MS analysis.

Isobaric tags for relative and absolute quantitation (iTRAQ)

is a multiplexed strategy that allows four samples to be

analyzed simultaneously in the same experiment (83). iTRAQ

differs from other isotopic labeling strategies in that the

peptides from different conditions labeled with the four

iTRAQ reagents remain of equal mass through the liquid

chromatography step because the reporter ions are balanced.

Peptide ion peaks therefore are detected simultaneously by

the MS, and the relative peptide abundance in the different

conditions is indicated by the relative intensities at the four

mass-to-charge ratios of the reporter ions. Stable isotope

labeling with amino acids in cell culture (SILAC) provides

the maximum protein isotopic labeling efficiency combined

with the minimum number of sample handling steps and

is one of the most sensitive quantitative MS approaches (84).

In SILAC, two populations of cells are cultured under

identical conditions except that the culture medium for

one population contains all 20 essential amino acids in

their naturally occurring isotopic forms (light), while the

other population is grown in medium where amino acids

are replaced by stable, heavy isotope-labeled analogs (heavy).

SILAC allows for all peptides within the sample to be

analyzed, increasing the accuracy of identification and

quantitation. One disadvantage with SILAC is that, because

cells must be cultured in the presence of the isotope-labeled

analogs for approximately 2 weeks, it is not suitable for

experiments where prolonged culture is not possible.

Surface and secreted proteins

Macrophages and dendritic cells execute their innate immune

functions in large part by dynamically modifying the comple-

ment of proteins expressed on their surfaces and secreted

into the extracellular milieu. For this reason, we are directing

substantial effort towards the definition of the macrophage

secretome and surface proteome. Given the historic impor-

tance of the cluster of differentiation (CD) markers for the

field of immunology, we anticipate that there will be

immense value in the new surface markers for classifying

various stages of macrophage and dendritic cell responses to

pathogens that we will identify. Similarly, we anticipate great

value in the identification of novel proteins secreted by or

surface proteins shed by innate immune cells during the

response to pathogens, as these may play key roles in

combating infection, triggering ⁄ resolving inflammation, and

priming the subsequent adaptive immune response.

Analyses of the macrophage surface proteome and secre-

tome both present significant technical challenges. For charac-

terization of the surface proteome, the greatest challenge is

contamination of samples purified by subcellular fraction-

ation ⁄ centrifugation methods with proteins derived from

other cellular membranes. For the secretome, the greatest

challenges are the low abundance of secreted proteins,

contamination by cellular proteins released during accidental

cell lysis, and contamination with serum proteins (85). To

address the issues of contamination and specificity, a selective

surface ⁄ secreted protein labeling and affinity purification

strategy, glycoproteomics, was developed. This approach

exploits the fact that both cell membrane-associated and

secreted proteins are typically glycosylated on asparagine

residues (86, 87). Use of a membrane-impermeable biotiny-

lation reagent that covalently modifies extracellular glyco-

sylation sites allows selective purification of surface and ⁄or

secreted proteins. These selected protein subsets can then

be analyzed with quantitative MS technology to define the

secretome and surface proteome.

Identifying signaling complexes

Most signaling networks are activated by the assembly of pro-

tein complexes. The analysis of the complex constituents and

formation dynamics pose many technological challenges.

While various affinity purification methodologies have been

applied successfully in conjunction with MS to study stable

covalently linked complexes, many immunologically rele-

vant signaling interactions are transient or weak and are not
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suitable for analysis by this method. A newly developed

tagging system, which utilizes concatenated affinity tags (HB)

for the purification of protein complexes after formalde-

hyde cross-linking (88), may overcome this limitation. This

approach is fully compatible with the quantitative proteomics

approaches described above, such as SILAC or iTRAQ (88).

Transcription is regulated by complex enhanceosomes that

assemble on the promoters of target genes. Recent advances in

proteomic analysis have permitted the identification of novel

components of these transcriptional complexes by taking

advantage of the promoter-specific binding of the enhanceo-

some (89). In this approach, the promoter sequence of

interest is coupled to a bead which serves as an affinity matrix

for TFs and associated transcriptional regulatory factors.

The technique, initially perfected in yeast, has now been

extended to detect dynamic changes in transcriptional

complexes in mammalian cells (90, 91).

Multiple reaction monitoring

Blood biomarkers have recently gained significant attention

because of their potential for early diagnosis and stratifica-

tion of disease. These measurements are also critical in the

immune context given the search for correlates of immunity

during vaccine development. A recently developed proteomic

method, multiple reaction monitoring (MRM), allows for

high throughput, multiplexed measurement of complex pro-

tein mixtures, such as those found in blood (92). The first

phase of the study uses shotgun proteomics and is directed at

identification of all protein constituents of the system, in this

case blood. These proteins and their associated MS parameters

are then placed within a database called the PeptideAtlas

(http://www.peptideatlas.org/, 93). These predefined ion

lists then enable specific peptides of interest to be targeted for

quantitation by MRM (94). As MRM is scalable, thousands of

proteins in multiple samples can be rapidly analyzed. State-of-

the-art instruments operating in the MRM mode are expected

to quantitate at least 500 peptides in a single run, and recent

work has demonstrated that MRM-based approaches can

detect plasma proteins in the sub-ng ⁄ ml range (95).

Computation

The most significant challenge in systems biology is computa-

tion; the data have to be stored in databases, annotated, ana-

lyzed, and interpreted. Computation in systems biology is

highly heterogeneous and is carried out by scientists with

diverse backgrounds ranging from information technology

and computer science to statistical analysis and engineering.

One unifying theme for all successful computational

approaches, however, is that they are ultimately motivated by

the biology, be it development of intuitive interfaces that

facilitate interpretation of complex data sets in the appropriate

biological context or application of modeling approaches to

answer specific biological questions. An astonishing number

of databases, analysis tools, and algorithms for computational

systems biology analysis are published each year and it is

beyond the scope of the present work to review them here.

Instead, we describe a subset of computational tools that have

been developed at the Institute for Systems Biology (ISB) and

elsewhere that we actively use to meet the computational

needs of our analysis of the innate immune system. Our policy

at the ISB is that all software is freely downloadable and open

source, which will facilitate the rapid development and

distribution of computational tools. ISB-developed software

can be found at http://www.systemsbiology.org/Resources_

and_Development/Downloadable_Software.

Computational analysis of transcriptome data

The majority of systems biology tools have been developed to

facilitate analysis of transcriptome data sets. One inescapable

computational challenge in transcriptome analysis is making

complex data sets easily accessible and interpretable for biolo-

gists, regardless of whether those biologists have program-

ming experience. As the scale of the data sets increases, so

does the difficulty in distributing the data in a useful way.

While most biologists with fluency in spreadsheet programs

can easily navigate and interpret conventional microarray data

sets, spreadsheets alone are not suitable for interpretation of

exon-level microarray data sets or microarray data sets span-

ning hundreds of conditions. How complex data sets can be

made accessible depends on the nature of the data sets them-

selves. Our Systems Biology Experiment Analysis Management

System (SBEAMS)-Microarray pipeline (http://www.sbeam-

s.org/Microarray) (96), a module in SBEAMS (http://

www.sbeams.org), is used for normalization and standard

analysis of conventional 3¢-microarrays and gene-level

analysis of exon arrays. Data analysis usually begins with the

discovery of contextual patterns of gene regulation; our

tool, cMonkey (http://baliga.systemsbiology.net/cmonkey/

download/) (97), facilitates complex biclustering analysis of

gene-level expression measurements, grouping genes, and

experimental conditions. Our approach to exon-level expres-

sion data is evolving, and analysis is largely performed in

statistical ⁄ engineering programing environments such as R

(http://www.r-project.org/) and MATLAB (The Mathworks,
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Inc., Natick, MA, USA). This analysis is best carried out in an

interdisciplinary environment that permits creative interac-

tion between biologists and computer scientists ⁄ statisticians ⁄
engineers.

Additional systems biology tools facilitate deeper analysis of

transcriptomes that may identify novel regulators and putative

networks. It is easiest to discuss these tools in the context of

concrete biological problems. Below, we describe two studies

aimed at unraveling the gene regulatory programs that under-

lie TLR-induced macrophage activation. In the first example,

we show how systems analysis led us to identify ATF3 as a

novel negative regulator of the innate immune response (45).

In the second example, we describe a novel computational

approach we used to generate hypotheses about the dynamic

transcriptional regulatory networks controlling macrophage

activation (98).

ATF3 is a negative regulator of TLR signaling

In this case study, we used the tools of systems biology to unra-

vel the transcriptional circuitry leading to the TLR4-activated

state in macrophages; our strategy is shown in Fig. 4. Briefly,

temporal activation of macrophages by LPS was analyzed using

microarrays (I). These data were then clustered to reveal regu-

lated ‘waves’ of transcription, in which different sets of genes

exhibit sequential peaks in expression (II). Given that tran-

scriptional programs are propagated by sequential cascades of

TFs, it is reasonable to expect that the TFs induced in early clus-

ters will regulate genes expressed in subsequent clusters. Fur-

thermore, co-expressed genes are often co-regulated and are

therefore likely to have cis-regulatory elements in common.

Based on these arguments, we inferred putative regulatory

links by applying computational motif scanning to identify

which genes in cluster 2 contain promoter binding sites for TFs

in cluster 1 (III). These regulatory predictions were validated

and the kinetics of promoter occupancy was defined using ChIP

(IV). These kinetic data allowed mathematical modeling of the

transcriptional circuitry, which, in turn, enabled the prediction

of novel functions that are not easily identified using conven-

tional approaches (V). The functional predictions were then

tested in cell culture systems and in mice (VI).

We stimulated bone marrow-derived macrophages (BMMs)

with LPS and collected expression profiles measuring the

response from 20 min to 24 h. The microarray data were

Fig. 4. Strategy for unraveling transcriptional networks. (I) Microarrays are used to profile temporal gene expression responses in stimulated
macrophages. (II) Clustering reveals groups of genes with different expression kinetics. (III) Candidate regulatory links between genes are made by
searching for enrichment of regulatory elements of transcription factors expressed in early groups (no. 1) in the promoters of genes expressed in later
groups (no. 2). (IV) Regulatory predictions are validated by chromatin immunoprecipitation. (V) Mathematical modeling is used to predict the
functional nature of validated interactions (activation, repression, etc.). (VI) Functional predictions are tested in vitro and in vivo.
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uploaded into SBEAMS-Microarray (96) and processed using

the BioConductor (99) and VERA ⁄ SAM (100) software

packages. A set of 1232 differentially expressed genes were

clustered into 11 distinct temporal profiles. One cluster with

expression profiles peaking 1 h poststimulation contained a

large number of TFs, including several with established roles

in inflammatory gene regulation such as NF-jB (REL), activa-

tor protein 1 (AP1) (JUN, FOS), and early growth response 1

(EGR1), and candidate novel inflammatory regulators (ATF3,

EGR2). Scanning the promoters of genes in this cluster for TF

binding sites from TRANSFAC (101) using MotifLocator

(102) revealed over-representation of ATF3 ⁄ cyclic adenosine

monophosphate-responsive element binding protein (CREB)

family binding sites. This enrichment provided additional

support for a role of ATF3 in regulating the response, and we

decided to investigate the role of this TF in greater detail.

To identify proteins that ATF3 may interact with over the

course of the inflammatory response, we visualized ATF3 pro-

tein–protein interactions from HPRD (http://www.hprd.org)

(103) using Cytoscape (http://www.cytoscape.org) (104).

Remarkably, ATF3 interacts at the protein level with compo-

nents of the pro-inflammatory TFs it clustered with, namely

NF-jB (NFKB1) and AP-1 (JUN, JUND). Given that these TFs

were expressed together early in the LPS response and that

they interact at the protein level, we hypothesized that they

function together in regulating target gene expression at later

time points. We therefore searched the promoter regions of

165 genes in the subsequent temporal cluster for ATF3 ⁄CREB,

NF-jB, and AP1 binding sites. We observed enrichment of

binding sites for these TF families and, moreover, identified

30 genes, including the cytokines IL-6 and IL-12p40, for

which predicted ATF3 binding sites occur within 100 bp of

an NF-jB binding site and within 500 bp of the transcription

start site. This result suggested that ATF3 cooperates with

NF-jB to regulate the expression of pro-inflammatory genes,

including IL-6 and IL-12p40. We used ChIP to directly inves-

tigate the temporal binding of ATF3 and NF-jB (REL) to IL-6

and IL-12p40 promoters during the LPS response. While we

observed rapid, transient LPS-induced promoter binding by

NF-jB, ATF3 promoter binding in response to LPS was

delayed and sustained.

To estimate the relative contributions of ATF3 and NF-jB

promoter binding to IL-6 and IL-12p40 gene expression, we

analyzed the data using the Inferelator (105), which generates

predictive kinetic gene regulatory models with parameters

quantitating the strength and sign (activator ⁄ repressor) of the

interactions. The Inferelator analysis predicted that NF-jB is a

positive regulator of IL-6 and IL-12p40 expression (as

expected), but that ATF3 should function as a negative regula-

tor. This prediction of an anti-inflammatory role for ATF3 was

confirmed by analysis of BMMs derived from ATF3) ⁄ ) mice, in

which LPS-induced production of IL-6, IL-12p40, and a num-

ber of other genes was substantially greater than that observed

in wildtype (WT) BMMs. Furthermore, an anti-inflammatory

role for ATF3 in vivo was demonstrated by an analysis of

ATF3) ⁄ ) mice, which succumb to LPS-induced shock much

more rapidly than WT mice (45). This case study illustrates the

power of an integrated experimental and computational

approach to generate novel insights into gene regulation.

Transcription networks controlling macrophage activation

We have shown that the macrophage response involves

dynamic expression changes for nearly 100 TFs (106). To

extend the network we modified our approach described

above (98).

We identified the complement of genes differentially

expressed in WT BMM over time in response to a panel of

TLR stimuli. Expression profiling the responses to multiple

stimuli provided additional strength for inferring regulatory

networks because pathway-specific patterns of TF activation

were revealed. In these experiments, we identified approxi-

mately 2000 genes differentially expressed in response to at

least one TLR ligand, of which 80 were TFs with DNA binding

motifs in TRANSFAC (101).

We complemented our set of expression profiles in WT

BMMs with profiles from BMMs derived from several mutant

strains and performed cluster analysis to identify gene groups

that respond similarly over time to the different stimuli in the

various genetic backgrounds. The clusters we obtained exhib-

ited diversity in both timing and ligand specificity of

response: while some showed peak induction within 1 h of

stimulation, most exhibited responses within 2–4 h. Some

clusters contained genes that were not induced by polyI:C or

were induced by polyI:C with a lag compared with other

stimuli. Groups of genes emerged that were specifically indu-

ced ⁄ repressed by specific pathways. We found that many

cytokines clustered together into co-regulated groups: TNF,

CCL3, CCL4, CXCL1, and CXCL2 clustered together, while

CXCL10 and IL-10 clustered together, and IL-1b, IL-6, and

IL-12p40 clustered together. Clusters consisting of downregu-

lated genes were enriched for cell cycle processes. Finally, we

found that gene clusters induced early were enriched for TFs.

As a first step to make regulatory links in the network, we

performed time-lagged correlation (TLC) analysis of TF and

candidate target gene expression profiles. The set of regulating
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TFs was defined as those 80 differentially expressed TFs that

also have binding site information in TRANSFAC (101). Can-

didate target genes for a given TF were defined as the set of

differentially expressed genes with binding sites for that TF in

their promoters. TLC directly accounts for the temporal delay

that results between changes in the expression profile of a TF

and the expression profiles of its targets, and therefore takes

advantage of temporal ordering of expression to identify

potentially causal relationships.

As a complementary step towards inferring the underlying

transcriptional network, we tested for over-representation of

TF binding sites in the promoters of the genes in each cluster

of co-regulated genes. We found enrichments for DNA regula-

tory elements recognized by the innate immune TFs NF-jB

and IRF in upregulated clusters, with IRF elements being par-

ticularly enriched in TRIF-dependent clusters, while E2F and

MYCMAX binding sites were over-represented in downregu-

lated gene clusters.

We integrated the TLC and binding site enrichment results to

obtain a putative transcriptional regulatory network controlling

the macrophage response to PRR activation. While the TLC anal-

ysis and binding site enrichment analyses each identify potential

transcriptional regulatory interactions, both approaches have

limitations, and the number of false positives is greatly reduced

by focusing on the intersection of the results of the two meth-

ods. Using these criteria, we identified a total of 90 statistically

significant interactions involving 36 TF genes and 27 clusters.

To partially validate our predicted transcriptional regulatory

network, we performed targeted ChIP-on-chip experiments.

NF-jB ⁄p50 and IRF1were predicted to regulate three and two

clusters of co-regulated genes, respectively. We found that

two of the three predicted NF-jB ⁄ p50 target clusters were sig-

nificantly enriched for NF-jB ⁄p50 ChIP-on-chip binding,

while both of the predicted IRF1 target clusters were enriched

for IRF1 ChIP-on-chip binding. These results suggest that our

computational analysis method predicts true regulatory

interactions in the macrophage response.

The resulting transcriptional regulatory network implicates

large numbers of established and novel TFs in the innate

immune response. The most highly connected TFs in the

network (MYC and E2F) are involved cell cycle regulation.

Other highly connected TFs, such as NFYC [involved in trans-

forming growth factor (TGF)-b and other pathways] and

RXRA (a component of nuclear receptor heterodimers

involved in inflammation and cholesterol metabolism), may

play novel roles in the system. The NF-jB family members

REL and NF-jB ⁄ p50 were predicted to regulate a large

number of genes, as were IRF family members and STAT-1.

The connectivity in the network is approximately scale free in

a global sense, which is consistent with known mammalian

regulatory networks (107, 108). One novel TF identified in

our analysis is TG-interacting factor-1 (TGIF1), a transcrip-

tional repressor in the TGF-b signaling pathway (109). TGIF1

is associated with a cluster containing ubiquitin cycle and

immune response genes, and is in particular predicted to neg-

atively regulate CSF2 and CXCL3. We validated the TGIF1

expression profile from the arrays and confirmed its induction

after 1 h of stimulation by LPS or Pam3CSK4. This predicted

transcriptional regulatory network, identified through applica-

tion of the tools of systems biology, is a hypothesis-generating

framework which will direct our future experiments into

innate immune gene regulation (98) (Fig. 5).

Additional computational tools

There are many computational tools in use at the ISB in addi-

tion to the ones mentioned in the case studies above. BioTap-

estry (http://www.biotapestry.org/) (110) is a convenient

tool for representing networks where regulatory interactions

have directionality and complex feedback loops are present,

such as gene regulatory networks. BioTapestry lays out ‘wiring

diagram’ representations of the networks, capable of visualiz-

ing hundreds of genes and thousands of interactions. Pointil-

list (http://magnet.systemsbiology.net/software/Pointillist/)

(111) is an algorithm and software framework developed for

the purpose of integrating heterogeneous large-scale data sets

in a statistically principled manner. cMonkey (97), mentioned

above, facilitates data integration by allowing genes to be

grouped based on similarity in expression profiles and attri-

butes such as functional associations or the presence of shared

TF binding sites. The systems biology workbench environment

Gaggle (http://gaggle.systemsbiology.net/docs/) (112) was

developed to facilitate integration between visualization and

data analysis programs. A wide variety of tools have been inte-

grated into the Gaggle, including Cytoscape, BioTapestry, TIGR

Multiexperiment Viewer (http://www.tm4.org/mev.html),

and the EMBL String database (http://string.embl.de/) (113).

Although not developed at the ISB, the tool model-based

analysis of tiling arrays (MAT) (http://liulab.dfci.harvard.

edu/MAT/) (114) coupled to the Integrated Genome

Browser (http://www.affymetrix.com/support/developer/

tools/download_igb.affx, Affymetrix Inc.) is widely used for

analysis and interpretation of ChIP-on-chip data. Higher level

Dizzy (http://magnet.systemsbiology.net/software/Dizzy/)

(115) was developed for analysis of biochemical network

dynamics in either deterministic (differential equation) or
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stochastic frameworks. Computational analysis of quantitative

proteomics data is a field unto itself, requiring substantial infra-

structure. The necessary tools for quantitative proteomics analy-

sis, such as SEQUEST, PeptideProphet, ASAPRatio, and XPRESS,

have been integrated into a software package called the Trans-

Proteomic Pipeline (TPP) (http://tools.proteomecenter.org/

wiki/) (116). The TPP provides tools to interpret experimental

results in a straightforward manner. The Aebersold groups at ISB

andETH-ZurichcontinuouslymaintainandupgradetheTPP.

Screens

Forward genetics provides an approach to unraveling innate

immune pathways that is complementary to the experimental

and computational methodologies described above. In for-

ward genetics, the genome is perturbed in an unbiased

manner to identify the genes required to maintain a particular

well-defined phenotype (TLR activation-induced TNF produc-

tion, resistance to infection, etc.). In this manner, completely

A

C

B

Fig. 5. Hypothesis-generating transcriptional regulatory network controlling the macrophage response to TLR activation. The computational
analyses used to generate this predicted regulatory network are described in the main text. (A) Matrix defining potential interactions between tran-
scription factors (TFs) and clusters of co-expressed genes. Each column represents a cluster of co-expressed genes, while each row represents a TF
potentially controlling gene expression in the network. Clusters and TFs are ordered according to the kinetics of their responses to LPS stimulation. An
orange solid rectangle indicates that the TF is potentially an activator for the genes in the cluster, while a blue solid rectangle indicates that the TF is
potentially a repressor for the genes in the cluster. (B) Heat-map depicting gene expression profiles for TFs in the network in response to LPS
stimulation. Red indicates upregulation, while green indicates downregulation. (C) Heat-map depicting median expression profile of genes in each
co-regulated cluster in response to LPS stimulation. Red indicates upregulation, while green indicates downregulation (figure reproduced from 98).
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novel genes with non-redundant roles in immunity can be

discovered. Forward genetics avoids the frustrating and diffi-

cult search of nearly infinite phenotype space to identify the

immune-relevant function of a novel differentially expressed

gene or gene isoform. Forward genetics screens can be applied

to both in vitro and in vivo phenotypes, utilizing small interfering

RNA (siRNA) libraries and ENU mutagenesis, respectively.

Interaction partners and greater context for the genes identi-

fied using these approaches can be identified using the genom-

ics, proteomics, and computational tools described above.

In vitro screens: siRNA

A forward genetics approach can be taken to identify genes con-

trolling cellular processes in vitro through the use of large-scale

siRNA libraries. Two recent siRNA screen studies identified

human host genes involved in human immunodeficiency virus

(HIV) and West Nile virus infection (117, 118). In both studies,

a siRNA library targeting approximately 20 000 human genes

was transfected into human cell lines that were then infected

with virus. Over 250 genes were identified that facilitate HIV

infection, including many novel genes such as those involved in

Golgi and nuclear transport (118). In the West Nile Virus

screen, 283 genes were identified that support viral infection,

while 22 genes were found to inhibit viral infection (117).

In vivo screens: ENU random mutagenesis

Forward genetics is especially powerful when the phenotypic

screens are combined with germ-line mutagenesis: the genome

is randomly perturbed and the resulting mutants are tested for

immune phenotypes in vivo and ⁄or in vitro. Use of the germ-line

mutagen, ENU, has led to the identification of many novel

genes playing critical roles in immunity, and several excellent

reviews have been published on the topic (119, 120). The con-

tribution of ENU mutagenesis techniques to our understanding

of innate immunity has been significant: for example, the Lps2

mutation identified TRIF as the master adapter in MyD88-inde-

pendent TLR4 signaling (121). The Triple d mutation, which

affects UNC93B1, a gene of previously unknown function,

impairs signaling by nucleic acid-sensing TLRs, confers suscep-

tibility to murine cytomegalovirus infection, and causes defects

in exogenous antigen presentation (122). UNC93B1 has

recently been shown to play a specific role in TLR trafficking

(123). ENU mutagenesis screens for autoimmune phenotypes

have also revealed critical roles for novel genes. For example,

the Sanroque mutation in the gene ROQUIN causes a lupus-like

syndrome (124). Mechanistic analysis revealed that ROQUIN

inhibits autoimmunity by destabilizing inducible costimulator

(ICOS) mRNA (125). ENU mutagenesis screens can also iden-

tify novel functions or properties of established immunologi-

cally relevant genes. While knockout alleles in some genes may

be lethal, it is possible that ENU mutant alleles in the same

genes will be viable (126). ENU mutagenesis has revealed

unexpected specificity in the coupling between the master

adapter MyD88 and TLRs. The Pococurante missense mutation,

for example, abolishes all signaling except that activated by

TLR2 ⁄6, while the Lackadaisical mutation selectively impairs

signals activated by TLR7 and TLR9 (127).

Limitations

In spite of their power for linking genes to phenotype, for-

ward genetics approaches do have limitations; for example,

only genes with non-redundant functions are identified. Given

evolutionary pressures to buttress critical functions with

redundancy, the complete set of non-redundant genes for any

immune phenotype can be expected to be a small subset of

the entire complement of genes involved in any innate

immune process. It has been estimated that only 10–20 non-

redundant genes linking TLR signaling to TNF activity await

discovery (119). For more complex phenotypes, such as resis-

tance to murine cytomegalovirus infection, the ‘resistome’

may be larger, but still relatively small (about 300 genes)

(128). To gain a holistic understanding of innate immunity,

we must extend beyond the critical core of non-redundant

genes. Another drawback, restricted to in vitro screens, is that

genes with general cellular functions may be identified as

playing critical roles in the investigated phenotype. For exam-

ple, genes identified in an in vitro screen for West Nile virus

infection were enriched for intracellular protein traffic and cell

adhesion functions (117). As many essential cellular processes

are likely to require intracellular protein trafficking, the genes

identified in such screens are not necessarily specific for virus

infection and may not constitute good targets for antiviral

drugs. Core cellular genes are less frequently identified in

ENU mutagenesis screens, because mutations in these genes

are more likely to be lethal. Contrasted with their power for

discovery, however, these limitations to forward genetics are

relatively minor. Forward genetics will continue to play a crit-

ical role in the holistic analysis of innate immunity, especially

when coupled to the genomics, proteomics, and computa-

tional approaches described above.

Human genetics

There is mounting evidence that genetic polymorphisms

regulate innate immune function in humans. Most of these
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associations have been identified through a candidate gene

approach, although genome-wide association studies are also

being pursued (reviewed in 129). In the following

paragraphs, we described several examples from our

laboratory and those of our collaborators that link human

disease susceptibility to molecular function of TLRs.

We identified a stop codon polymorphism in the ligand-

binding domain of TLR5, TLR5392STOP, that renders it unable

to mediate flagellin signaling (130). This polymorphism

acts in a dominant fashion and is associated with increased

susceptibility to pneumonia caused by the flagellated bacte-

rium Legionella pneumophila.

In an investigation of links between TLR2 signaling and lep-

rosy, we demonstrated that macrophages produce TNF in

response to Mycobacterium leprae in a TLR2-dependent manner

(131). Furthermore, we have shown that a human polymor-

phism of TLR2 associated with lepromatous leprosy,

TLR2Arg677Trp, impairs its ability to activate NF-jB in

response to M. leprae and M. tuberculosis.

To investigate the role of TLR4 polymorphisms in

Legionnaires’ disease (LD) susceptibility, we used a case–

control study to compare the allele frequencies of two

TLR4 SNPs, A896G and C1196T (132). Surprisingly, we

found that both of the SNPs were protective for LD,

despite the fact that some previous studies suggested that

these SNPs are associated with increased susceptibility

to other infections. These results demonstrate that genetic

TLR variations can be either beneficial or deleterious to

resistance, depending on the pathogen.

Polymorphisms in TLR adapter proteins can also influence

human disease susceptibility. We identified an SNP in the

adapter TIR domain-containing adapter protein (TIRAP) [also

known as MyD88 adapter-like (MAL)], which links TLR2 and

TLR4 to MyD88 (9), and mediates signals from TLRs activated

by mycobacteria. This SNP, C558T, was found to influence

susceptibility to both meningeal and pulmonary tuberculosis,

but by different immune mechanisms (133).

The human studies described above show that polymor-

phisms in TLRs are associated with changes in susceptibility or

resistance to various infectious diseases. These influences involve

many genes and are relatively subtle and are therefore distinct

from those studied using mouse knockout models. While

mouse knockouts have clearly been invaluable in dissecting out

the functions of various components of the innate immune

system, they are, however, binary in nature: the gene is either

present or absent. The analogous situation in human popula-

tions is very rare (134). In contrast to mouse knockout models,

the mathematical modeling approaches discussed above can

capture the small quantitative differences in signaling that arise

from mutant molecules. Such systems biology approaches,

when coupled to functional studies of human polymorphisms,

have the potential to enable a deeper understanding of how

human immune responses are influenced by genetic variation.

Conclusions

The innate immune system lies at a critical crossroads in the

immune system, maintaining a balance between resistance to

infection and inflammatory disease. Enormous progress in

defining the molecular pathways of innate immunity has been

made in recent years. Application of the tools of systems biol-

ogy, particularly the emerging technologies described above,

will enable a comprehensive understanding of these increas-

ingly complex networks – understanding that will ultimately

bridge the gap between molecular variability and human

disease susceptibility.
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