
Abstract. The concept of reverberation proposed by
Lorente de Nó and Hebb is key to understanding
strongly recurrent cortical networks. In particular,
synaptic reverberation is now viewed as a likely mech-
anism for the active maintenance of working memory in
the prefrontal cortex. Theoretically, this has spurred a
debate as to how such a potentially explosive mechanism
can provide stable working-memory function given the
synaptic and cellular mechanisms at play in the cerebral
cortex. We present here new evidence for the participa-
tion of NMDA receptors in the stabilization of persis-
tent delay activity in a biophysical network model of
conductance-based neurons. We show that the stability
of working-memory function, and the required NMDA/
AMPA ratio at recurrent excitatory synapses, depend on
physiological properties of neurons and synaptic inter-
actions, such as the time constants of excitation and
inhibition, mutual inhibition between interneurons,
differential NMDA receptor participation at excitatory
projections to pyramidal neurons and interneurons, or
the presence of slow intrinsic ion currents in pyramidal
neurons. We review other mechanisms proposed to
enhance the dynamical stability of synaptically generat-
ed attractor states of a reverberatory circuit. This recent
work represents a necessary and significant step towards
testing attractor network models by cortical electrophy-
siology.

1 Introduction

Reverberation refers to neural activity that circulates in
a recurrent network. This concept was first developed in
the 1930s by Lorente de Nó, whose systematic study of
the vestibular–oculomotor reflex led him to postulate
that neural after-discharges (responses that outlast a

brief stimulus for a fraction of a second) are produced
by ‘self-reexcitation’ in closed chains of neurons (Lo-
rente de Nó 1933, 1938a,b). Hebb proposed that the
notion of reverberatory circuits has broad implications
for cortical function: ‘‘To the extent that anatomical and
physiological observations establish the possibility of
reverberatory after-effects of a sensory event, it is
established that such a process would be the physiolog-
ical basis of a transient ‘memory’ of the stimulus’’ (Hebb
1949, p. 61). Hebb speculated that such a ‘transient
memory’ trace could be maintained by reverberation in a
cell assembly for an appreciable time, until the structural
change of synapses is made for the formation of
permanent memory.

Since the publication of Hebb’s influential book,
Hebbian cell assemblies have been formulated and de-
scribed mathematically in terms of attractor neural
networks. The attractor theory was developed as a
paradigm for associative long-term memory (e.g., Hop-
field 1982), and for working memory (Amit 1995).
‘Working memory’ refers to an ‘immediate’ memory by
which the brain actively holds and manipulates infor-
mation online for a brief period of time (usually sec-
onds). Because of its active nature, the neural process
underlying this form of memory is manifestly observ-
able. Indeed, in physiological studies, when an animal is
required to remember a sensory cue across a delay be-
tween the stimulus and behavioral response, the main-
tenance of working memory during the delay period is
correlated with elevated persistent neural activity in
posterior parietal, inferotemporal, prefrontal, and other
association cortices (Fuster 1995; Goldman-Rakic
1995). The attractor theory proposes that a stimulus-
selective persistent neural firing pattern corresponds to a
dynamically stable state that is self-sustained for a long
time by excitatory reverberation in a recurrent circuit
(Amari 1977; Amit 1995).

Milner (a former colleague of Hebb) criticized the
attractor theory, on the grounds that a reverberatory
neural assembly is ‘liable to fire out of control’ (Milner
1996). That is, positive feedback could drive neurons to
fire at higher and higher rates until saturation is reached.

Correspondence to: X.-J. Wang (e-mail: xjwang@brandeis.edu,
Tel.: +1-781-7363147, Fax: +1-781-7362915)

Biol. Cybern. 87, 471–481 (2002)
DOI 10.1007/s00422-002-0363-9
� Springer-Verlag 2002

The dynamical stability of reverberatory neural circuits

Jesper Tegnér1;2;3, Albert Compte1;4, Xiao-Jing Wang1

1 Volen Center for Complex Systems, Brandeis University, Waltham, MA 02454, USA
2 Stockholm Bioinformatics Center, Center for Physics, Astronomy, and Biotechnology, Stockholm 106 91, Sweden
3 Dept. of Numerical Analysis and Computing Science, Royal Institute for Technology, Stockholm 100 44, Sweden
4 Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante 03550, Spain

Received: 26 April 2002 /Accepted: 21 May 2002



This would be inconsistent with the observation that
mnemonic persistent activity in the cortex occurs at
moderate rates (typically 10–50 Hz), significantly above
the spontaneous firing rate (a few hertz), but well below
the maximum firing capability of cortical neurons. When
inhibition is incorporated to compensate for feedback
excitation, ‘inhibitory damping might prevent reverber-
ation altogether’ (Milner 1999). This problem of dy-
namical instability poses a serious challenge. It has not
been investigated properly until recently when, with the
advance in cortical physiology, it became possible for the
first time to include realistic biophysical properties of
cortical neurons and synapses in working-memory
models (Amit and Brunel 1997; Lisman et al. 1998;
Wang 1999; Compte et al. 2000; Durstewitz et al. 2000a;
Brunel and Wang 2001). In particular, it was recognized
that if the excitatory synaptic current is mediated by the
AMPA receptors (AMPARs), it would be significantly
faster than feedback inhibition mediated by GABAA

receptors. A strongly recurrent network with fast positive
feedback/slow negative feedback is prone to instability.
Either strong oscillations develop in a memory state or,
worse, persistent activity is often disrupted in the middle
of a delay period, thereby losing the memory (Wang
1999; Compte et al. 2000). Such instability could be
prevented if the excitation is slow compared with nega-
tive feedback, i.e., when recurrent synapses are primarily
mediated by the NMDA receptors (NMDARs) (Wang
1999; Compte et al. 2000). Moreover, the average syn-
aptic excitation mediated by NMDARs is predicted to
saturate at high neural firing rates, hence it is suitable for
the rate control in memory states (Wang 1999).

Therefore, we suggested that both problems of the
rate control and dynamical instability identified by
Milner could be solved if the NMDA/AMPA ratio is
sufficiently large at the recurrent synapses of a rever-
beratory network (Wang 1999; Compte et al. 2000;
Wang 2001). This theoretical hypothesis, if proven cor-
rect, could have important implications for a critical role
of the NMDARs in working memory, and for the theory
of attractor networks in general (Wang 1999). However,
one could ask: how large an NMDA/AMPA ratio is
‘sufficiently large’? How does the required NMDA/
AMPA ratio depend on the details of the model, such as
the relative excitatory and inhibitory current time
courses or the synchronization properties of the net-
work? Does it depend on the type of single neuron
models used, such as the leaky integrate-and-fire (LIF)
model versus the Hodgkin–Huxley-type conductance-
based model? The present work was carried out to ad-
dress these questions, using a conductance-based ex-
tension of our spatial working-memory model (Compte
et al. 2000).

2 Methods

2.1 Neuron models

We have used a model of pyramidal neurons which have
three compartments, representing a soma/initial axonal

segment (s), and proximal (d1) and distal (d2) dendrites.
This architecture of single pyramidal cells is however not
critical for the results presented here. The neuronal
input–output relation and the shape of the somatic and
dendritic action potential have been calibrated using
cortical-slice data (McCormick et al. 1985; Markram
et al. 1997). The membrane equations are

Cm
dVs
dt

¼ �INa � IK � ICa � IL � ICan

� gc1ðVs � Vd1Þ=p1 � Isyn

Cm
dVd1
dt

¼ �INap � IKS � IL � gc1ðVd1 � VsÞ=p2
� gc2ðVd1 � Vd2Þ=p2 � Isyn

Cm
dVd2
dt

¼ �IA � ICa � IL

� gc2ðVd2 � Vd1Þ=ð1� p1 � p2Þ � Isyn

with somatic voltage Vs, proximal dendritic voltage Vd1,
and distal dendritic voltage Vd2, and where ICan repre-
sents a cation current. Electrotonic parameter values
are: gc1 ¼ 0:75, gc2 ¼ 0:25, p1 ¼ 0:5, and p2 ¼ 0:3.
The calcium dynamics in the soma and the distal
dendrite obey

d½Ca2þ�
dt

¼ �aICa � ½Ca2þ�=sCa

where (Wang 1998)

ICa ¼ gCam2
1ðV ÞðV � ECaÞ

m1ðV Þ ¼ 1=ð1 þ exp½�ðV þ 20Þ=9�Þ
ECa ¼ 120 mV

Somatic and distal dendritic parameters are: as ¼
0:000667, ad2 ¼ 0:002 [in lM ðms lAÞ�1 cm2], ss ¼
240 ms, sd2=80 ms, gCa=1.5 (s), and gCa=0.25 (d2) (in
mS/cm2).

Several of the ion conductances (ICan, INa, IKS, and IA)
that have been identified in prefrontal pyramidal neu-
rons are included in our cell model (Hammond and
Crépel 1992; Fleidervish et al. 1996; Seamans et al.
1997). The slow cationic calcium-dependent current
obeys

ICan ¼ gCanm2ðV � ECanÞ
dm
dt

¼ m1ð½Ca2þ�Þ � m
sCanð½Ca2þ�Þ

m1½Ca2þ� ¼ að½Ca2þ�Þ
að½Ca2�Þ þ b

ECan ¼ �20mV

b ¼ 0:002ms�1

a ¼ 0:0056 ½msðmMÞ��1

sCan ð½Ca2þ�Þ ¼ 1

a ½ðCa2þÞ� þ b
ms

gCan ¼ 0:025mS=cm2:

472



The proximal dendrite has a persistent sodium current
which follows

INap ¼ gNapm3
1hðV � ENapÞ

dh
dt

¼ aðVd1Þð1� hÞ � bðVd1Þh

aðVd1Þ ¼ 0:001 exp½ð�85� Vd1Þ=30�

bðVd1Þ ¼ 0:0034

exp½ð�17� Vd1Þ=10� þ 1

m1ðVd1Þ ¼ 1

1 þ exp½�ðVd1 þ 55:7Þ=7:7�
gNap ¼ 0:15mS=cm2

and a slow potassium current which follows

IKS ¼ gKSqrðV � EKSÞ
dq
dt

¼ q1ðVd1Þ � q
sqðVd1Þ

q1ðVd1Þ ¼ 1

1 þ exp½�ðVd1 þ 34Þ=6:5�

sqðVd1Þ ¼ 8

exp½�ðVd1 þ 55Þ=30� þ exp½ðVd1 þ 55Þ=30�
dr
dt

¼ r1ðVd1Þ � r
srðVd1Þ

r1ðVd1Þ ¼ 1

1 þ exp½ðVd1 þ 65Þ=6:6�

srðVd1Þ ¼ 100

1 þ exp½�ðVd1 þ 65Þ=6:8� þ 100

gKS ¼ 2:0mS=cm2:

The A current in the distal dendrite obeys

IA ¼ gAa4bðV �EaÞ
da
dt

¼ a1ðVd2Þ�a
saðVd2Þ

a1ðVd2Þ ¼
1

1þ exp½�ðVd2 þ 60Þ=8:5�
saðVd2Þ ¼ 0:37

þ 1

exp½ðVd2 þ 46Þ=5� þ exp½�ðVd2 þ 238Þ=37:5�
db
dt

¼ b1ðVd2Þ�b
sbðVd2Þ

b1ðVd2Þ ¼
1

1þ exp½ðVd2 þ 78Þ=6�
sbðVd2Þ ¼ 19

þ 1

exp½ðVd2 þ 46Þ=5� þ exp½ðVd2 þ 238Þ=ð�37:5Þ�
gA ¼ 1:0mS=cm2:

The model for the fast spiking interneuron includes
sodium and potassium channels which reproduce neu-
ronal input–output behavior (Wang and Buzsáki 1996).

2.2 Synapses

Synaptic currents are modeled as Isyn ¼ gsynsðV � EsynÞ,
where gsyn is the maximal synaptic conductance, and
Esyn (in millivolts) is the reversal potential (Esyn ¼ 0 for
excitatory and Esyn ¼ �70 for inhibitory synapses). The
gating variable s represents the fraction of open synaptic
ion channels and follows first-order kinetics for AMPA
and GABA transmission:

ds
dt

¼ asF ðVpreÞð1� sÞ � s=ss

where as ¼ 12 ms�1, ss ¼ 2 ms for AMPA, and inhi-
bition decays as ss ¼ 10 ms (Lisman et al. 1998). The
normalized concentration of the postsynaptic transmit-
ter-receptor complex, F ðVpreÞ, is 1=½1 þ expð�Vpre=2Þ�.
The voltage-dependent NMDA conductance introduces
a multiplicative factor 1=½1 þ ½Mg2þ� expð�0:062VmÞ=
3:57� (Jahr et al. 1990), ½Mg2þ� ¼ 1:0 mM, into the
synaptic equation. NMDA channels are represented by
second-order kinetics as

dx
dt

¼ axF ðVpreÞð1� xÞ � x=sx

ds
dt

¼ asxð1� sÞ � s=ss

where x is a synaptic variable proportional to the
neurotransmitter concentration in the synapse, ax=10,
sx=2 ms, as=0.5, and ss=100 ms (Wang 1999). No
transmission delays were included in the model.

2.3 Network

The two population network model represents a local
circuit of the dorsolateral prefrontal cortex in monkey.
Pyramidal cells are four times more numerous than
interneurons (NE ¼ 1024, NI ¼ 256). Neurons are spa-
tially distributed in a ring according to the preferred cue
stimulus in an oculomotor delayed response task,
consistent with a columnar organization of the monkey
prefrontal cortex (Goldman-Rakic 1995; Ó Scalaidhe
and Goldman-Rakic 1999; Rao et al. 1999; Constantin-
idis et al. 2001), and similar to models of the primary
visual cortex (see, e.g., Ben-Yishai et al. 1995; Somers
et al. 1995; Tsodyks and Sejnowski 1995). The strength
of the recurrent connections between neurons in the
network depends on the difference between their pre-
ferred cues. The conductance between neuron i and
neuron j is described by gsyn;ij ¼ W ðhi � hjÞGsyn, where
W ðhi � hjÞ is the normalized ‘connectivity.’ The W for
excitatory projections (pyramid-to-interneurons and
pyramid-to-pyramid) is chosen as W ðhi � hjÞ ¼
J� þ ðJþ � J�Þ exp½�ðhi � hjÞ2=2r2� (Compte et al.
2000). The dimensionless parameter J� represents the
strength of the weak cross-directional connections, Jþ

the strength of the stronger isodirectional connections,
and r is the footprint of the connectivity. J� is
determined by normalization. We used JþEE ¼ 1:95,
JþEI ¼ 1:7, and rEE ¼ rEI ¼ 0:2, with the convention
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that PXY refers to the connection from X to Y for
parameter P . Inhibitory projections are all to all
(Fig. 1A shows a schematic diagram of the intracortical
connectivity). For our reference parameter set, all the
recurrent excitatory synaptic conductances were medi-
ated exclusively by NMDA channels (Wang 1999). Our
reference excitatory conductances are (in mS/cm2)
gEE=1.63 and gEI=1.09, and the GABAergic inhibition
is (in mS/cm2) gIE=1.16 and gII=0.65. All neurons
receive external excitatory inputs mediated by AM-
PARs. This overall external input from other cortical
areas is modeled as uncorrelated Poisson spike trains to
each neuron at a rate of mext ¼ 1000 Hz per cell with the
conductances gext;E ¼ 0:26 and gext;I ¼ 0:06 (in mS/
cm2).

2.4 Simulation protocol

The simulation protocol was chosen to mimic the
protocol used in the experiment of Funahashi et al.
(1989), where monkeys were trained to fixate a central
spot during a brief presentation (0.5 s) of a peripheral
cue and throughout a subsequent delay period (1–6 s),
and then to make a saccadic eye movement to where the
cue had been presented in order to obtain a reward. We
model the cue presentation to the network as a selective
transient current injection (only during the cue period)
to pyramidal cells with preferred cues close to the
stimulus. A transient nonspecific current injection to all
neurons produces a response at the end of the delay
period.

2.5 Numerical integration

Code for the model simulation was in written C and the
equations were integrated (Dt ¼ 0:025 ms) using a
fourth-order Runge–Kutta algorithm (Press et al. 1992).

3 Results

Figure 1 shows a typical model simulation of the
delayed oculomotor response experiment (Funahashi
et al. 1989). Initially the network is in the resting state of
unstructured spontaneous activity (0.5–1.5 Hz; Fig. 1C).
A transient cue stimulus triggers the formation of a
spatially localized activity pattern (a bump attractor)
which outlasts the stimulus and persists through the
delay period (Fig. 1B). The maximum firing rate of
delay activity is moderate (40–50 Hz; Fig. 1B). More-
over, neurons fire asynchronously, and individual neu-
rons show irregular spiking (Fig. 1D). Finally, a brief
excitation recruits a surge of feedback inhibition from
the interneuron population, the network is switched
back to the spontaneous state, and the memory is
erased. Thus, our conductance-based network model
reproduces the findings of electrophysiological record-
ings in the dorsolateral prefrontal cortex of awake
behaving monkeys during visuospatial working memory
(Funahashi et al. 1989).

3.1 Synchronous and asynchronous working-memory
modes

In the simulation shown by Fig. 1, recurrent synaptic
excitation is mediated exclusively by NMDARs. Simula-
tions with LIF neurons revealed that the asynchronous
persistent statewas destabilizedwhen theNMDA/AMPA
ratio at the recurrent synapseswas reduced (Compte et al.
2000). We investigated whether this conclusion general-
izes to the case when neurons are modeled by the
Hodgkin–Huxley formalism. As in Compte et al. (2000),
we gradually decreased the NMDA/AMPA ratio, while
preserving the summated mean synaptic drive, and
assessed how the network behavior is affected. We found

Fig. 1A–D. Working memory is maintained by a spatially localized
sustained network activity state, a ‘bump attractor.’A Schematic
representation of the connectivity within the network. Excitatory (E)
cells receive strong excitation from neurons with similar preferred cue
direction, and weaker excitation from those with dissimilar memory
field. Inhibition (I) to excitatory cells instead is nonspecific and arrives
equally strongly from all interneurons in the network. B Activity
profile during the delay period for the simulation in C. Since all
neurons are identical, this curve is also the tuning curve for a neuron
selective to location 180	. C Rastergram during a simulated
visuospatial working-memory task. Each dot corresponds to an
action potential from a pyramidal cell indexed by location y (labeled
by the preferred cue 0–360	) at time x. Transient (250 ms, 0.5
lA=cm2) cue presentation (indicated by bar) induces a tuned
sustained memory state (delay period). Memory erasure is induced
by a transient nonspecific current injection to all neurons (250 ms, 0.8
lA=cm2). D Sample voltage traces from 16 equally spread (22:5	)
pyramidal neurons
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that a small reduction (16%) of the contribution from
NMDARs is not sufficient to destabilize the asynchro-
nous state (Fig. 2A). A further decrease of the NMDA/
AMPA ratio leads to a different dynamical regime where
the sustained mnemonic delay activity becomes synchro-
nous (Fig. 2B). The pyramidal neuron population shows
bands of activity that repeat rhythmically in time. The
oscillation frequency increases with a shorter time con-
stant of synaptic inhibition (Fig. 3). As the NMDAR
component vanishes, spatially localized persistent activity
becomes destabilized and disappears in the middle of the

delay period (Fig. 2C). This behavior is similar to what
has been found in other studies using LIF neurons
(Compte et al. 2000). When the NMDA/AMPA ratio is
too small, the recurrent synaptic excitation dominated by
AMPARs becomes too fast as compared with the time
course of inhibition, the tuned delay activity becomes
unstable, and a transient cue can therefore not be stored in
the network.

Therefore, as the NMDA/AMPA ratio is reduced, the
network behavior after a transient cue is successively
transformed between three regimes: bump attractor with
asynchronous firing (AS), bump attractor with syn-
chronous firing (S), and a third regime in which no
mnemonic activity (NM) could be elicited by the cue. To
quantify and analyze the role of NMDARs in the dy-
namical stability of this reverberatory circuit, we set out
to determine how the NMDA/AMPA ratios for the
three behavioral regimes depend on the network prop-
erties.

3.2 Dependence on the inhibitory synaptic time constant
and interneuron-to-interneuron connection

Intuitively, dynamical instability arises from a mismatch
between the time constants of recurrent excitation and
inhibition. The network should bemore stable if feedback
inhibition is faster.We tested this prediction by estimating
how the critical amounts of NMDARs at the transitions
AS$S and S$NMdepend on the time constant sGABA of
the inhibitory synaptic current (Fig. 4). We measure the
relative NMDAR contribution, (NMDA/(AMPA+
NMDA)), as the ratio of the time integral of a unitary
excitatory postsynaptic current when AMPARs are

Fig. 2A–C. The relative contribution from NMDA receptors
(NMDARs) to the time integral (the charge) of a unitary excitatory
postsynaptic current (EPSC) determines the temporal dynamics during
the delay period. A Asynchronous delay firing when the contribution
from NMDARs dominates. The lower trace represents the local field
potential (LFP) calculated as the average of all synaptic activity in the
network. B Increasing the synaptic AMPA receptor (AMPAR)
component induces synchronous but still stable delay-period activity.
Notice the oscillatory pattern in theLFP (lower trace) at about 60Hz.C
Eventually, too much AMPAR component in intracortical excitation
renders spatially tuned persistent activity unstable. These simulations
were run with sGABA=4 ms

Fig. 3. The time constant of the inhibitory synaptic current deter-
mines the synchronized oscillation frequency. The oscillation frequen-
cy was estimated by the frequency of the peak in the power spectrum
of the pyramidal population spiking activity (calculated with a
timebase of 5 ms). Note that oscillations occur typically in the gamma
(40- to 100-Hz) frequency range

Fig. 4. The relative NMDAR contribution to recurrent excitation
determines the dynamic mode of network behavior. At high NMDAR
level, the spatially localized bump attractor is asynchronous. As the
NMDAR component is decreased, the bump attractor becomes
synchronous. Too little NMDAR contribution leads to the destabi-
lization of the memory state (no persistent activity here means that the
sustained firing did not last for more than 5 s). Note that faster
inhibition (smaller sGABA) reduces the required NMDAR critical level
significantly
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blocked by the time integral of a composite unitary
excitatory postsynaptic current mediated by both AM-
PARs and NMDARs. When the inhibitory time constant
is 10 ms (reference value), the transition AS$S occurs
when the NMDAR contribution to recurrent excitation
falls below 88%, and the transition S$NM happens at
37% (Fig. 4). As expected, when inhibition is faster (with
a shorter sGABA), the required NMDAR contribution for
sustained delay activity is significantly reduced (Fig. 4).
For example, with sGABA ¼ 2:5 ms, NMDARs need to
contribute only about 5% of the total charge, in order to
sustain a stable (synchronous) spatially localized mne-
monic state (transition S$NM). This is because the faster
the inhibition, the shorter the period of the synchronized
oscillations (Fig. 3). Therefore, less NMDAR-mediated
slow excitation is needed to bridge across the silent time
intervals between synchronized spikes. Moreover, the
parameter range for the asynchronous memory state is
also enlarged (transition AS$S for 66% NMDA). Note
that these simulations were performed with a fixed value
of sAMPA ¼ 2 ms. Our results show that when inhibition
becomes as fast as excitation mediated by AMPARs
(when the sAMPA=sGABA is sufficiently small), there is no
longer a need for the slow NMDARs.

Furthermore, we observed that the network model is
more susceptible to synchronous oscillations with a
stronger inhibitory-to-inhibitory (gII) coupling. In fact,
there is no longer an asynchronous state for any level of
NMDAR contribution. Even when excitation is medi-
ated exclusively by NMDARs, rhythmic bands appear
in the delay period (Fig. 5). In this case, the inhibitory
network receives a slow tonic drive from the pyramidal
cell population, and oscillations are generated by mutual
inhibition between interneurons (Wang and Buzsáki
1996; Traub et al. 1996). Progressive substitution of
NMDARs for AMPARs further increases the synchro-
nization during the oscillations until tuned persistent
activity becomes dynamically unstable and the network
enters the nonmnemonic (NM) regime. If a working-
memory network operates in a more synchronous mode
we would expect that a larger contribution of NMDARs
is required in order to sustain the delay activity over the
silent periods. Indeed, tuned synchronous delayed ac-
tivity is abolished at a larger critical NMDAR compo-
nent, 48% with a larger gII value compared to 37% with
a smaller gII value (sGABA ¼ 10 ms) (Fig. 5). This re-
mains true for different values of sGABA (Fig. 5). Hence,
when the network is more synchronous due to an in-
creased gII, a larger amount of synaptic NMDAR
component is required to ensure that the circuit can
function as a working-memory circuit.

3.3 Differential effects of NMDARs in pyramidal cells
and interneurons

In the simulations up to this point, we altered simulta-
neously the NMDA/AMPA ratio at all the excitatory
connections. Now we assess the differential role of
NMDARs in the excitatory connections onto pyramidal
neurons (E!E) and those onto inhibitory fast-spiking

neurons (E!I). We found that if we fix the NMDA level
to either 100% or 50% at the E!I connection, the
stable mnemonic persistent state requires a much higher
NMDA level at the E!E connection when excitation to
inhibitory cells is fully mediated by NMDARs (100%)
than when it is partly (50%) mediated by AMPARs: the
S$NM transition occurs at 91% NMDA versus 48%,
respectively, at the E!E connection (Fig. 6). The
network is more vulnerable when E!I is mediated only
by NMDARs because a tonically driven interneuronal
network is prone to oscillations or/and because the
excitation to the inhibitory population is not fast enough
to allow inhibition to suppress the fast recurrent
excitation of the pyramidal population mediated by
AMPARs in the E!E connections. If E!I is 100%
NMDA, the sGABA value of the I!E projection is no
longer important.

The attractor dynamics is more stable if the NMDA/
AMPA ratio at the E!I projection is reduced, i.e., when
the recruitment of feedback inhibition is more rapid.
NMDAR-mediated excitation is slower than AMPAR-
mediated synaptic transmission in bringing interneurons
to threshold because of its slower rise time and possibly
because of its saturation properties. This is one example
where an increase in the synaptic NMDAR component
(in E!I) can destabilize mnemonic activity.

Fig. 5A,B. Strong interneuron-to-interneuron coupling renders the
network more susceptible to oscillations and increases the critical
amount of NMDA required for stable working-memory function. A
Strong recurrent inhibition (gIE=1.93, gII=1.09) induces synchro-
nous oscillations even though synaptic currents at recurrent excitatory
synapses are entirely mediated by NMDARs. B Larger synaptic
NMDA contribution is required for sustained delay firing when
interneuron-to-interneuron coupling is strong. The critical NMDA
ratios shown here correspond to the transition from synchronous
tuned persistent activity to nonmnemonic function (S$NM transi-
tion). Weak gII corresponds to the reference case, gIE=1.16 and
gII=0.65, and strong gII has the modified parameters gIE=1.93 and
gII=1.09
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3.4 Slow intrinsic ionic current reduces the need
for synaptic NMDAs

In the above simulations we focused on the synaptic
interactions, and showed that NMDAR-mediated slow
excitation is beneficial to network stability. We also
tested the idea that intrinsic ion channels of single
neurons could substitute the role of slow feedback
excitation, so that the critical level of synaptic NMDAR
contribution required for stable memory behavior is
reduced. A slow calcium-dependent cation current has
been identified in rat prefrontal neurons (Haj-Dahmane
and Andrade 1998). We have calibrated the behavior of
our neuron model using electrophysiological recordings
from cortical slices (see Sect. 2). Figure 7A illustrates a
typical voltage response to a current pulse when the
isolated pyramidal neuron model includes an ICan ionic
current. Spike discharges cause a calcium influx which
slowly activates the inward ICan current. This produces a
ramping-up time course of neuronal activity. Note after
the current pulse the neuron displays after-discharges for
hundreds of milliseconds, corresponding to the decay of
ICan. However, the neuron is not bistable for our
reference parameter set, as it eventually returns to the
resting state. In network simulations, if we remove the
ICan from pyramidal cells, the required critical level of
NMDA is significantly increased (Fig. 7B). A small
increase of the conductance gCan further reduces the
dependence on synaptic NMDAR component for the
tuned mnemonic activity state. With further increase of
the conductance gCan, pyramidal neurons become in-
trinsically bistable (not shown). In this case, reverbera-
tion underlying memory behavior relies primarily on
intrinsic cellular dynamics rather than on synaptic
mechanisms. This regime will not be further elaborated

here, but will be reported elsewhere. We conclude that
the critical amount of NMDA can be reduced, provided
another slow feedback excitation mechanism is added to
the circuit. Here this principle is exemplified in the form
of a slow calcium-dependent ionic current, which is
sufficiently weak so as not to induce intrinsic cellular
bistability.

4 Discussion and relation to other work

4.1 NMDARs and stability
of attractor working-memory models

The issue of the dynamical stability of synaptically
sustained persistent states at physiological firing rates in
networks of spiking neurons has been the focus of several
recent research papers (Wang 1999; Compte et al. 2000;

Fig. 6. The stabilizing effect of NMDARs depends on the type of
synaptic connection. The critical level of NMDAR contribution to the
E!E connection required for a stable memory state is much higher
when the E!I connection is 100% NMDA than when it is 50%
NMDA and 50% AMPA. Thus, the delay activity is most robust if
there is a high level of NMDAR in the recurrent excitation, whereas
the excitatory projections to the inhibitory population should be
dominated by AMPAR (sGABA ¼ 10 ms)

Fig. 7. A Electroresponsiveness of an isolated pyramidal cell
model with a nonselective cation current ICan. The calcium-dependent
activation of ICan is slow, leading to a ramping-up time course of the
neural response. A few action potentials are still fired after stimulus
extinction, in parallel with a slow deactivation of ICan. Notice that the
neuron is not bistable since it returns to a stable resting state. B Slow
ionic currents (here ICan) reduce the critical level of NMDAR that is
required for sustained delay activity. A further increase in gCan renders
the neuron intrinsically bistable and is therefore not included in this
analysis of synaptically sustained network bistability
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Gutkin et al. 2001; Hansel and Mato 2001; Koulakov
2001; Laing and Chow 2001; Koulakov et al. 2002) and it
has been discussed in two review papers (Durstewitz et al.
2000b; Wang 2001). All these studies found that synchro-
nous firing during the persistent state was detrimental to
its dynamical stability. This poses the synchrony problem
for the stable maintenance of persistent activity: fast
AMPAR-mediated recurrent excitation combined with
the typically slower GABAA feedback inhibition will in
general tend to synchronize the network activity, thus
threatening the stability of persistent activity in the local
circuit. Various possible (and mutually nonexclusive)
mechanisms have been proposed to render persistent
activity sustained by recurrent synaptic interactions
dynamically stable, either by forcing asynchronous firing
in the network or by inducing synchrony tolerance during
persistent firing.

One such mechanism is the slow time course of
NMDAR-mediated synaptic transmission. This was first
proposed by Wang (1999) and then supported in other
network simulations, both with LIF neurons (Compte
et al. 2000; Koulakov 2001; Brunel and Wang 2001) and
with conductance-based models (Durstewitz et al. 2000a;
novel results reported here). Essentially, the idea is that
to avoid the instability that arises from fast positive
feedback and slow negative feedback, the excitatory
feedback is made slower than the inhibitory feedback by
replacing fast AMPAR-mediated transmission by slow
NMDAR-mediated synaptic transmission. This substi-
tution accomplishes two things: (i) asynchronous sus-
tained activity is now possible because inhibitory
feedback is no longer slower than excitatory feedback,
and (ii) oscillatory sustained activity is stable to a certain
degree because the long time constant of NMDARs
bridges the intervals between successive oscillations of
the excitatory population and makes self-sustained net-
work firing possible. A sufficiently high level of syn-
chrony will still destabilize the persistent state (Wang
1999; Compte et al. 2000; and Fig. 2 reported here). The
results we report here, however, hint that this crucial role
of NMDARs cannot be linked to a fixed NMDA level in
recurrent excitation in prefrontal cortex. Indeed, the ex-
act value of NMDA needed depends substantially on
several factors, including the inhibitory synaptic time
constant, strength of I-to-I connections, differential
contribution of NMDA in E!E and E!I projections,
and the presence of slow intrinsic membrane currents. It
can be as low as 9% of the total excitatory charge and
still be a crucial mechanism for the stability of memory
function. Nevertheless, two qualitative conclusions are
generally valid: (i) the larger is the NMDAR contribu-
tion to recurrent excitation, the more stable is a rever-
beratory network; and (ii) the required NMDA level is
much higher for asynchronous than for synchronous
persistent activity.

4.2 Experimental tests

These studies give rise to questions that can be investi-
gated experimentally. At the biophysical level, an

interesting question is the actual time constants of
inhibitory synaptic currents in cortical neurons, or more
importantly the ratio of sAMPA=sGABA. Measurements of
this kind have been made for sensory neocortical areas
(Xiang et al. 1998) and hippocampus (Xiang et al. 1998;
Kraushaar and Jonas 2000; Bartos et al. 2001). Clearly, it
would be useful to make a similar analysis for neurons of
the prefrontal cortex. Another open question is the actual
NMDA/AMPA ratio at recurrent prefrontal synapses.

On the other hand, the role of NMDARs could be
investigated in physiological studies of behaving ani-
mals. For example, combining recording with ionto-
phoresis of drugs in a delayed response experiment, it
was found that delay-period activity was more effectively
abolished by NMDAR antagonists than AMPAR an-
tagonists in neurons of the premotor cortex (Fig. 8;
Shima et al. 1998). This result supports a predominant
role of NMDARs in delay-period activity.

Another issue of current debate is whether collective
oscillations exist in persistent neural activity of the cortex
during working memory. Pesaran et al. (2002) report
clear evidence of gamma-band oscillations in the LFP of
the lateral intraparietal cortex, especially during the delay
period of an oculomotor delayed-response task. We have
analyzed the spectral properties of prefrontal single
units during a working-memory task (A. Compte,

Fig. 8. Role of NMDARs and AMPARs in memory activity of a
motor cortical neuron during a delayed-response task. Delayed-period
activity (control, upper panel) is abolished by iontophoresis of the
NMDAR antagonist APV (middle panel), but not by iontophoresis of
the AMPAR antagonist CNQX (lower panel). In general, persistent
activity was found to be more sensitive to NMDAR block than
AMPARblock in this study.Dataadaptedwithpermission fromShima
and Tanji (1998)
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C. Constantinidis, J. Tegnér, S. Raghavachari, P. Gold-
man-Rakic, X.-J. Wang, unpublished work, 2002), and
we have been unable to find oscillatory activity in indi-
vidual spike trains, suggesting asynchronous collective
firing. However, the crucial test is whether collective os-
cillations (as measured with LFP) are to be seen in pre-
frontal cortex during these tasks (as observed in the
parietal cortex), and this is still an open question that has
not yet been determined experimentally.

4.3 Is NMDA necessary for biophysically realistic
attractor networks?

Other mechanisms that do not depend on NMDARs
have been proposed. Gutkin et al. (2001) show that a
conductance-based neuron subject to a fluctuating
synaptic input that barely depolarizes the neuron to its
firing threshold triggers spikes with a variable finite
delay with respect to the time its voltage crossed the
threshold. This delay in firing is reportedly a mechanism
to break the population synchrony that the interplay of
AMPA and GABAA currents would generate. This
effect does not exist in LIF neurons (where firing is
instantaneous upon threshold crossing), and is not
present in some other implementations of experimentally
calibrated conductance-based cortical neurons (Durste-
witz et al. 2000a); novel results presented here. This
mechanism relies on a precise balance of excitation and
inhibition, so that in the persistent state neurons are only
driven above firing threshold by occasional fluctuations
in the synaptic currents, causing a sizable delay to spike,
so that the population activity is roughly asynchronous
in the memory state. However, in the model of Gutkin
et al. (2001) no realistic spontaneous activity is present
in the resting state; and delay-period activity was
typically simulated for only 500 ms during which time
the bump state shows a large amount of drift. The
stability of this model in more realistic conditions thus
remains to be tested.

Another possible mechanism for solving the syn-
chrony problem in the persistent state is strong inter-
neuron-to-interneuron connections (Hansel and Mato
2001). By analytical methods, Hansel and Mato (2001)
proved that strong mutual inhibition between inhibitory
cells can help to stabilize an asynchronous state of per-
sistent activity, even if excitatory feedback is only me-
diated by fast AMPARs. This result can be intuitively
understood as follows. The oscillatory instability due to
fast excitation/slow inhibition can be described by
population activity (mean-field, or firing-rate) models
(Wilson and Cowan 1973; Tsodyks et al. 1997; Wang
1999). An asynchronous state corresponds to a steady
state of such a model, and the stability can be analyzed
by equations linearized around the steady state:

drE
dt

¼ � rE=sE þ wEErE � wIErI

drI
dt

¼ � rI=sI þ wEIrE � wIIrI

where rE and rI are the excitatory and inhibitory
population firing rates. It is apparent that the effective
time constant sI;eff for inhibition is given by 1=sI;eff
¼ 1=sI þ wII. Therefore, an increase in wII (stronger
I!I coupling) implies a reduction of sI;eff, hence faster
inhibition and better stability of the asynchronous state.
Therefore, a certain level of interneuron-to-interneuron
coupling could contribute to produce asynchronous
persistent activity, perhaps in the absence of NMDARs.
However, the results that we present here (Fig. 5B) raised
the question of generality of this conclusion, since
stronger I!I connection made our network more depen-
dent on NMDARs. Several factors might explain the
discrepancy between the two models. First, Hansel and
Mato (2001) considered a discrete-population model with
all-to-all coupling, whereas we studied a ring model with
structured connectivity. The difference in the network’s
architecture could lead to different stability properties.
Second, in the model of Hansel andMato (2001) neurons
receive little recurrent input and show no spontaneous
activity in the resting state. By contrast, in our model
neurons show spontaneous activity driven by massive
background excitation and controlled by powerful feed-
back inhibition. The difference in the inhibition set point
between the two models could underlie a distinct sensi-
tivity to recurrent inhibition among interneurons. Finally,
there is a second type of instability, produced by strong
I!I interactions rather than by the excitatory–inhibitory
loop (Traub et al. 1996; Wang and Buzsáki 1996). Thus,
we expect that the I!I connection is beneficial to network
stability only in a limited intermediate range of coupling
strengths.

Finally, an additional mechanism that can provide
extra stability to the memory behavior, even in the
presence of synchronizations, is the existence of some
kind of bistability at the synaptic level. Lisman et al.
(1998) propose that the voltage dependence of NMDAR-
type synaptic channels primes those synapses that are
activated by the stimulus, and the network is shown to
sustain stable, synchronized, persistent activity.

In summary, theoretical work has identified four
mechanisms that can contribute to the stability of per-
sistent activity sustained by synaptic reverberation. Two
of them (participation of NMDARs and synaptic bi-
stability) solve the problem by allowing the network to
function in a stable manner in the presence of weak
synchronization. To that end, slow mechanisms are in-
troduced that bridge the gap between successive oscil-
latory episodes to maintain the reverberation in the
network. The other two mechanisms (delayed spiking
and self-inhibition of interneurons) help to stabilize an
asynchronous persistent state. In principle, these candi-
date mechanisms can be tested experimentally in
biophysical studies of cortical microcircuits and physi-
ological studies of behaving animals.

4.4 Instability in the location of the bump attractor

Our model for sustained delay activity in a spatial
working-memory task is one example of a Mexican-
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hat-type network (Amari 1977; Ben-Yishai et al. 1995;
Camperi andWang 1998; Pinto andErmentrout 2001) for
spatially localized activity. In this type of network (as
opposed to architectures with distinct isolated popula-
tions: Amit and Brunel 1997; Brunel and Wang 2001;
Durstewitz et al. 2000a), in addition to the dynamical
instability discussed so far, another type of instability
appears often. The localization of the bump of activity in
one specific spot of the network can be unstable, and the
bump can move systematically and indefinitely across the
network. This property is detrimental to working-mem-
ory function, since the location of an initial cue cannot be
read out from the location of the bump after the delay
period. It has been shown that this effect is the result of
tuned negative feedback on the excitatory population:
local inhibitory feedback (Ben-Yishai et al. 1997) or
activity-dependent outward currents in pyramidal neu-
rons (Hansel and Sompolinsky 1998; Laing and Longtin
2001) both result in a moving bump. This is so because
tuned negative feedback produces the largest hyperpo-
larizing current at the activity peak in the excitatory
population. Hence, the profile drifts away from the
strongest negative feedback, which in its turn keeps
chasing the peak of activity in the network and pushing it
continuously. In a network model of LIF neurons this
phenomenon can be avoided by removing spike-frequen-
cy adaptation currents and bymaking feedback inhibition
sufficently broad (Compte et al. 2000). However, in a
working-memory model of conductance-based neurons,
even unstructured inhibitory connectivity produces tuned
inhibition peaked at the center of the bump. The spatial
tuning originates from the tuning in the driving force of
the synaptic current. The pyramidal cells receive inhibi-
tion from inhibitory cells as II ¼ gIðVE � EGABAÞ. Even if
gI is the same for all excitatory cells, the average
membrane potential VE is the largest for excitatory cells
at the top of the bump, therefore inducing a structured
spatial profile in the driving force ðVE � EGABAÞ. In
contrast, this phenomena does not occur for LIF neurons
as the average membrane potential decreases with
increased firing rate. Available data from cortical neurons
(Anderson et al. 2000) suggest that the average potential
increases with increasing firing, similar to conductance-
based neuron models. This observation has two
consequences:

1. It is more difficult to create a Mexican-hat type of
connectivity (and a bump state) by using biophysical
neurons. This difficulty can be overcome if inhibition
comes from several different inhibitory populations
(J. Tegnér, C. Constantinidis, P. Goldman-Rakic,
X.-J. Wang, unpublished work, 2002), or limited by
strong enough recurrent excitation (as shown here).

2. Once created, bumps will tend to drift continuously.
Here, we noticed that this problem is less severe in the
two-population model when there are slow inward
currents (ICan) and no adaptation currents (IKCa) in
the pyramidal cells. On the other hand, Laing and
Longtin (2001) propose that neural noise can help to
stabilize the location of a moving bump.

To further investigate the consequences of these
phenomena under a variety of conditions it is important
to use simplified models and mean field analysis of
biophysical networks.

4.5 Concluding remark

It would be interesting to carry out a systematic analysis
of stability – and possible role of NMDARs – for other
types of attractor network models endowed with realistic
synaptic properties, ranging from recurrent models of
primary visual cortex (Douglas et al. 1995; Somers et al.
1995; McLaughlin et al. 2000) to Hopfield-type associa-
tive memory models (Hopfield 1982). Further experi-
mental and theoretical work in this direction will shed
insights into the feasibility and dynamical operations of
reverberatory neural networks à la Lorente de Nó and
Hebb.
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Lorente de Nó R (1938a) Analysis of the activity of the chains of
internuncial neurons. J Neurophysiol 1: 207–244
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