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Abstract

Background: Regulatory T cells (Tregs) expressing the transcription factor FOXP3 are crucial mediators of self-tolerance,
preventing autoimmune diseases but possibly hampering tumor rejection. Clinical manipulation of Tregs is of great
interest, and first-in-man trials of Treg transfer have achieved promising outcomes. Yet, the mechanisms governing
induced Treg (iTreg) differentiation and the regulation of FOXP3 are incompletely understood.

Results: To gain a comprehensive and unbiased molecular understanding of FOXP3 induction, we performed time-series
RNA sequencing (RNA-Seq) and proteomics profiling on the same samples during human iTreg differentiation. To enable
the broad analysis of universal FOXP3-inducing pathways, we used five differentiation protocols in parallel. Integrative
analysis of the transcriptome and proteome confirmed involvement of specific molecular processes, as well as overlap of
a novel iTreg subnetwork with known Treg regulators and autoimmunity-associated genes. Importantly, we propose 37
novel molecules putatively involved in iTreg differentiation. Their relevance was validated by a targeted shRNA screen
confirming a functional role in FOXP3 induction, discriminant analyses classifying iTregs accordingly, and comparable
expression in an independent novel iTreg RNA-Seq dataset.

Conclusion: The data generated by this novel approach facilitates understanding of the molecular mechanisms
underlying iTreg generation as well as of the concomitant changes in the transcriptome and proteome. Our results
provide a reference map exploitable for future discovery of markers and drug candidates governing control of Tregs,
which has important implications for the treatment of cancer, autoimmune, and inflammatory diseases.
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Background
Immunological tolerance to self and innocuous foreign
antigens is maintained by a fine-tuned balance of several
immune cells, with an indispensable non-redundant role
for both thymic regulatory T cells (tTregs) and peripher-
ally induced Tregs (pTregs) [1–3]. Naturally-occurring
Tregs (nTregs) comprise tTregs and pTregs, both of
which suppress other immune cells and express the
transcription factor (TF) Forkhead Box P3 (FOXP3).
FOXP3 is necessary to generate the full Treg signature
and functionality, and mutations in FOXP3 lead to se-
vere lethal autoimmune disease in scurfy mice and men
[4]. Significant progress has been made in elucidating
the architecture of the regulatory elements in the
FOXP3 gene locus, which responds primarily to TCR,
CD28, IL-2, and TGF-β signaling pathways [5]. However,
most known regulators of FOXP3 are not specific to
Tregs but are, rather, factors of general importance in T
cells and other immune cells. FOXP3 regulation is in-
completely understood particularly in the human system
despite accumulating evidence for differing FOXP3 regu-
lation in mice versus human such as activation-induced
low-level FOXP3 expression in human but not murine
conventional T cells [4, 6, 7] and expression of different
FOXP3 isoforms in human Tregs [8–11].
Therapeutic manipulation of endogenous Tregs and

adoptive transfer of Tregs are promising current strat-
egies for the treatment of human autoimmune and in-
flammatory diseases such as type 1 diabetes (T1D) and
graft-versus-host disease (GvHD), respectively [12, 13].
Tregs can also be recruited to or be induced at tumor
sites, where suppression of anti-tumor immune re-
sponses can be detrimental; therefore, depletion of Tregs
is currently in trials for cancer treatment [14, 15]. Thus,
the further understanding of Treg induction and regula-
tion of FOXP3 expression is highly relevant to expand
the therapeutic opportunities for autoimmune and
inflammatory diseases as well as cancer. Due to their in-
volvement in different physiological functions, specific
targeting of pTregs or tTregs may be warranted depend-
ing on the type of disease. In vivo, pTreg generation was
shown to occur in the intestinal system, where chronic
low-dose antigen stimulation under tolerogenic condi-
tions favors Treg induction [1]. Gut-associated dendritic
cells as well as macrophages in the lung secrete TGF-β
and the vitamin A metabolite all-trans retinoic acid
(ATRA), which promote Treg induction [1, 16, 17]. Fur-
ther, commensal microbiota-derived short-chain fatty
acids, particularly butyrate, were demonstrated to favor
colonic Treg induction [18, 19]. Specific depletion of
pTregs in C57BL/6 mice leads to spontaneous develop-
ment of allergic-type pathologies at mucosal sites in the
gastro-intestinal tract and lung [20] as well as to defects
in maternal-fetal tolerance in the placenta [21], but not

to systemic autoimmune disease. This is concordant
with the concept that tTregs are primarily needed to
mediate self-tolerance, while pTregs are specifically in-
duced at environmental interfaces to induce tolerance to
foreign antigens. Nevertheless, a potential role for
pTregs in mediating self-tolerance has also been sug-
gested [22, 23].
Interestingly, Tregs induced from naïve T cells in vitro

are able to take over nTreg functions, as they are able to
rescue scurfy mice [24]. Such in vitro induced Tregs
(iTregs) can be generated by protocols that mimic the in
vivo situation, usually containing IL-2 and TGF-β [1, 16].
Depending on the induction protocol used, iTregs can
highly express FOXP3 beyond activation-induced levels,
although the epigenetic profile and, consequently, the
stability of iTregs differs from that of nTregs [25, 26].
Further, the suppressive functionality of iTregs is contro-
versial, with results dependent on the protocol and con-
trols used [27, 28]. However, to understand molecular
events occurring prior to and during FOXP3 induction in
human T cells, in vitro culture systems are required.
Thus, to further understand the regulation and induc-

tion of FOXP3 we performed deep molecular profiling
over time during Treg induction, starting from naïve
CD4+ T cells. Since there is no ‘gold standard’ protocol
for human Treg induction, we aimed to find general
FOXP3 regulators independent of a specific procedure.
Therefore, we used control (‘Mock’) stimulated cells
along with four different recently established Treg-
inducing protocols in parallel [28]. These protocols, util-
izing the cytokines IL-2 and TGF-β in combination with
ATRA, ATRA + rapamycin (Rapa), or butyrate, led to
robust and reproducible induction of FOXP3 and other
Treg signature molecules [28, 29]. Notably, the mTOR in-
hibitor Rapa proved efficient in enhancing iTreg generation
and nTreg expansion [12, 30, 31], and we previously dem-
onstrated that the combination of TGF-β +ATRA + Rapa
induced iTregs with superior suppressive activity [28].
We present here an extensive time-series molecular

profiling of human iTreg differentiation, providing a re-
source of RNA sequencing (RNA-Seq) transcriptomics
and proteomics data covering multiple Treg-inducing
protocols alongside with control cells that were activated
without Treg-inducing factors. We also provide un-
stimulated naïve CD4+ T cells and nTregs from the
same donors as negative and positive controls, respect-
ively. We explored the transcriptome and proteome of
the very same samples, enabling true integrative analysis
of both data types and making deep quantitative mass
spectrometry-based proteomics data of iTregs available
to the scientific community. In addition, we provide a
completely independent additional RNA-Seq dataset for
TGF-β + ATRA iTregs generated in another laboratory
under different culture conditions and with an extended
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time-series. We present evidence for iTreg-specific glo-
bal cell polarization patterns in agreement with available
relevant T cell signatures, and we find that functional
categories underlying differentiation include a super-
cluster of general molecular pathways related to cellular
proliferation and metabolism, in parallel to a super-
cluster linked to T cell polarization. Importantly, integra-
tion of our data revealed enrichment of a newly defined
iTreg subnetwork for immune disease-associated genes
and a central position in the iTreg subnetwork for many
known crucial (n)Treg regulators, alongside with novel
candidate molecules whose functionality in FOXP3 in-
duction was confirmed by a targeted shRNA validation
screen. Our rich data harbor the potential to reveal
novel markers for distinction of Tregs from activated T
cells or pTregs from tTregs, the latter being currently
problematic in the human system [1, 32]. Indeed, our
computational approach confirmed that novel iTreg
molecules discovered in this study can outperform
known Treg regulators in classifying iTregs versus acti-
vated T cells. In summary, we present a large resource of
dynamic Treg transcriptome and proteome data, includ-
ing several novel regulators of FOXP3, which can be ex-
plored as potential markers and drug targets in the
future.

Results
Human in vitro generated iTregs show robust expression
of Treg signature molecules such as FOXP3 and Eos
To gain a better understanding of human FOXP3 induc-
tion, we induced iTregs from naïve CD4+ T cells
allowing for the detection of iTreg signatures at the
differentiated state but also of events preceding FOXP3
expression, which in the human system is only possible
with in vitro assays. We performed a time-course mo-
lecular profiling during human iTreg induction, captur-
ing molecular events occurring during differentiation of
FOXP3+ cells along with control cells. It is well-known
that TGF-β and IL-2 contribute to the induction of
FOXP3 [1, 5]; however, there is no single standard
protocol for iTreg generation and the literature concern-
ing iTreg phenotype and function is controversial even
for seemingly similar protocols [27, 28]. To identify ro-
bust and generic molecular events driving FOXP3 induc-
tion, we interrogated iTregs induced by four different
protocols in parallel. This approach enabled stringent
filtering for shared events occurring in all FOXP3-
expressing iTreg populations independently of the specific
protocol. The Treg-inducing protocols all included anti-
CD3/-CD28 activation together with IL-2 and TGF-β,
either alone or in combination with ATRA, ATRA + Rapa,
or butyrate (Fig. 1a). Importantly, cells were cultured in
serum-free medium to exclude traces of serum-derived
TGF-β or other undefined factors, and as a control we

used Mock-stimulated cells treated only with anti-CD3/-
CD28 activation and IL-2. We isolated naïve CD4+ T cells
and CD25high cells (here called ‘nTreg’) in parallel from
the same three healthy male donors (for cell purities, see
Additional file 1: Figure S1a). We isolated RNA and
protein from the same cells, which were derived from
iTregs and Mock-stimulated cells at five different time
points of differentiation (2, 6, 24, and 48 h, and 6d) and
from unstimulated naïve CD4+ T cells (‘Tnaive’) and
nTregs (for experimental setup, see Fig. 1a). For quality
control, an aliquot of the cells used for molecular profiling
was phenotyped by flow cytometry on days 4 and 6 of
culture. All iTregs displayed expression of FOXP3 that
was enriched in CD25-expressing cells, unlike Mock-
stimulated cells (Fig. 1b, c and Additional file 1: Figure
S1b, c). In addition, we determined that CD45RA was
downregulated more strongly in iTreg TGF-β +ATRA as
compared to the other stimulated cultures (Fig. 1c and
Additional file 1: Figure S1c). Furthermore, the fraction of
IFN-γ-producing cells was reduced in iTregs compared to
Mock-stimulated cells (Fig. 1c). As we described previ-
ously [28], CD25 was upregulated upon stimulation result-
ing in a high fraction of positive cells in Mock-stimulated
cells and iTregs, except in iTreg populations induced in
the presence of Rapa, which displayed a generally less
activated phenotype (Fig. 1b, c and Additional file 1:
Figure S1c). Accordingly, after pre-gating on CD25+ cells,
iTregs induced in the presence of Rapa were more similar
to iTregs induced with other protocols not only regarding
expression of FOXP3 but also of CTLA-4 and CD45RA
(Additional file 1: Figure S1c). Notably, despite lower
fractions of FOXP3+ cells in iTregs generated with
TGF-β + ATRA + Rapa, these iTregs had superior sup-
pressive function in vitro according to our previously pub-
lished results [28].
High-quality RNA extracted from different time points

of T cell cultures was subjected to RNA-Seq, which
confirmed enhanced expression of FOXP3 in all iTregs
compared to Mock-stimulated cells at all time points
(Fig. 1d). IKZF4 encoding for Eos, another gene import-
ant for Treg function [33], was also early and stably up-
regulated in all iTreg populations, reaching levels similar
to nTregs (Fig. 1d). FOXP3 and IKZF4 expression results
from RNA-Seq were confirmed by qRT-PCR from the
same as well as additional donors (Additional file 1:
Figure S1d) [28]. From a subset of the samples, we per-
formed quantitative mass spectrometry-based proteo-
mics using high resolution isoelectric focusing (HiRIEF)
nanoLCMS [34]. The proteomics data confirmed high
expression of FOXP3 and Eos protein in iTregs induced
with TGF-β or TGF-β + ATRA + Rapa (Fig. 1e). Al-
though FOXP3 expression in both RNA-Seq and proteo-
mics data increased over time in iTregs, reflecting the
increased fraction of FOXP3+ cells in the population as
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differentiation proceeds, the amounts remained below
that in nTreg populations. Notably, on the per-cell level,
when gating on activated (CD25+) cells, FOXP3 protein

levels in iTregs were similar to nTregs, while Mock-
stimulated cells did not display such FOXP3 expression
even in CD25++ cells (Fig. 1b, c), emphasizing the

a

b

d

e

c

Fig. 1 Treg signature molecules confirm the quality of iTreg and control cells used for molecular profiling. a Human naïve CD4+ T cells were
stimulated (‘stim.’) with anti-CD3/-CD28 antibodies and IL-2 for up to 6 days in serum-free medium. For iTreg generation, TGF-β1, rapamycin
(Rapa), all-trans retinoic acid (ATRA), or butyrate were added. At indicated time points (h: hours, d: days), RNA and protein were extracted for
RNA-Seq and proteomics. Unstimulated (‘unstim.’) nTregs (ex vivo CD25high cells) were used as a positive control, unstimulated naïve CD4+ T cells
were used as the ‘time zero’ control, both harvested on the day of isolation. G01–G07: Treatment group abbreviations. b, c Cultures as in (a),
except unstimulated cells cultured in medium (+ IL-2) for 6 days. On day 6, an aliquot was re-stimulated for 4 h with phorbol 12-myristate
13-acetate/ionomycin plus Brefeldin A, stained for the given surface and intracellular markers and analyzed by flow cytometry. b Histograms for
FOXP3 are shown for individual molecular profiling donors. Pre-gating: live CD4 + CD25++ cells (filled histograms) or live CD4+ cells (open
histograms). ‘isotype’: anti-FOXP3 antibody isotype staining for each sample colored as beneath. Grey dashed lines: gate to determine FOXP3+ cell
fraction; corresponding values are displayed in (c). c Expression of flow cytometry markers, gated on viable CD4+ cells (except for last three
columns depicting live cell fraction, and columns 4–6, which are gated on live CD4 + CD25++ cells). The percentage of positive cells for the given
marker is indicated by the color scale, columns show individual donors (D1, D2, D3). Grey indicates samples not measured or not applicable
markers. FOXP3 and IKZF4 (Eos) expression from RNA-Seq (d) and proteomics (e) data, respectively. Dots: individual donors (mean per donor for
proteomics samples with technical replicates), lines: mean of n = 3 donors. Statistical analysis, see Methods and Additional file 3: Table S2
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importance of considering the fraction of CD25+ cells as
well as the kinetics of gene expression over time in com-
parison to Mock-stimulated control cells. It was de-
scribed that the FOXP3 expression level in murine Tregs
is correlated to their function [35]; however, in human
Tregs, expression of FOXP3 is more complex, wherein
human Tregs are known to express three different
FOXP3 splice isoforms with functional consequences
[8–11]. We therefore asked whether iTregs induced by
the conditions under study, despite similar total FOXP3
protein levels on a per-cell basis, may show a change in
FOXP3 isoform expression compared to nTregs. To this
end and to further confirm the proteomics data with the
additional aspect of FOXP3 isoform expression, we per-
formed western blot analysis of iTregs and nTregs.
These data confirmed higher FOXP3 protein expression
in all iTreg populations compared to Mock-stimulated
cells, although lower than in nTregs (Additional file 1:
Figure S1e). The results further suggest that iTregs ex-
press functional FOXP3 isoforms with a similar isoform ex-
pression pattern as in nTregs (Additional file 1: Figure S1e).
iTregs resembled the FOXP3+ ‘Treg’ subset of CD4+ cells
based on FOXP3 and Eos expression, and also expressed
low levels of cytokines ascribed to Th1, Th2, Th17, or Tr1
subsets such as IFN-γ, IL-4, IL-13, IL-17, IL-22, and IL-10
(Fig. 1c) (omics data in repository and [28]).
Together, these results demonstrate the quality of the

iTreg cells used for molecular profiling based on canon-
ical Treg ‘up’ signature molecules, such as the Treg
markers FOXP3 and Eos, and low expression of Treg
‘down’ signature molecules such as IFN-γ.

Time-course molecular profiling captures the dynamics
and polarization of iTreg differentiation
We next performed a global analysis of the generated
RNA-Seq and proteomics data from human iTregs and
controls. In total, counting the GENCODE (v19) genes
and applying a minimal filtering rule (≥ 1 count across
all samples), we detected 33,991 genes. However, when
considering an expression threshold (see Methods) for
highly expressed genes (HEGs), which are more likely to
be functional [36], our data comprised 15,910 HEGs cor-
responding to 11,378 (72%) protein-coding genes. With
our mass spectrometry-based proteomics approach, we
identified 9906 proteins (Ensembl protein ID), of which
6906 proteins (70%), corresponding to 6815 genes, were
quantified in all samples, and accordingly used for rela-
tive quantification and statistical analysis. The overlap
between the mass spectrometry-based proteome of 6815
genes and the HEGs was larger (55%) than the fraction
of RNA-identified HEGs with no quantified protein
(42%) (Additional file 1: Figure S2a, b). Despite the rela-
tively high overlap, the number of detected features was
higher for RNA-Seq than for proteomics, likely due to

intrinsic technological features and not to major differ-
ences in the quality of the corresponding data. Indeed,
we observed that the variability in both data types might
primarily be explained by biological variables (such as
the activation time or the treatment group) rather than
technical variables, and that no major signs of unwanted
batch effects were present (Additional file 1: Figure S3).
This was also exemplified by the expected protein quan-
titative behavior, regardless of technical variables such as
the Tandem Mass Tag (TMT) set, that was observed for
known Treg proteins such as FOXP3 and Eos (Fig. 1e).
Furthermore, we calculated the average number of pro-
teins per cell [37], which included many important Treg
and/or T cell regulatory proteins (Additional file 1:
Figure S4), thus confirming the quality of our proteome
data despite limited primary sample material.
To understand the dynamics of iTreg differentiation

on a global scale, we relied on the wider coverage and
sampling of the RNA-Seq data, while incorporating the
effect of multiple experimental groups. Therefore, we
performed unsupervised clustering using a version of
Self-Organizing Maps (SOMs) that allows obtaining sev-
eral parallel maps and perform data fusion (see
Methods). As shown in Fig. 2a, the topology of the
polarization indicated that a profound restructuring of
gene expression was mainly observed over time for all
conditions and already at the early time points, in line
with the potent activation signals. Furthermore, when
analyzed across conditions, the maps showed that differ-
ences were readily appreciable for the iTreg treatments
compared to Mock stimulation, especially at late time
points. When cross-comparing the iTreg time series, the
TGF-β, TGF-β + ATRA, or TGF-β + butyrate conditions
showed a similar overall molecular pattern, in contrast
to TGF-β + ATRA + Rapa, which was one motivation to
restrict the proteomics samples as well as further de-
tailed analysis mainly to three treatment groups, namely
Mock-stimulated cells, iTreg TGF-β, and iTreg TGF-β +
ATRA + Rapa. Additionally, we have shown previously
[28] that iTregs generated with TGF-β + ATRA + Rapa
differed functionally, displaying enhanced suppressive
activity in vitro.
Next, we asked whether the observed gene expression

pattern over time was indicative of a bona fide iTreg
polarization. As shown above, expression of FOXP3 and
IKZF4 affirmed a Treg-like phenotype. To provide add-
itional support and interpret the observed gene expres-
sion changes, we used publically available relevant T cell
signatures. We obtained a three-dimensional map of the
gene expression data using principle component analysis
(PCA) (Fig. 2b and Additional file 1: Figure S3b); then,
for each known signature and for each sample, we calcu-
lated a score, which essentially indicates whether a
sample’s expression profile matches the known signature
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a

b

Fig. 2 Global transcriptomic analysis gives a ‘bird’s-eye’ view of iTreg polarization and temporal gene expression architecture. a Self-organizing
map (SOM) analysis of transcriptome data from Mock-stimulated (control) or iTreg cells induced by the indicated protocols shows the topology
of the polarization at the transcript level. The panels are pseudo-colored SOMs from different time points (0, 2, 6, 24, and 48 h, and 6 days). The
colors correspond to the average RNA expression levels (z-score) of the genes contained on each hexagonal cell (blue: low, red: high). The effect
of the activation is predominant, but treatment differences become evident after 1 day of culture. b Principal component analysis differentiates
the samples on the basis of the activation time and treatment; ellipses highlight samples from the same time point. Arrows correspond to
selected gene signatures that correlate significantly with the first three principal components (PCs) (p < 10− 6 in either PC1, PC2 or PC3; Additional
file 2: Table S1) and belonging to different functional categories (red: Treg vs. Tcon; blue: T cell activation; cyan: TGF-β treatment). PC scores are
shown on the bottom and left axes, while top and right axes show the Pearson coefficient of each gene signature with the corresponding PC.
The text on the bottom specifies the reference for each numbered signature (Additional file 2: Table S1)
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(Additional file 2: Table S1). The first two principal com-
ponents (PCs) separated the cells mostly on the basis of
the activation time and treatment group, the latter being
more noticeable as time progresses and the spread in-
creases (Additional file 1: Figure S3b, e). Correspond-
ingly, when the signature vectors were correlated to the
PC scores, PC1 and PC2 can be interpreted as related to
cellular activation or the effect of TGF-β (selected ‘T cell
activation’ and ‘TGF-β’ signatures in Fig. 2b). Interest-
ingly, the ‘Treg vs. Tcon’ signatures were also positively
correlated with PC1, suggesting that at least part of the
variability observed over time may be correctly attrib-
uted to the anticipated Treg phenotype. Furthermore,
inspecting the variation from the PC2–PC3 perspective,
the in vitro polarized samples lie on a plane approxi-
mately defined by the activation and TGF-β signatures,
while nTregs substantially diverge from this plane, and
the human ‘Treg vs. Tcon’ signatures intersect this plane
almost perpendicularly. While our analysis confirmed
the similarity of the (unstimulated) nTreg samples with
published Treg signatures (which, in the examples used,
were based on unstimulated nTregs), it must be consid-
ered that the divergence of iTregs from nTregs may be
largely influenced by the in vitro activation of iTregs,
but may also reflect actual differences between iTregs
and pTregs as well as between pTregs and tTregs or
Treg subsets from different tissues [38–42]. Overall, the
pattern of variability is readily compatible with a com-
bined effect of time and experimental promotion of the
iTreg phenotype as the driving forces shaping the differ-
ences between the samples.

iTregs show protocol-specific and general patterns of
differentially expressed genes and proteins
To model gene expression over time and call differen-
tially expressed genes (DEGs), we specifically focused on
the extraction of the genes that reacted in an iTreg-
specific manner over time compared to the Mock-
stimulated cells (iTreg group effect), as opposed to the
genes that changed over time as a consequence of cellu-
lar activation (time effect). Given the different kinetics of
general activation and correspondingly lower CD25+ cell
fractions in iTregs induced with Rapa (Additional file 1:
Figure S1c and Figure S3b, e), modeling gene expression
over time and in comparison to Mock-stimulated con-
trol T cells was especially important. To ensure a robust
calling of DEGs, we employed three different methods
for differential analysis in parallel and required the genes
to be significant for at least two methods (see Methods;
Additional file 1: Figure S2c and Additional file 3: Table S2).
Briefly, we either considered the time as a discrete or con-
tinuous covariate and performed appropriate multiple
linear modeling with interactions between the time and
the group. A corresponding analysis was done for

proteomics data to obtain differentially expressed proteins
(DEPs) (see Methods; Additional file 1: Figure S2d, e and
Additional file 3: Table S2).
The massive cellular response to the activation was ex-

emplified by the large number of genes (10,093 DEGs;
4660 DEPs) that responded to the stimulation over time
(Additional file 1: Figure S2c, d and Additional file 3:
Table S2). In addition to the general activation effect, a
fraction of the genes responded with an iTreg-specific
expression pattern, as iTregs presented 1279 to 2249
DEGs depending on the inducing protocol (Fig. 3a and
Additional file 1: Figure S2c), of which several were
shared between iTreg conditions (Fig. 3a). According to
the stringent criteria used here to call DEGs, only 368
genes were DEGs shared between all four iTreg groups
(Fig. 3a), and the iTreg TGF-β + ATRA + Rapa condition
was bounding this number to a lower range when in-
cluded in a two- or three-way comparison, in line with
the SOM analysis (Fig. 2a) in which this group displayed
a more unique profile, while the other iTreg groups were
more similar to each other. Thus, for proteomics, iTreg
TGF-β + ATRA + Rapa and iTreg TGF-β were used to
represent the Treg-inducing protocols, and the following
analyses are therefore focused on these two iTreg
groups. Confirming the DEG data, almost 50% of the
proteins differentially expressed in iTreg TGF-β were
also DEP in iTreg TGF-β + ATRA + Rapa, while the lat-
ter had more unique differentially expressed molecules
(Fig. 3a, b). Alongside protocol-specific differential gene
and protein expression, we observed a shared signature
induced by all the iTreg protocols, which was most rele-
vant from the perspective of studying generic FOXP3-
inducing molecules.
A special effort was made to separate the iTreg group

effect from the relatively larger time effect (Fig. 3c, d),
and the number of DEGs and DEPs for both the activa-
tion as well as the iTreg-specific effect increased over
time, albeit with different kinetics for RNA and protein.
More RNAs were already different at the first baseline
point for RNA-Seq (2 h) but very few proteins were dif-
ferentially expressed at the corresponding first available
proteomics baseline point (6 h) and a similar number of
DEGs and DEPs was only modeled at the terminal stage
(Fig. 3c, d).
This global analysis was followed by a parallel com-

parison of RNA and matched protein expression over
time. We asked whether a gene’s mRNA level correlated
with its protein level, as translational efficiency, post-
translational regulation, and molecular half-lives are
known to affect the relationship between the two, espe-
cially during state transitions [43, 44]. The overlap of
protein-coding DEGs with DEPs was 37% (Additional
file 1: Figure S2e). However, since no corresponding pro-
tein was quantified for 61% of the protein-coding genes
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Fig. 3 Differential gene and protein expression analysis during iTreg polarization. Differential expression was modeled over time (activation effect)
and specific for iTreg induction (group effect). Group abbreviations: G01, Unstimulated naïve CD4+ T cells; G02, Mock-stimulated cells; G03, iTreg
TGF-β; G04, iTreg TGF-β + ATRA; G05, iTreg TGF-β + ATRA + Rapa; G06, iTreg TGF-β + butyrate; G07, unstimulated nTreg. a DEGs in iTreg groups
compared to Mock control in at least one time point or at baseline are counted. Number of DEGs in each condition or shared between iTreg
conditions (see color code) is indicated and proportional to the circle size; numbers in parentheses are exclusive DEGs per condition. b DEPs in
iTreg conditions compared to control are counted. Numbers of exclusive DEPs (in parentheses) or shared in the two iTreg conditions are shown.
The number of (c) DEGs (FDR < 0.01) or (d) DEPs (FDR < 0.05) is shown for each of the indicated coefficients (grey-black: activation effect; red, blue:
group effect) on a statistical model with time as a discrete factor. e A heatmap of RNA and protein data is shown for the genes detected at both
levels. The expression is shown as separate RNA (regularized log (rlog)-transformed counts) or protein (log2R) z-score (blue: low; red: high). Black
bars to the left indicate differential expression. Hierarchical clustering was performed separately for the indicated four blocks using RNA and
protein data and clusters were obtained for the DEG and DEP blocks (see Methods). A, B, D: Donor 1, 2, 3; S01–S05: TMT set. Colored bars on the
right show the relative fraction of the cellular compartments for the proteins with available data. Histograms show the distribution of the
Spearman correlation; green line marks the median value
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(Additional file 1: Figure S2a), we considered only RNA:
protein pairs for which both data were available for fur-
ther analysis. We observed that a substantial fraction
(58%) of those genes was differentially expressed in both
domains (Fig. 3e, DEG and DEP). Next, we assessed
whether the changes in the two domains were correlated;
to do so, we first partitioned the RNAs and proteins based
on their corresponding differential expression and then
further classified the largest block (DEG and DEP) into
five clusters (see Methods and Fig. 3e). We observed that
approximately half of the molecules in the DEG and DEP
block had concordant expression (Fig. 3e, clusters c, d)
and the other half belonged to clusters with discordant
profiles. While the relative kinetics of the RNA and pro-
tein expression would allow for a delayed accumulation of
the corresponding protein, resulting in a poorly correlated
profile (as for cluster e), we observed one cluster of genes
(cluster b) for which protein and RNA had instead an
anti-correlated profile. Interestingly, this cluster was
enriched for mitochondrial proteins and functions (Fig. 3e
and Additional file 1: Figure S5). Similarly, for the other
discordant cluster (e) more proteins were reported to
localize in specific cellular compartments (nucleolus, ER/
Golgi) rather than nucleus and cytoplasm, with corre-
sponding matching functional enrichment (Fig. 3e and
Additional file 1: Figure S5). This analysis demonstrates
that, even when the transcriptional perturbations of a cel-
lular system are accompanied by a corresponding substan-
tial alteration of the proteome, the individual transcript
level cannot be always considered a proxy for the corre-
sponding protein. Therefore, when selecting genes for
functional follow-up from transcriptome data, proteome
data are an important non-redundant resource.

iTreg gene expression signatures reflect specific
functional programs
The functional transcriptional program of T cell activa-
tion and T helper cell subset differentiation in vitro [45]
or T cell differentiation in the thymus [46] has been pre-
viously analyzed. Here, we specifically investigated the
functional categories affected during the differentiation
toward the iTreg subset, and we dissected, visualized,
and grouped the distinct profiles of the genes that re-
sulted differentially expressed as a function of the polar-
izing conditions (TGF-β or TGF-β + ATRA + Rapa).
To partition the genes with similar RNA expression

over time, we used a model-based representation of the
cluster of genes in the Mock control and in the iTreg
time series (Additional file 4: Table S3). We further
grouped the clusters using a summary measure of the
correlation between the respective members (see
Methods), and super-clusters were identified (Fig. 4a),
i.e., two positively and densely connected components,
one with a more generic proliferative and metabolic

profile and another pointing to a more specific T cell
program (Fig. 4a, b and Additional file 4: Table S3).
The genes up-regulated over time were grouped at one
extreme, while the down-regulated genes were found at
the other. Moreover, for individual clusters, the differ-
ences between the iTreg and the Mock stimulation
conditions were highlighted. The super-clusters not
only showed data-driven dependence, but also sorted
into interconnected domains with functionally related
ontologies (Fig. 4b and Additional file 4: Table S3). In-
deed, among the up-regulated clusters we identified en-
richment for categories required and/or affected by a
proliferative program, such as metabolism, cell cycle,
RNA processing and translation, in line with the aug-
mented metabolic requirements of activated T cells and
a shift from a catabolic to an anabolic metabolic pro-
gram [47]. We observed that iTregs showed differences
in the cluster enriched for metabolic processes, espe-
cially for iTregs induced with TGF-β + ATRA + Rapa
and in agreement with the metabolic control exerted
on the in vitro induction of T cell subsets with specific
requirements for Tregs, including a role for the mam-
malian target of rapamycin (mTOR) [12, 31]. At the
other extreme of the cluster network, a specific effect
of the iTreg polarization conditions was shown for the
clusters identified as ‘TGF-β clusters’ (clusters 10, 15,
23, 35, 38), mostly containing genes that were more
abundantly expressed in the iTreg as compared to the
Mock control time series (e.g., IKZF4, SMAD7,
NOTCH1, TGFB1, SKIL). In the proximity, other ‘T cell
activation’ genes (clusters 1, 4, 11, 12, 28, 29) were in-
stead abundantly expressed at the beginning of the
polarization but down-regulated over time (e.g.,
MAP3K1, STAT5B, MYC, MAX, CD3E). Interestingly,
the FOXP3-containing cluster 3 appeared as being cen-
tral in the network of clusters and bridging between the
TGF-β series of clusters and the metabolism/cell cycle
groups (clusters 13, 21, and 22). FOXP3, FURIN, CCR5,
CD101, CD2, and CXCR5 were among the cluster 3
members and concordantly upregulated in iTregs. In
summary, the functional gene expression program
agrees with simultaneous proliferation, activation, and
polarization, a typical behavior of differentiating T cells.

iTreg gene expression program inferred from network
reconstruction
The polarization of iTregs from naïve T cells over time
may encompass regulatory interactions that are changing
over time as a result of the dynamic evolution of the sys-
tem. Indeed, we showed above (Fig. 4) that the expres-
sion profile of the gene cluster comprising FOXP3 did
not positively correlate with the profile of the clusters
containing known FOXP3 activators (e.g., BACH2,
FOXO1, STAT5B, FOXO3). The relative expression over
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time of each member of a regulator:target pair is key in
determining the biological outcome and a simple ap-
proach based on correlation does not incorporate such a

dynamic interaction. Therefore, we hypothesized that,
after considering the temporal factor in reconstructing
the network of interacting genes, it would be possible to

a

b

Fig. 4 Clusters of genes show the functional dynamics of gene expression during iTreg differentiation. Model-based cluster analysis of gene
expression reveals that the transcriptional profiles are functionally super-organized in concordant modules with functional similarity and show the
molecular footprint of T cell activation and iTreg polarization. All DEGs in iTreg + TGF-β or iTreg + TGF-β + ATRA + Rapa compared to Mock-stimulated
cells were considered. In (a), the average gene expression of the 42 clusters is shown after rlog transformation (x-axis: time; y-axis: average rlog-transformed
RNA-Seq counts), with a colored line corresponding to the treatment group as shown in the legend. Each cluster is connected with a line to the
clusters correlated positively (red) or negatively (blue), after permutation analysis (Spearman, p < 0.01). In (b), a functional category is assigned to the
same clusters after gene ontology and pathway enrichment analysis. Bottom: the corresponding color legend and representative genes are given
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retrieve the known, and possibly novel, molecular con-
nections from our data and that we could apply the
‘guilty by association’ principle in order to retrieve
original candidate regulatory genes. The most common
dynamic network reconstruction algorithms require a
very dense sampling rate to estimate lagged dependen-
cies and the small sample size might be a limiting factor.
We therefore sought to overcome this limitation by
comparing the gene networks reconstructed statically
but for two sets of samples, i.e., the ‘early’ (0–6 h) and
the ‘late’ (24 h to 6 days) observations independently,
and capture the temporal aspect of the regulatory system
by inspecting the rewiring of the nodes. Indeed, when
summarizing the expression profile of known FOXP3
positive transcriptional regulators as a signature score
(see Methods; Additional file 1: Figure S6a), we verified
that there is an early bout of induction of those regula-
tors peaking at 6 h, except for RUNX1, NFATc4, and
FOXP3 itself, which were upregulated later and specific-
ally in iTregs. These observations are consistent with an
accumulation of FOXP3 at later time points. We imple-
mented a hub-centered approach to infer the connec-
tions between the genes in the early and late stages of
the differentiation using a mutual information (MI) cri-
terion and calculated a rewiring score by comparing the
two networks (Additional file 5: Table S4). We robustly
selected the hubs as the set of 307 TFs resulting differ-
entially expressed both at the protein and RNA level
after cellular activation or iTreg polarization. Of these,
the subset of 49 TFs differentially regulated in iTregs
(Fig. 5a) includes genes with a well-known role in Treg
biology, which are maximally transcribed either early
(BACH2, LEF1, IKFZ3, SATB1) or late (IKFZ4, NFIL3,
GATA3, JUN, RXRA) in our system and show generally
concordant RNA and proteins levels, in addition to
novel factors not known in Treg/T cells (Fig. 5a). We
obtained bootstrapped consensus early and late net-
works by calculating the MI between the hubs and all
the other expressed genes. The two consensus networks
were combined by union to derive a full network and a
node-rewiring score [48] was used for ranking (see
Methods and Additional file 1: Figure S6b, c). A major
rewiring force was the T cell activation through CD3,
CD28, and IL-2, which constitute a well-known potent
signal for the dynamics of the cellular network. There-
fore, we focused on the specific events occurring in
iTregs by selecting a subnetwork formed by FOXP3 and
the shared DEGs in all iTreg conditions (Fig. 3a), here
called iTreg subnetwork. The term ‘iTreg subnetwork’
was chosen to indicate the differential expression in
iTregs; however, it should be noted that several of these
genes also appear similarly expressed in nTregs
(Additional file 1: Figure S6d). This selection resulted in
a total of 349 nodes (Fig. 5b), of which 19 were TF hubs.

Notably, although the MI provides only an undirected
graph, taking the direction from the TF hub to the target
node into account, a direct comparison with literature and
external data sources can be made in order to verify previ-
ously observed regulatory interactions. Indeed, several
connections in our network were supported by a network
of TF binding, independently reconstructed from DNase-
Seq data from Tregs (see Methods; Fig. 5b). Such com-
parison, however, is limited due to incompleteness of the
binding motif database. The selected iTreg subnetwork
(Fig. 5b) was enriched for genes of the TGF-β pathway, as
indicated by functional enrichment analysis using Gene
Ontology, KEGG, Reactome, and MSigDB Immunological
Signatures databases (Additional file 6: Table S5) and as
expected by the involvement of TGF-β signaling in iTreg
differentiation [16]. We next explored whether the iTreg
subnetwork genes may be differentially expressed simply
as a consequence of FOXP3 expression in iTregs. Time-
course analysis of gene expression profiles revealed that
the majority of the iTreg subnetwork genes displayed dif-
ferential expression prior to FOXP3 expression, suggesting
that they may play a role in FOXP3 induction (Additional
file 1: Figure S6d, e). Further, many iTreg subnetwork
genes were represented in those gene clusters functionally
assigned to TGF-β signaling earlier (Fig. 4), suggesting
that they may be involved in the TGF-β pathway and not
indirectly regulated by FOXP3 (Additional file 1: Figure
S6e). Nevertheless, several iTreg subnetwork genes dis-
played a similar temporal expression profile as FOXP3
(Additional file 1: Figure S6d), and thus it is possible that
they may be regulated by FOXP3 itself. To further explore
this possibility, we studied the expression of iTreg subnet-
work genes in published data [49] of pre-activated primary
human naïve CD4+ T cells upon FOXP3 transduction
compared to an empty vector. We determined that 9 of
349 iTreg subnetwork genes (including FOXP3) were sig-
nificantly (false discover rate (FDR) < 0.05) differentially
expressed in FOXP3- versus control-transduced cells
(Additional file 1: Figure S6f), suggesting the possibility
that these few genes may be expressed as a consequence
of FOXP3 in iTregs.
In conclusion, our approach defined a novel iTreg sub-

network containing multiple genes potentially involved
in FOXP3 induction. Importantly, along with novel po-
tential Treg regulators, the iTreg subnetwork revealed
known crucial Treg regulators like BACH2, NFIL3
(E4BP4), GATA3, NOTCH1, LEF1, SATB1, and IKZF4
(Eos) with a well-known role not only in iTregs, but also,
and more importantly, in vivo in nTregs (Fig. 5a, b).

The selected iTreg subnetwork contains autoimmune
disease-associated genes
The immunomodulatory and tolerogenic activities of Tregs
in vivo are well-known and exemplified by the severe
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a

b

Fig. 5 Treg factors represent hubs in a core network of known and novel genes with regulatory potential. A hub-centered approach was
employed to reconstruct a gene co-expression network and the temporal rewiring of the nodes. a Hubs were defined as TFs which were DEGs
and DEPs (see Methods). Numbers correspond to the counts of selected features at each step. A heatmap shows the relative gene (rlog counts) and
protein (log2R) expression (z-score) for the hubs differentially expressed in iTregs (G03: TGF-β and/or G05: TGF-β + ATRA + Rapa). Abbreviations and
color codes as in Fig. 3. Black boxes to the left of the heatmap indicate whether the given TF is differentially expressed over time (‘hub.time’) or in
iTregs (‘Hub.G03’ or ‘Hub.G05’) in at least one time point; the gene has a known role in T cells or specifically Tregs (‘Known.in.T’ or ‘Known.in.Treg’).
b Two networks were reverse-engineered using the early or late time point samples, then, a rewiring score was calculated for each node by comparing
them (see Methods, Additional file 1: Figure S6b, c, Additional file 5: Table S4). Shown is the sub-network of nodes that were modeled as DEGs in all
four iTreg conditions, in addition to FOXP3. A triangle marks TFs. Light blue nodes correspond to the hubs and their size is proportional to the rewiring
score. A green continuous line marks the edges with support from a TF:target gene network built from ENCODE data (see Methods). Unconnected
nodes are not displayed
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human disease immunodysregulation polyendocrinopathy
enteropathy X-linked syndrome, which is caused by FOXP3
mutations [4] as well as by the contribution of Treg defects
to multiple complex human autoimmune diseases [50].
Based on the therapeutic activity of Tregs in numerous
pre-clinical mouse models of autoimmune and inflamma-
tory diseases in the past, recent advances have been made
towards clinical trials applying Treg therapy, primarily in
GvHD, transplantation, and T1D [12, 13]. For these rea-
sons, we hypothesized that the genes that are affected by
our experimental iTreg induction may be relevant in dis-
ease pathways.
Firstly, we tested whether any disease categories were

enriched in our iTreg subnetwork as compared to the
full network. Thus, we tested the genome-wide associ-
ation studies (GWAS) catalog terms grouped by their
disease ontology plus the additional Ai6 and Ai21 cat-
egories, which respectively include the GWAS genes for
six common autoimmune diseases (multiple sclerosis
(MS), rheumatoid arthritis, T1D, Crohn’s disease (CD),
systemic lupus erythematous, and psoriasis) or the 21
autoimmune disorders as in Farh et al. [51]. We
observed notable overlap for autoimmune diseases as
compared with 10,000 random gene sets selected from
the full network (Ai6: odds ratio (OR) 1.57, p = 0.042,
family-wise error rate (FWER) 0.443; Ai21: OR 1.55,
p = 0.028, FWER 0.330) (Fig. 6a and Additional file 6:
Table S5), and therefore corresponding to genes expressed
in CD4+ T cells during activation/differentiation. We also
used the association as in Menche et al. [52] as another
catalog of diseases genes, further showing that disorders of
the digestive and nervous system with an autoimmune
component were ranked at the top of the enriched diseases
(Additional file 6: Table S5). Indeed, when we compared
the iTreg subnetwork to the mapped genes for CD in the
GWAS catalog, we retrieved genes with variants previously
identified in GWAS scans (ZFP36L1, PLCL1 DENND1B,
BACH2, SLC22A23, JAZF1, IL18RAP, NOTCH1, TSPAN14,
CD6). Similarly, MS susceptibility genes (CD6, CXCR5,
ZFP36L1, KIF1B, CD58, BACH2) appeared in the iTreg
subnetwork and we detected a positive enrichment for MS.
Secondly, as it has been shown that a network ap-

proach based on protein–protein interactions (PPI) can
guide the interpretation of GWAS data [52], we identi-
fied the modules on a reference PPI network that were
enriched for the above disease categories (see Methods).
For three PPI modules (out of 119 modules) we detected
an overrepresentation of the Ai6, Ai21, and/or digestive
system disorder categories (Fig. 6a, b), further support-
ing the hypothesis that the iTreg subnetwork contains
genes that act in the same autoimmune disease neigh-
borhood, such as LEF1, BACH2, TCF4, KIF1B, CXCR5,
and NOTCH1, which have been implicated in auto-
immune diseases by independent reports.

Thirdly, to further support the connection with auto-
immunity, we interrogated the Target Validation Platform of
the Open Targets Consortium (www.targetvalidation.org)
and retrieved all the association scores, which summarize
the association evidence between a drug target and a dis-
ease, and it is calculated from various data sources, includ-
ing genetic associations, somatic mutations, known drugs,
pathways affected by pathogenic mutations, RNA expres-
sion, animal models, and text mining. When testing the
diseases associated with the iTreg subnetwork as com-
pared to the full network, we grouped the diseases with a
nominal p value of < 0.05 (hypergeometric test) by thera-
peutic area and again verified that ‘Immune system dis-
ease’ was the prominent therapeutic area, including
several autoimmune diseases such as MS and inflamma-
tory bowel disease (IBD, including both CD and ulcerative
colitis; Fig. 6c), further confirming that the selection of
iTreg genes is an appropriate criterion for identifying
known and likely also novel genes with relevance for hu-
man autoimmune diseases.
Given the above findings based mainly on genetic sus-

ceptibility, we formulated the hypothesis that, in the
context of the diseases for which there is a likely contri-
bution of T cells and in particular Tregs, the iTreg sub-
network genes should positively overlap with the genes
whose expression is deregulated in patients compared to
controls. Therefore, we retrieved publicly available gene
expression signatures (see Methods) for IBD and MS –
diseases in which Tregs are known to be relevant – and
performed a Gene Set Enrichment Analysis with the
iTreg subnetwork gene set. A positive enrichment was
indeed observed when using the ranked signatures ob-
tained from CD4+ T cells, not only from the affected tis-
sue, but also from blood (Fig. 6d).

Molecular profiling reveals novel candidate molecules
that can classify iTregs versus Mock-stimulated T cells
The above analyses confirm that the iTreg data pre-
sented here revealed disease-relevant and known import-
ant Treg regulatory genes. We therefore selected novel
‘candidate genes’ that appeared likely to have a role in
iTreg generation, and specifically FOXP3 induction, for
further investigation. Those ‘candidate genes’ (Fig. 7a
and Additional file 1: Figure S7a) were chosen based on
satisfying at least two of the following criteria: (1) being
shared DEGs in all four iTreg conditions (Fig. 3a); (2)
being nodes in the iTreg subnetwork (Fig. 5b); (3) inte-
grating DEGs and DEPs in iTregs versus Mock control
cells and sub-setting on TFs (‘iTreg hubs’ in Fig. 5a); or
(4) for these genes, a similar expression profile on pro-
tein level if available. Based on integrating these criteria
and ascertaining, through a literature search, that a role
in Tregs had not been elucidated at the time, 37 novel
‘candidate genes’ with a putative role in FOXP3 induction
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Fig. 6 The iTreg subnetwork is linked to common autoimmune diseases. The selected iTreg subnetwork (see Fig. 5) was tested for connection with
diseases using multiple public sources of annotation. a, b The enrichment of the GWAS catalog disease categories in addition to two categories of
autoimmune diseases (Ai6 and Ai21, see Results text) is shown. For each category, the null distribution of the odds ratios (ORs) obtained with 10,000
random gene sets from the full network is shown as a histogram and the observed OR with a vertical red line. The categories in bold have a
resampling-based p value of < 0.05. The resampled OR null distribution was used to calculate a FWER using the step-down minimum p value procedure.
Enrichment in PPI modules is shown for categories with a nominal p value of < 0.05 (Fisher’s exact test), and 119 hypotheses were tested. The modules
from a PPI network are given for the corresponding enriched categories and three PPI modules associated to the top three enriched in iTreg subnetwork
disease categories are displayed in (b). Light blue nodes correspond to genes with an associated SNP in the GWAS catalog. c The treemap shows the
enrichment p values of the indicated Open Target categories for the iTreg subnetwork. Only disease associations with nominal p < 0.05 are shown. The
size of the square is proportional to the –log10(p) and disease types are grouped by therapeutic areas. d Gene Set Enrichment Analysis (see Methods)
confirms that the iTreg subnetwork gene set is positively enriched in the ranked list obtained when comparing gene expression in CD4+ T cells from
gastrointestinal tissue or blood of inflammatory bowel disease patients (UC or CD as indicated) or from cerebrospinal fluid (CSF) of MS patients compared
to controls. CTRL: control, symptomatic or healthy; OND: other neurological disease; ES: enrichment score
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were chosen. We preferably selected putative positive regula-
tors of FOXP3 upregulated in iTregs compared to Mock-
stimulated cells (Fig. 7a, b) and, thus, amenable to perturb-
ation approaches by gene knockdown. Notably, the

candidate genes chosen here were over-represented in few
gene clusters according to Fig. 4 (Additional file 4: Table S3),
that is, clusters 3 (‘FOXP3 cluster’), 5 (‘known regulator’
cluster), and 23 and 35 (‘TGF-β clusters’).

a b c

d e

Fig. 7 Molecular profiling reveals known and novel Treg regulators. Novel ‘candidate’ molecules putatively involved in FOXP3 induction were
selected, along with ‘known’ Treg regulators as control (see text and Additional file 1: Figure S7a, b). a–c Expression profile of novel iTreg candidate
molecules. IKZF4 (Eos) and FOXP3 are shown for comparison. Labels as in Figs. 1 and 5. a Candidate gene mRNA counts were rlog-transformed, and
row-normalized z-scores are displayed (blue: low, red: high expression). b iTreg candidate protein expression (log2R). Grey cells: the protein was not
detected in the respective sample. c iTreg candidate gene expression from an additional, completely independent RNA-Seq dataset is displayed and
analyzed as in (a). iTregs were cultured with TGF-β + ATRA + serum, and additional time points were measured. d, e In silico validation of novel
candidate molecules for iTreg classification. d Linear discriminant analysis (LDA) with all possible combinations of two genes out of ‘37 candidates’,
‘37 known’ Treg, or 349 nodes in the iTreg subnetwork (‘349 iTreg’) lists, followed by group classification. Grey boxplots show the cross-validated
accuracy of classifiers regarding discrimination of Mock-stimulated (G02) vs. iTregs generated with either protocol (G03–G06) in the Main dataset. White
boxplots show results from LDA analyses performed in the same way, but for discrimination of Mock-stimulated cells (G02a) vs. iTregs (G04a) in the
independent dataset. Whiskers: min. to max. Value; + mean value; n = 1332, 1332 and 121,452 pairs for ‘37 candidates’, ‘37 known’, and ‘349 iTreg’,
respectively. The adjusted p value was ≤ 0.0001 by Kruskal–Wallis test with Dunn’s multiple comparison test for each vs. each boxplot. e Example of
two candidate genes (top classifiers) which separate Mock cells from iTregs in the Main dataset with 100% accuracy (0% error) in LDA
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Besides the ‘Main dataset’ described above, we also
provide another unpublished, completely independent
additional RNA-Seq dataset (here called ‘independent
RNA-Seq dataset’). This independent dataset comprises
Mock-stimulated cells and TGF-β + ATRA iTregs
induced under slightly different culture conditions (see
Methods), from different donors and laboratories, and
including additional time points. A high fraction of
FOXP3-expressing cells in the population, as well as the
suppressive activity of these iTregs, was confirmed
(Additional file 1: Figure S7c, d). Further, early and
stable IKZF4 mRNA expression as well as high FOXP3
mRNA in iTregs compared to Mock-stimulated cells
was confirmed in these independent donors (Fig. 7c).
Importantly, the fractions of activated (CD25+) cells in
iTregs and Mock-stimulated cells were high and in a
similar range between these conditions (Additional file 1:
Figure S7c), allowing accurate comparison of gene ex-
pression in these cells even with bulk populations. When
studying the expression pattern of the above-selected
candidate genes in this independent dataset (Fig. 7c), we
observed that most candidates showed a similar expres-
sion pattern in both datasets, confirming the general
trend of iTreg-specific candidate gene expression as
compared to Mock-stimulated cells (Fig. 7a–c). Add-
itionally, the extended time-series revealed an early spike
of expression for several candidate genes and a more
clearly divergent expression between iTregs and Mock-
stimulated cells at later time points of differentiation
(Fig. 7c). Additionally, from a global perspective, PCA
incorporating the shared treatment groups and time
points showed that both the Main and independent
dataset displayed a similar behavior, namely the time
(activation effect) predominantly explained the variabil-
ity and, further, a separation of the Mock control and
iTreg groups was increasingly evident as time progressed
(Additional file 1: Figure S7e).
We next performed an ‘in silico validation’ to test

whether the newly defined candidates could separate
iTregs from other cells in a better way than known Treg
regulators or genes randomly chosen from the iTreg
subnetwork nodes. Both candidate genes and known
Treg regulators (Additional file 1: Figure S7a, b) were re-
trieved from the list of genes being DEGs in at least one
iTreg condition compared to the Mock stimulation
control (Fig. 3a). We first tested the classification cap-
abilities on the Main RNA-Seq dataset that was used to
identify the candidate genes, although the obtained ac-
curacy estimates are known to be optimistically biased
(see [53] and below). We used a Linear Discriminant
Analysis (LDA) approach [54] followed by group classifi-
cation and, as expected, the candidate genes performed
better than known Treg regulators (or genes from all the
349 nodes in the iTreg subnetwork) in classifying iTregs

(induced by any protocol) compared to Mock-stimulated
cells (Fig. 7d). In detail, several single candidates were
able to classify iTreg versus Mock cells with > 94% ac-
curacy (data not shown). Similarly, many combinations
of two candidates could classify iTreg versus Mock cells
with 100% accuracy, while the maximal cross-validated
accuracy for pairs from the 37 known Treg regulator list
(including FOXP3 and IKZF4) was 96% (Fig. 7d, e).
Because the novel iTreg candidate gene set was cre-

ated using all the Main dataset, the accuracies reported
by the above LDA analyses are subject to the well-
known feature selection bias [53]. For example, the
selected candidates (and known regulators) were differ-
entially expressed in iTregs in the Main dataset, and also
the same dataset was used for group classification in
LDA. Moreover, most of the candidate genes (35/37)
and known regulators are represented within the iTreg
subnetwork control gene list, largely explaining the high
classification accuracy for some pairs in the control list
(Fig. 7d). To further confirm the classification ability of
the candidate genes, we therefore performed additional
analyses as indicated below.
Importantly, we confirmed the classification power of

the candidate molecules in the independent RNA-Seq
dataset that was not used for candidate selection. To do
so, we tested all possible gene pairs within all three lists
(37 candidates, 37 known, 349 iTreg) as above with LDA
in the independent dataset. In this independent dataset,
we could separate iTregs from Mock-stimulated T cells
using candidate gene pairs with up to 93.3% cross-
validated accuracy (mean ± SD 67.97 ± 10.63%), which
was significantly higher (p < 0.0001) than with pairs from
the 37 known Treg regulators or the 349 iTreg subnet-
work gene lists (mean ± SD 56.8 ± 12.1% and 59.1 ± 13.
8%, respectively; white boxes in Fig. 7d). To further
explore good classifiers, we also sub-selected all 76 can-
didate gene pairs that performed with 100% accuracy in
the Main dataset. This set of ‘top classifier’ pairs in-
cluded all 37 candidate molecules, though some oc-
curred more frequently than others (Additional file 1:
Figure S8a). These top classifier pairs were able to separ-
ate iTregs and Mock cells in the independent dataset
with up to 90% accuracy (mean ± SD 72.1 ± 7.7%;
Additional file 1: Figure S8a–c).
As a second approach to confirm the iTreg classifica-

tion ability of the candidate genes without feature selec-
tion bias, we used a Random Forest (RF) classification
using all 15,910 HEGs as input to rank the individual
genes for their ability to distinguish iTregs from Mock
cells (Additional file 7: Table S6). Importantly, 21 (57%)
of the candidate genes and only 2 genes of the 37 known
Treg regulator list were represented in the top-ranking
100 genes (Additional file 1: Figure S8d and Additional
file 7: Table S6), confirming the candidate genes’
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individual ability for distinguishing iTregs from Mock
cells with this unbiased RF analysis. Interestingly, among
the top-ranking 100 genes, we observed several of the
genes that also occurred frequently in top classifier gene
pairs with 100% accuracy in the above LDA analysis,
namely OCIAD2, OLFM2, CTSL, NKD1, TGFA, KCNJ15,
SARDH, and PMEPA1 (Additional file 1: Figure S8a, d
and Additional file 7: Table S6). Regarding important
known Treg regulators, FOXP3 ranked at position 101,
IKZF4 at position 5, and FURIN at position 8. Notably,
half of the top-ranking 20 genes were candidate genes,
among other molecules (Additional file 1: Figure S8d).
Nevertheless, we did not prioritize the latter for follow-
up analyses as several of these genes are not protein-
coding or their role in Tregs or other T cells is already
well known.
Together, these data confirm that the selection of can-

didate molecules was better than a set of known Treg
regulators in classifying iTregs in the Main dataset as
well as in an independent dataset.

Experimental validation of novel candidate molecules
confirms functional effects on FOXP3 expression
The above analyses confirmed that several candidate
molecules performed well in distinguishing Mock-
stimulated cells from iTregs; however, differential ex-
pression does not necessarily mean that these molecules
are involved in iTreg biology and FOXP3 induction.
Therefore, we sought to validate the putative functional
role of the candidate molecules in FOXP3 induction
through a targeted shRNA screen. We produced lenti-
viral particles delivering shRNA pools against each of
the candidate molecules (Additional file 8: Table S7),
side-by-side with control lentiviruses (shScr or empty
vector as negative controls, shFOXP3 or shIKZF4 as
positive controls) and transduced primary T cells, which
were then differentiated under iTreg or Mock stimula-
tion conditions. To maximize knockdown efficiency in
our screening setup, we used pools of shRNAs and,
when possible, validated clones from the TRC library
(Additional file 8: Table S7), although off-target effects
cannot be excluded in such a screening setup. Efficiency
of pooled shRNA versus single shRNA was tested before-
hand using shRNAs against CD4 and measurement of
CD4 knockdown efficiency (Additional file 1: Figure S9a).
Transduction efficiency, as measured by GFP trans-

duction, was approximately 50–65% (Additional file 1:
Figure S9b) and transduced cells were selected by puro-
mycin during differentiation, following which FOXP3
and other markers were measured by flow cytometry.
Targeting FOXP3 directly with shRNA led to almost
complete knockdown of FOXP3 expression, and several
negative controls (untransduced, pLKO.1 empty, and
shScr vectors) did not affect FOXP3 induction, confirming

absence of unspecific effects due to the procedure
(Fig. 8a, b). As a result of our candidate validation screen,
we found that shRNA targeting of most (30/37; 81%) of
the candidate molecules resulted in significantly lower frac-
tions of FOXP3+ cells in iTreg cultures (Fig. 8a–c). This
screening setup suggests a functional role for these 30 can-
didates in FOXP3 expression; nevertheless, it should be
noted that future studies are needed to confirm these
results for individual candidates and in different experi-
mental approaches in more detail. Some candidate mole-
cules not only affected FOXP3 but also the general
activation of T cells, as measured by CD25 upregulation
and CD45RA downregulation (Fig. 8c). For several candi-
dates, activation-induced, low-level FOXP3 expression in
Mock-stimulated cells was also affected in cells transduced
with targeting shRNA, albeit with fewer significant hits
(Additional file 1: Figure S9c, d). Another indication for a
biological relevance of the novel candidate molecules in
Tregs could be their alteration in immune diseases with
known Treg involvement. Notably, several candidate mole-
cules scored as being associated with immune diseases, in-
cluding MS and IBD (Additional file 1: Figure S7a).
Together, our data provide a resource of high-quality

mRNA and protein data obtained at multiple time points
during the differentiation of human primary iTregs in-
duced under several different conditions and across dif-
ferent laboratories, along with Mock-stimulated T cells,
unstimulated naïve CD4+ T cells, and CD25high nTregs.
Our results uncovered a range of known crucial Treg
regulators with relevance to several immune diseases
such as IBD, along with several novel factors that are
likely to play equally important roles in FOXP3
expression. Indeed, our in silico and experimental
validation confirmed that the majority of the carefully
selected novel candidate Treg regulatory molecules
successfully classified iTregs and that their experimental
perturbation led to reduced induction of FOXP3-
expressing T cells.

Discussion
Herein, we provide a resource of RNA-Seq and proteo-
mics data covering a time-series during human iTreg
differentiation, along with control activated, non-
activated, and nTreg cells. To our knowledge, this is the
first report of unpublished iTreg proteome data to date.
Although the transcriptional signature of murine and
human TGF-β and TGF-β + ATRA iTregs has been ana-
lyzed [3, 38, 39, 55, 56], transcriptional profiles of iTregs
induced by the additional protocols used here have not
been studied. Profiling iTregs induced with several pro-
tocols in parallel allows for the detection of generic,
protocol-independent FOXP3 inducers and at the same
time reveals information about specific Treg signatures
induced by certain compounds. For example, ATRA has
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a well-known induction effect of gut-homing properties
[17] and Rapa inhibits the Akt/mTOR pathway and
downstream genes [30]. Furthermore, previous studies

on murine iTregs did not include time-series but only
end-stage transcriptional analysis of fully differentiated
cells, while the driving molecules involved in initiation

a

b

c

Fig. 8 Experimental validation of novel candidate molecules regulating FOXP3+ Tregs. a–c 37 novel candidate genes with a putative role in Treg
induction were chosen for a targeted shRNA validation screen. Transduced or ‘untransduced’ primary CD4+ T cells were cultured under iTreg
conditions (TGF-β + ATRA), or left unstimulated (‘unstim’), and then stained for FOXP3 and other markers. a FOXP3 histograms for T cells
transduced with shRNA targeting FOXP3, IKZF4, or the candidate gene TRIM22 (red lines). Black and blue lines: negative control shRNA (shScr),
empty vector (pLKO.1 empty). A representative donor of 3 (IKZF4) or 6 (FOXP3, TRIM22) is shown. b FOXP3 expression (gated on live CD4+ cells) in
iTregs transduced with shRNA targeting candidate genes (grey bars; ‘–1’ and ‘–2’ indicate two independent shRNA pools). Blue, red bars: negative,
positive controls. Displayed are mean ± SEM values, each dot represents an individual T cell donor (n = 3–6 donors from two independent
experiments). FDR-adjusted p values (two-sided t test shRNA vs. shScr paired within a donor) are labeled as follows: ns p > 0.05; * p < 0.05;
** p < 0.01; *** p < 0.001; **** p < 0.0001. c FOXP3 and other flow cytometry markers in shRNA-transduced iTregs as in (b). The ratio of each
marker relative to shScr-transduced cells of the same donor was calculated, and mean values of n = 3–6 donors are indicated by the color scale.
It was pre-gated on live lymphocytes except for % lymphocyte gate and % live parameters. MFI median fluorescence intensity. Hierarchical
clustering: complete linkage based on Euclidian distance
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of the differentiation program and FOXP3 upregulation
likely operate earlier and might be entirely missed with
these approaches. One recent study presents time-series
data during human Treg induction with TGF-β [55];
however, the authors did not further focus on Tregs and
no significant enrichment for disease-associated SNPs in
TF genes was found in iTregs in their study. This is con-
trary to our study, in which we detect an association of
iTreg genes with several immune system diseases,
although it should be noted that the results from our
disease enrichment analyses must be regarded solely as a
comparative relative enrichment of certain diseases over
others, complicated by the fact that the disease categor-
ies are not independent and therefore standard methods
for p value correction are likely too conservative. Fur-
ther, the studies may not be absolutely comparable be-
cause, in the aforementioned study [55], FOXP3 was
neither measured on protein nor at the single-cell level
and iTregs expressed relatively low FOXP3 and relatively
high TBX21 and RORC mRNA compared to Th1 and
Th17 cells, respectively, potentially suggesting sub-
optimal iTreg differentiation. In contrast, the transcrip-
tional data in the present work comprises experiments
from two different laboratories, in both of which the
iTreg phenotype was assessed with Treg markers, such
as the expression of FOXP3 protein at the single-cell
level, and the suppressive function was tested. Further-
more, we present matched RNA and protein expression
of other Treg signature genes such as the important
Treg regulator Eos [33], which is not usually measured
in human Tregs due to limitations for detection by
antibody-based methods. Interestingly, iTregs induced
by our protocols expressed high amounts of Eos protein
and mRNA (reaching levels similar to nTregs), a feature
that was previously shown to require more than simple
ectopic FOXP3 expression, suggesting an association
with an nTreg-like phenotype [26, 57]. We confirmed
high expression of Eos protein in human nTregs and,
importantly, our unique time-course iTreg transcrip-
tome and proteome data show that Eos was one of the
strongest and earliest upregulated molecules in all iTreg
conditions tested. Therefore, we included Eos as a fur-
ther positive control for shRNA validation and we
showed, for the first time, that knockdown of Eos
strongly reduced FOXP3 expression in human iTregs.
In our study, the availability of time-series RNA-Seq

data along with proteomic data and an additional inde-
pendent RNA-Seq experiment with similar molecular
patterns enabled the exploration of a most robust iTreg
signature and the containment of differences due to ex-
perimental setup or technical factors. Nevertheless, it
should be noted that limitations still exist, including in-
dividual donor variability and the number of biological
replicates and time points available. Another important

aspect to consider when using this data resource for fu-
ture studies is the different fraction of activated (CD25+)
and FOXP3+ cells under diverse differentiation condi-
tions. Measuring gene expression in these heterogeneous
bulk populations may affect calling certain differentially
expressed genes, and single-cell analyses or studies in
sorted sub-populations may enable identification of add-
itional factors in the future – although these methods
are not without their own limitations. Since we were in-
terested in early events preceding FOXP3 induction, and
CD25 as a general activation marker was upregulated
only after 12–24 h, it was not possible to perform the
expression profiling on re-sorted CD25+ cells. Further-
more, sorting would take time and thus affect the accur-
acy of the time points, but more importantly the global
T cell transcriptome is sensitive to changes induced by
magnetic or flow sorting [58, 59]. Therefore, we freshly
isolated the cells from peripheral blood, rested the naïve
T cells before starting the time-series stimulation for all
conditions and time points in parallel, and finally lysed
the cells as fast and comparably as possible; all in a care-
fully balanced plate design to additionally avoid batch ef-
fects or influences of processing order. Other impactful
studies have similarly measured the time-course gene
expression on the population level during differentiation
of other CD4 T cell subsets (Th1, Th2, Th17) where po-
tential sorting markers are also expressed later than early
genes of interest [60–63]. These studies successfully
identified important genes, although the fraction of the
desired differentiated cells were often lower than the
fraction of FOXP3+ iTregs in our study. Most import-
antly, the genes we termed as DEGs in iTregs were de-
fined in comparison to Mock-stimulated cells, and the
latter also upregulated CD25 upon activation. Although
there were protocol-specific differences in the absolute
fraction of CD25+ cells, it was generally in a similar
range in both iTregs (except those induced in the pres-
ence of Rapa) and Mock-stimulated cells; the latter
expressed CD25 but not FOXP3 even when gated on
CD25+ cells. Expression of each gene was modeled over
time and the candidate DEGs and iTreg subnetwork
genes were defined by comparing iTregs to Mock-
stimulated cells in this time-series analysis. In particular,
candidate gene expression was usually relatively low in
naïve and Mock-stimulated cells, while being upregu-
lated in iTregs under all conditions (including the Rapa-
containing condition) and often already at early time
points (before CD25 would be expressed). In line with
the well-known proliferation-inhibiting effect of Rapa
[29, 64], we observed by PCA that, on a global scale,
Rapa-induced iTregs seemed to ‘lag behind in time’ and
the time-course modeling of the genes would likely re-
veal iTreg-specific genes (vs. Mock-stimulated cells)
even if the kinetics were different, which would not be
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possible with a simple sample-to-sample comparison at
a single time point. Nevertheless, Rapa-induced iTregs
displayed many unique genes compared to other iTregs,
which may be partially attributable to the lower fraction
of activated cells but also to specific Rapa-induced
effects. Particularly for global comparisons of all
activation-induced (not only iTreg specific) genes, it
should be considered that Rapa-induced iTreg popula-
tions contained lower fractions of activated cells; however,
this study is focused on iTreg-specific genes shared be-
tween different iTreg protocols (vs. Mock stimulation).
Despite these limitations, novel Treg regulatory mole-

cules with differential expression were revealed here and
original findings relevant for human immunology are
discussed below, both from a global genomic perspective
and a gene-centric view. For example, although the
suppressive capacity of iTregs is controversial and
strongly depends on the particular inducing and resting
conditions, suppression assay setup, and controls used
[27–29], our data may be useful to define suppressive cell
markers and genes necessary for suppressive function, as
we provide data from iTregs generated under several con-
ditions and displaying varying degrees of suppressive ac-
tivity, along with nTregs. Interestingly, and as discussed
previously [28], iTregs induced with TGF-β +ATRA +
Rapa displayed enhanced suppressive activity in vitro des-
pite the lowest FOXP3 fraction compared to other iTreg
populations, which may be related to the lower expression
of ‘Treg down’ signature genes in TGF-β +ATRA + Rapa
iTregs, modulation of TCR signal strength, or inhibition
of contaminating ‘non-Treg’ proliferation by Rapa. Here,
the higher sensitivity of conventional T cells compared to
Tregs to inhibition by Rapa [65] may allow for a preferen-
tial expansion of Treg-like cells despite lower total frac-
tions of activated cells in the presence of Rapa and may
explain the relatively high expression of iTreg candidate
genes despite the lower CD25+ cell fraction. Very recently,
Candia et al. [66] re-sorted CD4+CD25highCD127− cells
from iTreg cultures prior to suppression assays and
confirmed that human iTregs generated in the presence
of Rapa had superior suppressive activity in vitro
compared to the corresponding iTregs generated without
Rapa. However, the in vivo relevance and functionality of
iTregs is still controversial, and even iTregs generated
with similar protocols are not always determined to be
suppressive in vitro and/or in vivo. For instance, although
we previously determined that iTregs were not
suppressive in vivo in a xenogeneic GvHD model [28],
others have shown that iTregs generated with similar
protocols could suppress disease in vivo [67–69]. In
addition to the technical details that may compromise
comparability of such assays between different studies, it
is also possible that different subsets of Tregs may
suppress only certain target cell types and/or in specific

tissues. Tregs employ numerous suppressive mechanisms
[70], and in recent years it emerged that in vivo-generated
nTregs are highly heterogeneous with tissue-specific
phenotypic and functional specialization of nTregs beyond
the classification of pTreg and tTreg subsets [40–42]. For
instance, Tregs residing in the gut, which may mostly
comprise pTregs and may resemble ATRA-induced
iTregs, are different from Tregs in other tissues [16, 41].
In this regard, it is important to mention that ATRA and
Rapa were shown to confer differential homing capacities
to murine and human iTregs [66, 71]. It is therefore con-
ceivable that iTregs with a certain phenotype may be sup-
pressive in one, but not in another disease model.
Importantly, although the in vivo relevance of iTregs gen-
erated in this study remains unclear, iTregs are the only
applicable system to study FOXP3 induction in human
primary cells. Further, we have confirmed the highly re-
producible molecular patterns of iTregs on multiple levels
(RNA, protein) and provided several controls alongside.
The identification of several well-known Treg regulators
in our study supports the relevance of our results for
FOXP3 expression in human T cells.
On a global scale, our integration of data from primary

human T cells revealed interesting aspects of the pro-
tein:RNA correlation during a major cellular transition
like T cell activation and differentiation. About half of
the molecules being both DEG and DEP showed a con-
cordant pattern over time, while the other half presented
either poor or negative correlation, in line with previous
works reporting that RNA levels can only poorly predict
protein abundance [44, 72, 73] and that gene-specific
correction factors can improve the consistency between
RNA levels and protein copy number [74]. For example,
we observed a negative RNA:protein correlation among
mitochondrial ‘OXPHOS’ genes, which has been previ-
ously observed in tumor cells [73]. We further identified a
group of genes enriched in ribosomal and nucleolar func-
tions with a poor RNA:protein correlation, which may be
explained by previously reported mechanisms, such as low
translational efficiency, as observed for members of the
TOP mRNA family, which comprises components of the
translational machinery, including ribosomal proteins and
some small nucleolar RNAs [75]. Interestingly, both
metabolism-associated and ribosomal proteins have been
recently investigated as a signature to define the functional
specialization of human nTregs [76]. Thus, despite the
relatively high overlap between DEPs and DEGs, our inte-
grative analysis underlines the importance of studying not
only transcript but also protein abundance. While tran-
scriptional data, due to its richness, coverage, and cost ef-
ficiency, may allow for more stringent statistical analyses
and sample throughput, proteomics data are a valuable
addition to narrow down findings from RNA data in order
to obtain more confidence for defining differentially
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expressed molecules and selecting those for perturbation
and functional validation approaches.
If a gene set-focused level is required, based on our

study, we propose novel iTreg regulators, the function of
which was validated by demonstrating that knocking
them down in an shRNA screen prevented FOXP3 ex-
pression. It should be noted that decreased FOXP3 ex-
pression upon candidate knockdown may not be related
solely to altered FOXP3 induction, and that a role of
candidate molecules in FOXP3 maintenance is also pos-
sible. Yet, the expression kinetics of most candidate mol-
ecules being expressed prior to FOXP3, as well as the
functional assignment of many candidate molecules to
the TGF-β pathway cluster together with the known role
of the TGF-β response element in FOXP3 induction
[77], suggest a role in FOXP3 induction at least for the re-
spective candidate molecules. Further, except for one
candidate gene (OLFM2), ectopic FOXP3 expression in
human T cells in an external dataset did not cause differ-
ential expression. Particularly for those candidate mole-
cules that are TFs, a direct regulation of the FOXP3 gene
is a possibility, but FOXP3 expression as a readout cannot
distinguish between direct and indirect regulation.
Future work has to be performed to confirm and extend

the findings from the shRNA validation screen and the gene
expression studies, such as assessing the molecular mecha-
nisms through which candidate molecules affect FOXP3
expression, exploration of the candidate molecules in other
cell types including CD4+ T cell subsets, and studying the
relevance of the molecules in Tregs in vivo. Furthermore,
despite protocol optimization and careful design of the
shRNA screen, including several negative and positive con-
trols, we cannot completely exclude off-target effects or
divergent knockdown efficiencies of individual shRNA
clones. This should be addressed in the future by deconvo-
luting individual shRNA effects, correlating knockdown ef-
ficiency with the effect size on FOXP3, and confirming the
results for each candidate molecule in detail with independ-
ent assays.
Despite the limitations of this study, it is tempting to

speculate on the potential of the candidate genes as novel
drug targets. They belong to several molecular classes
amenable to different drug targeting approaches, as they in-
clude TFs, surface molecules, and members of the TGF-β
signaling pathway. For example, the candidate TF NR3C1
(glucocorticoid receptor) is already a well-known drug tar-
get [78], and its effects on iTregs should be specifically in-
vestigated further in the future. Interestingly, the TF
TRIM22 selected by integrating iTreg RNA and protein
data and having strong effects on FOXP3 in the validation
screen does not have a murine homologue and was recently
described to be associated with early-onset IBD [79], em-
phasizing the importance of studying human instead of
murine T cells.

The data presented here may be useful in future inves-
tigations to discover new markers to define Treg subsets.
Indeed, our new candidate molecules outperformed
known Treg regulators in classifying iTregs versus
Mock-stimulated T cells. Although the LDA approach is
subject to the selection bias [53], we confirmed a good
performance of the candidate molecules in the inde-
pendent dataset, and we also found the candidate mole-
cules strongly represented in the top-ranking 100 and
even top 20 genes obtained from unbiased RF analysis,
further supporting our results at least for a subset of
candidate molecules. In addition to discrimination of
iTregs from Mock-stimulated cells, the classifiers could
potentially be useful for pTreg versus tTreg discrimin-
ation as well, which would be relevant for specific target-
ing of either subset depending on the disease. Due to
similar induction requirements (IL-2 and TGF-β) it may
be speculated that iTregs are likely to be more similar to
pTregs than to tTregs. Furthermore, pTregs and tTregs
differ in their TCR repertoire [1, 80] and, in this respect,
due to the common naïve T cell precursor, iTregs might
be similar to pTregs; nevertheless, in vivo, only a small
fraction of pTreg and conventional T cell TCR se-
quences seem to overlap [1]. Unfortunately, in contrast
to murine cells where Neuropilin-1 and Helios can dis-
tinguish pTregs and tTregs at least under most non-
inflammatory conditions, these markers are not usable
for such distinction in human cells [1]. In accordance
with our data, murine nTregs and iTregs were shown to
differ in parts of their signature while, experimentally, in
vivo-induced murine pTregs were more similar to
nTregs [3, 38, 39], arguing for additional factors during
in vivo Treg induction. Yet, signatures of in vivo-
induced pTregs differ depending on the mode of conver-
sion and, regarding the Treg signature genes, pTregs still
considerably differ from ex vivo-isolated (splenic or
lymph node) Tregs while much of the in vivo-converted
Treg signature overlaps with in vitro-converted iTregs
[39]; these observations may reflect imprinting of tissue-
specific signatures. Furthermore, the activation with
anti-CD3/-CD28 largely shapes the gene signature of in
vitro differentiating cells as evident from our time-series
data, and is therefore likely to at least partially contrib-
ute to the observed difference between iTregs and ex
vivo-derived (unstimulated) nTregs. Cell number limita-
tions did not allow us to include activated nTregs in this
study, but in accordance with this notion, a drastic
change of the human nTreg gene signature upon in vitro
activation has been described along with a shared activa-
tion signature between activated Tregs and activated
Tcons [81, 82]. It should also be noted, again in this con-
text, that nTregs comprise different subsets [40, 42] and
can be isolated to different grades of purity; and, in our
study, nTregs were isolated solely on the basis of high
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CD25 expression because of the relatively high cell num-
bers required for proteomics. These bulk ‘nTregs’ sup-
posedly include pTreg and tTreg subsets; the latter may
be prominent according to studies in mice from which it
has been estimated that more than 70% of Tregs in the
periphery are tTregs [1]. A similar proportion has been
proposed for human Tregs in peripheral blood, although
use of the marker Helios has been debated [1]. Thus, dif-
ferences between the nTreg and iTreg signatures ob-
served in the present study might reflect true differences
in iTregs versus nTregs but also pTregs versus tTregs.
Despite the controversies regarding Helios as a tTreg
marker [1], it is worth mentioning that, in line with the
notion of iTregs being more similar to pTregs, iTregs in-
duced under all conditions and in both datasets of the
present work displayed low expression of IKZF2 (encod-
ing for Helios) not exceeding that of Mock-stimulated or
unstimulated cells, while nTregs expressed drastically
higher levels of IKZF2 mRNA and Helios protein (data
not displayed). Interestingly, iTregs in this study
expressed IKZF4 (Eos) but not IKZF2 (Helios), both of
which were previously shown to be expressed in a
FOXP3-independent manner and suggested to correlate
with an nTreg-specific DNA methylation signature [26,
57]. However, the Treg epigenetic signature, such as
DNA demethylation of the Treg-specific demethylated
region in the FOXP3 gene, which is important for stable
FOXP3 expression, appears divergent in iTregs versus
nTregs (including in in vivo-induced pTregs in some
studies) [2, 25, 26, 28, 57]. Yet, relative instability of
pTregs may even be a favorable scenario in vivo, confer-
ring local and transient immune suppression in specific
tissues, in contrast to long-lasting, stable tolerance to
self-antigens mediated by tTregs and preventing auto-
immune disease. Interestingly, deletion of the element
containing the Treg-specific demethylated region in the
FOXP3 locus did not affect either FOXP3+ thymocyte
numbers in vivo or FOXP3 induction, but compromised
Treg stability, with functional relevance in chronic infec-
tious settings or in older mice [83–85]. Irrespective of
the differences between nTregs and iTregs, the latter ap-
pear as the most suitable system to study early events of
FOXP3 induction in human cells. Indeed, our approach
using differentiation of iTregs enabled the identification
of several well-known nTreg factors, along with novel
molecules for which we confirmed a functional role in in
vitro FOXP3 induction.

Conclusion
In conclusion, we provide a valuable data resource with
RNA-Seq and corresponding proteomics time-series data
of primary human T cells, comprising naïve T cells, acti-
vated T cells, iTregs induced by four different protocols,
and nTregs. These data can be exploited in the future for

detailed analyses of iTreg signatures, including specific
effects of Treg-inducing compounds and discovery of
markers to distinguish Treg subsets. We present a set of
37 novel candidate molecules, of which several function-
ally affected induction of FOXP3+ iTreg cells in a shRNA
screening setting and could classify iTregs versus
Mock-stimulated T cells. These candidate molecules
have the potential to be developed further for use as
drug targets in autoimmune and inflammatory diseases
or cancer, given the known relevance of FOXP3+ Tregs
in these diseases.

Methods
Human T cell isolations
Anonymized healthy donor buffy coats were purchased
from the Karolinska University Hospital (Karolinska
Universitetssjukhuset), Huddinge, Sweden. The study was
approved by the Regional Ethical Review Board in
Stockholm (Regionala etikprövningsnämnden i Stockholm),
Sweden (approval number: 2013/1458–31/1). Fresh buffy
coats were filled with PBS to 170 mL and used to isolate
human peripheral blood mononuclear cells (PBMCs) by
gradient centrifugation using Ficoll-Paque Plus (GE
Healthcare), followed by monocyte depletion through
plastic adherence in RPMI medium containing 10% FCS
(Invitrogen). Afterwards, magnetic activated cell sorting
(MACS) was utilized to isolate T cell subsets from PBMCs:
CD25high ‘nTregs’ were first prepared by positive isolation
as described previously [86] using limited amounts (2 μL/
107 cells) of CD25 beads (Miltenyi) and two subsequent
MACS columns. Platelets were removed from PBMCs by
low-speed centrifugation (200× g, 5–10 min, 20 °C; 3–4
times), followed by isolation of naïve CD4+ T cells from the
nTreg-depleted fraction by negative isolation using the
naïve CD4+ T Cell Isolation Kit II, human (Miltenyi),
according to the manufacturer’s instructions. In brief,
CD45RO+ memory T cells and non-CD4+ T cells were in-
directly magnetically labeled using a cocktail of biotin-
conjugated antibodies against CD8, CD14, CD15, CD16,
CD19, CD25, CD34, CD36, CD45RO, CD56, CD123,
TCRγ/δ, HLA-DR, and CD235a. For shRNA validation
screening, fresh blood was obtained from anonymized
healthy donors after informed consent at the La Jolla Insti-
tute for Allergy and Immunology, La Jolla, USA, according
to institutional guidelines (Normal Blood Donor Program
protocol VD-057). Blood was diluted 1:2 with PBS and
PBMCs and naïve CD4+ T cells were isolated as above. The
purity of MACS-isolated cells was assessed by flow cytome-
try. Cells were counted in trypan blue solution using a
Countess Automated Cell Counter (Life Technologies) and
viability was determined by trypan blue staining and/or
flow cytometry (see below). T cells were cultured at 5%
CO2/37 °C.
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iTreg differentiation for molecular profiling
Naïve CD4+ T cells were isolated from buffy coats of
male anonymous donors (aged 37, 38, and 34 years) by
MACS as described above, rested for several hours and
then plated under iTreg differentiation conditions as de-
scribed previously [28, 29]. Briefly, cells were stimulated
with 5 μg/mL plate-bound anti-CD3 antibody (clone
OKT3; Biolegend, LEAF grade), 1 μg/mL soluble anti-
CD28 antibody (clone CD28.2; Biolegend, LEAF grade),
and 100 IU/mL IL-2 (carrier-free; R&D Systems). ‘Mock’
control cells received no further compounds. For Treg-
inducing conditions, TGF-β1 (5 ng/mL carrier-free; R&D
Systems), ATRA (10 nM; Sigma-Aldrich), Rapa (100 ng/mL;
Calbiochem EMD Millipore), or sodium butyrate (100 μM;
Sigma-Aldrich) were added. Plates were prepared first, pre-
warmed to 37 °C, and cells added last. Cells were plated in
96 U-well plates at 1.0–1.2 × 105 cells/well, in a 200 μL final
volume/well serum-free X-Vivo 15 medium (Lonza) sup-
plemented with Glutamax (Gibco). Margin wells were not
used for cell culture, and all unused wells were filled with
200 μL PBS. The plating layout was balanced for iTreg
conditions and time points within and across donors to
prevent any batch effects through processing order or cul-
turing samples on the same plate. Samples for each donor
were prepared in completely independent experiments
but with reagents aliquoted from the same batches. Cells
were incubated for 2 h to 6 days. At the indicated time
points (2, 6, 24, and 48 h, and 6 days), several wells per
condition were pooled (between 5 and 30 wells, consider-
ing cell growth for conditions and time points) and cells
were processed for RNA and protein extraction. On days
4 and 6, 1–2 wells of each iTreg condition were used for
flow cytometric analysis (see below).

RNA and protein extraction for molecular profiling
At the indicated time points, the plates were placed on
ice, 100 μL of the supernatant were removed, and
100 μL of ice-cold X-Vivo 15 medium was added to each
well. Cells were processed in the order of plating accord-
ing to the experimental design, balanced for donor and
condition to prevent batch effects by processing time.
Replicate wells were pooled with a multichannel pipet,
rinsed with cold PBS, and the cells transferred to 15 mL
tubes. Cells were centrifuged (450× g, 10 min, 4 °C), the
supernatant removed, and the cells were washed twice
with 1 mL of ice-cold PBS each (1000× g, 5 min, 4 °C).
The supernatant was removed completely, cells were
vortexed and lysed in RLT buffer (Qiagen) supplemented
with 142 mM beta-mercaptoethanol (Sigma Aldrich),
and homogenized using Qia Shredder columns (Qiagen).
Lysates were frozen on dry ice and stored at −80 °C until
processing. RNA and proteins were extracted with the
AllPrep DNA/RNA/Protein Mini Kit (Qiagen) according
to the manufacturer’s recommendations with the

following modifications. Centrifugations were carried
out at 9600× g except for protein precipitation, which
was at 20,800× g. RNA was eluted with 40 μL of RNase-
free water and elution was repeated with the first eluate.
An aliquot of RNA was taken for nanodrop, bioanalyzer,
and qRT-PCR, and the remaining RNA was frozen on
dry ice and stored at −80 °C. The protein precipitate was
solubilized (5 min, 95 °C) in freshly prepared buffer con-
taining 4% (w/v) SDS, 25 mM HEPES pH 7.6, and 1 mM
DTT, and the insoluble material was removed by centri-
fuging for 1 min at 20,800× g. An aliquot of the soluble
protein supernatant was taken for BCA assay, and the
extracts were frozen on dry ice and stored at −80 °C.
The BCA assay of 1:5 diluted samples was performed ac-
cording to the manufacturer (Pierce BCA Protein Assay
Kit, Thermo Fisher Scientific) in a 96-well format; an
aliquot of the lysis buffer (frozen along with the sample
aliquots) was used (1:5 diluted) to prepare the standard
curve with BSA protein. All samples were used for
RNA-Seq. All samples except the 2 h time point sam-
ples, iTreg TGF-β + ATRA and iTreg TGF-β + butyrate,
were used for proteomics.

RNA sequencing (RNA-Seq)
RNA concentration was measured on a Nanodrop 2000
spectrophotometer (Thermo Fisher Scientific). RNA qual-
ity was controlled using an Agilent RNA 6000 Pico Kit on
a 2100 Bioanalyzer instrument (Agilent Technologies).
RNA integrity numbers were 8.47 ± 0.50 (mean ± SD;
range 7.6–10.0); 1 μg of RNA per sample (except for the
2 h time point samples of Donor 2: 500 to 900 ng) was
used for library preparation with the TruSeq Stranded
mRNA HT kit (Illumina), with Dual Indexing adapters
(8-plex). As a control, an Ambion ERCC Spike-In Control
Mix was used (Thermo Fisher Scientific). According to
the standard protocol, libraries were purified from excess
sequencing adapters with Agencourt AMPure XP beads
(Beckman Coulter). Libraries were generated in two
batches, in which samples were balanced across a library
batch and adapter 8-plex according to donor, iTreg/
control condition, and time point to allow for the ac-
counting of potential batch effects. Library concentration
was measured on a Qubit 2.0 Fluorometer (Thermo Fisher
Scientific) and library quality and size were determined by
using an Agilent High Sensitivity DNA Kit on a 2100
Bioanalyzer instrument (Agilent Technologies). Libraries
were quantified with the KAPA Library Quantification Kit
(KAPA Biosystems). Pools of eight libraries (except for
one lane, nine libraries) were denatured using NaOH, and
PhiX Control v3 was added to each pool. Pools were clus-
tered and sequenced in two batches, using one High
Output Run and one Rapid Run, on a HiSeq 2500 Sequen-
cing Platform (Illumina). For the High Output run, library
pools were clustered on a HiSeq Flow Cell v3 on the cBot
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system, using TruSeq PE Cluster Kit v3 - cBot - HS, and
Read 1 Sequencing Primer Mix (HP10) from a TruSeq
Dual Index Sequencing Primer Kit. Clustered libraries
were then sequenced with 75 nt paired-end reads, using
TruSeq SBS Kit v3 50 cycle kits. The Index 1 sequencing
primer (HP12) and Read 2 sequencing primer (HP11)
provided in the TruSeq Dual Index Sequencing Primer Kit
were used. For the Rapid run, library pools were clustered
on a HiSeq Rapid Flow Cell v1 using TruSeq Rapid Duo
cBot Sample Loading Kit. Clustered libraries were then
sequenced using a TruSeq Rapid PE Cluster Kit together
with three TruSeq Rapid SBS 50 cycle kits. On aver-
age, 18.9 million read pairs were obtained per sample
(mean ± SD 18.9 × 106 ± 5.23 × 106; range 5.3 × 106 to
32.1 × 106). BCL basecall files were de-multiplexed
and converted to FASTQ files with bcl2fastq v1.8.4.

Quantitative reverse transcriptase PCR (qRT-PCR)
An aliquot of RNA used for sequencing, and from an
additional donor, was taken for qRT-PCR analysis.
cDNA was prepared with the SuperScript VILO cDNA
Synthesis Kit (Invitrogen) according to the manufac-
turer’s instructions. mRNA was quantified with gene
expression mastermixes for SYBR Green or Taqman
method (Applied Biosystems) and measured on a
StepOne plus detector system (Applied Biosystems) as
follows. IKZF4 and RPL13A mRNA was measured using
Applied Biosystems best coverage Taqman probes (FAM
reporter), and FOXP3 and RPL13A mRNA was measured
by SYBR Green qRT-PCR (primers: FOXP3 Forward:
AGCTGGAGTTCCGCAAGAAAC, FOXP3 Reverse: TGT
TCGTCCATCCTCCTTTCC; RPL13A Forward: TCCAA
GCGGCTGCCGAAGATG, RPL13A Reverse: CTTCCG
GCCCAGCAGTACCTGT). The relative mRNA expres-
sion was determined by normalization to RPL13A and re-
sults are presented as fold induction compared to mRNA
amounts of unstimulated T naïve of the same donor, which
were set to 1. Fold expression was calculated using the
ΔΔCt method according to the following formula (Ct is
the threshold cycle value):

Relative mRNA expression ¼ 2– Ct of gene of interest–Ct of RPL13Að Þ

Proteomics
Sample preparation for mass spectrometry
At least 25 μg of protein per sample from Allprep
extraction (see above; in 4% SDS, 25 mM HEPES, 1 mM
DTT) was used for proteomics. Lysates were heated to
95 °C for 5 min followed by sonication for 1 min and
centrifugation at 14,000× g for 15 min. The supernatant
was mixed with 1 mM DTT, 8 M urea, and 25 mM
HEPES at pH 7.6, and transferred to a 10-kDa cut-off
centrifugation filtering unit (Pall, Nanosep), and

centrifuged at 14,000× g for 15 min. Proteins were alky-
lated by 50 mM iodoacetamide in 8 M urea and 25 mM
HEPES for 10 min. The proteins were then centrifuged
at 14,000× g for 15 min followed by two more additions
and centrifugations with 8 M urea and 25 mM HEPES.
Trypsin (Promega) in 250 mM urea and 50 mM HEPES
was added to the cell lysate at a ratio of 1:50 trypsin:pro-
tein and incubated overnight at 37 °C with gentle shak-
ing. The filter units were centrifuged at 14,000× g for
15 min followed by another centrifugation with ultra-
pure water (Milli-Q, Millipore) and the flow-through
was collected. Peptides were labelled with TMT10-plex
reagent according to the manufacturer’s protocol
(Thermo Fisher Scientific) and cleaned by a strata-X-C-
cartridge (Phenomenex). Samples for the same culture
condition within a donor were kept together in a 10-plex.
A slight batch effect dependent on the TMT set
(Additional file 1: Figure S3) may be explained by the dis-
tribution of individual donors within each TMT set, which
was performed to increase quantification overlap. In total,
five 10-plexes were used, and an internal standard con-
taining a mix of protein from all samples was used as one
TMT tag in each TMT set to enable relative quantification
between TMT sets. Some samples were loaded in dupli-
cate in different 10-plexes.

Immobilized pH gradient – isoelectric focusing (IPG-IEF) of
peptides
The TMT-labeled peptides, 250 μg per TMT-10-plex,
were separated by IPG-IEF on a 3–10 strip. Peptides
were extracted from the strips into 72 fractions by a
prototype liquid handling robot, supplied by GE
Healthcare Bio-Sciences AB. A plastic device with 72
wells was put onto each strip and 50 μL of ultra-pure
water (Milli-Q, Millipore) was added to each well. After
30 min incubation, the liquid was transferred to a
96-well plate and the extraction was repeated two more
times. The extracted peptides were dried in a SpeedVac
vacuum concentrator and dissolved in 3% acetonitrile and
0.1% formic acid.

Q Exactive analysis
Before analysis on the Q Exactive Hybrid Quadrupole-
Orbitrap Mass Spectrometer (Thermo Fischer Scientific),
peptides were separated using an Ultimate 3000 RSLCnano
system. Samples were trapped on an Acclaim PepMap
nanotrap column (C18, 3 μm, 100 Å, 75 μm× 20 mm), and
separated on an Acclaim PepMap RSLC column (C18,
2 μm, 100 Å, 75 μm× 50 cm; Thermo Fisher Scientific).
Peptides were separated using a gradient of A (5% DMSO,
0.1% formic acid) and B (90% acetonitrile, 5% DMSO, 0.1%
formic acid), ranging from 6% to 37% B in 30–90 min
(depending on IPG-IEF fraction complexity) with a
flow of 0.25 μL/min. The Q Exactive was operated in
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a data-dependent manner, selecting the top 10 precursors
for fragmentation by high collision dissociation (HCD). The
survey scan was performed at 70,000 resolution from 400
to 1600 m/z, with a max injection time of 100 ms and tar-
get of 1 × 106 ions. For generation of HCD fragmentation
spectra, a max ion injection time of 140 ms and automatic
gain control of 1 × 105 were used before fragmentation at
30% normalized collision energy and 35,000 resolution.
Precursors were isolated with a width of 2 m/z and put on
the exclusion list for 70 s. Single and unassigned charge
states were rejected from precursor selection.

Peptide and protein identification
All Orbitrap data was searched by SequestHT under the
software platform Proteome Discoverer 1.4 (Thermo
Fisher Scientific) against the Ensembl 81 human protein
database and filtered to a 1% FDR. A precursor mass tol-
erance of 10 ppm and product mass tolerances of 0.
02 Da for HCD-Fourier Transform Mass Spectrometry
(FTMS) were used. Further settings used were trypsin
with two missed cleavage; iodoacetamide on cysteine
and TMT on lysine and N-terminal as fixed modifica-
tions; and oxidation of methionine as variable modifica-
tion. Quantification of TMT-10-plex reporter ions was
performed by Proteome Discoverer on HCD-FTMS tan-
dem mass spectra using an integration window tolerance
of 10 ppm. Only peptides unique to a protein group
were used for quantitation.

Western blot
T cells were cultured and harvested as described above,
and protein extraction was performed as above for
molecular profiling. Protein concentrations were deter-
mined by BCA assay and 25 μg of protein per lane were
resolved by SDS-PAGE using Mini-PROTEAN TGX
Gel (Bio-Rad). Proteins were transferred by standard
Wetblot procedures to Protran nitrocellulose membranes
(Amersham GE Healthcare). Membranes were blocked
with 5% nonfat dry milk in TBS containing 0.1% (w/v)
Tween 20. The primary antibodies used were the follow-
ing: anti-FOXP3 (clone eBio7979, eBioscience), anti-PARP
(clone C2–10, BD Biosciences), anti-GAPDH (clone 6C5,
Santa Cruz Biotechnology), anti-alpha-Tubulin (clone
B-5-1-2, Sigma-Aldrich), and anti-STIM1 (N-terminal,
rabbit polyclonal, Sigma-Aldrich). The FOXP3 antibody
clone eBio7979 recognizes an epitope between exon 3 and
the Zink finger domain, and should recognize all three
known FOXP3 isoforms. Several proteins were used as
loading controls, since ‘housekeeping’ proteins GAPDH
and alpha-tubulin were differentially expressed between
samples. Horseradish peroxidase-conjugated secondary
antibodies were from Santa Cruz Biotechnology, and pro-
tein bands were developed in a Vilber Fusion Solo S
chemiluminescence acquisition system (Vilber Lourmat)

using Immobilon Western Chemiluminescent horseradish
peroxidase substrate (Millipore). Only non-saturated ex-
posures were used for visualization and analysis, and
bands were quantified with ImageJ software version 1.48v.

Flow cytometry and antibodies
An aliquot of cells used for molecular profiling was stained
for flow cytometry on days 4 and 6 of culture. Day 4 sam-
ples were stored after fixation and processed further to-
gether with day 6 samples. On day 6, samples were stained
without and after 4 h restimulation with 0.5 μM ionomycin
and 10 ng/mL of phorbol 12-myristate 13-acetate (Sigma
Aldrich) in the presence of Golgi plug (BD Biosciences). If
not otherwise stated, staining was performed as follows:

Cell surface antigen staining with the following
antibodies: CD4-PerCP (clone SK3, BD Biosciences),
CD45RA-PE-Vio770 (clone T6D11), CD45RA-FITC
(clone T6D11), and CD25-PE (clone 4E3; all Miltenyi
Biotec) were performed in the dark with antibody
dilutions in FACS buffer (PBS/0.5% HSA) for 30 min at
4 °C. Cells were washed once with PBS, resuspended in
FACS buffer, and acquired or used for subsequent
intracellular staining. After surface staining, cells were
washed twice with PBS and stained with the Fixable
Viability Dye eFlour780 (ebioscience) for 30 min at
4 °C (dark), then washed twice and used for
intracellular staining.
Intracellular staining was performed at 4 °C with the
Foxp3 Staining Buffer Set (ebioscience) according to
the manufacturer’s protocol using the following
antibodies: FOXP3-APC (ebioscience, clone 236A/E7),
CTLA-4-BV421 (BD Biosciences, clone BNI3), and
IFN-γ-FITC (ebioscience, clone 4S.B3). Isotype control
antibodies (mIgG1κ APC isotype, ebioscience, clone
P3.6.2.8.1; mIgG2aκ BV421 isotype, BD Biosciences,
clone MOPC-173; mIgG1κ FITC isotype, ebioscience,
clone: P3.6.2.8.1) were used at the same final
concentrations (w/v) as the corresponding intracellular
staining antibodies.

Acquisition and analysis
If not otherwise stated, acquisition was performed on a
CyAn ADP 9 Color Analyzer (Beckman Coulter), and par-
ameter compensation was performed automatically with the
CyAn software (Summit) tool using single stained samples
containing positive cells. Flow cytometry raw data were ana-
lyzed using FlowJo Software (Tree Star) and exported values
for cell fractions were analyzed in GraphPad Prism 6 or R.

Lentiviral transduction of T cells for shRNA validation
screen
shRNA libraries used were based on the pLKO.1-puro
TRC vector backbone developed by The RNAi Consortium
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(TRC). TRC1, TRC1.5, or TRC2 clones from the Sigma
Mission TRC - Human collection (Sigma Aldrich) were
used, cherry-picked, and obtained as bacterial glycerol
stocks from the RNAi center at the La Jolla Institute for
Allergy and Immunology (for clone list, see Additional
file 8: Table S7). Bacteria were inoculated in overnight cul-
tures and pLKO.1 plasmids were extracted individually
with the E.Z.N.A. Plasmid DNA Mini Kit I (Omega
Bio-tek) according to the manufacturer’s instructions
with an optional second washing step and eluted in sterile
10 mM Tris at pH 8.0. Empty pLKO.1 vector or pLKO.1-
Scr (with scrambled non-targeting shRNA) were used as
negative controls, and pLKO3G (encoding for GFP in
place of puromycin resistance gene) was used to control
for transfection and transduction efficiency. A pool of
clones targeting human CD4 was used to optimize T cell
transduction and knockdown. For knockdown of ‘iTreg
candidate genes’, a pool of 2 to 8 (mean 4.3, SD 0.9)
shRNA-encoding plasmids per gene was transfected to
293T cells in equal amounts to produce lentivirus. For
some genes, two independent pools of shRNA-encoding
plasmids were used. Each pool contained only shRNA-
encoding plasmids from the same TRC version (for list of
clones, see Additional file 8: Table S7).

Lentivirus production
293T cells (derivative of human embryonic kidney 293
cells containing the SV40 T-antigen) were obtained from
ATCC and tested negative for mycoplasma. 293T cells
were harvested at 60–85% confluency and seeded at 4 ×
105 cells per well in six-well plates in 2 mL of antibiotic-
free DMEM high-glucose medium supplemented with
10% FBS and 2 mM glutamate (Gibco). After 20–23 h
(confluency 40–60%), the medium was replaced with
2 mL of fresh pre-warmed medium and 1–2 h later,
293T cells were transfected for lentivirus production.
Cells were co-transfected with pLKO.1 shRNA transfer
vectors (see above) along with packaging and pseudotyp-
ing vectors (pCMV-dR8.9 and pCMV-VSV-G, a kind gift
from Sara Trifari, La Jolla Institute for Allergy and Im-
munology) using jetPRIME transfection reagent accord-
ing to the manufacturer’s recommendations (Polyplus
transfection). After 4 h, the medium was removed and
replaced by 1 mL of fresh pre-warmed medium. Trans-
fection efficiency was estimated after approximately 24 h
in samples transfected with pLKO3G to be above 95%
by fluorescence microscopy. The virus-containing super-
natant was harvested 38 h after transfection and centri-
fuged at 350× g for 5 min to remove cellular material,
and used on the same day to transduce T cells.

T cell transduction and culture
Human naïve CD4+ T cells were pre-activated for
16–18 h with plate-bound anti-CD3 antibody (coated at

5 μg/mL), soluble anti-CD28 antibody (1 μg/mL), and
100 U/mL of IL-2 in 96 U-well plates at 130,000 cells/well
in 200 μL of X-Vivo 15 medium. Margin wells of
96 U-well plates were not used for culturing but instead
filled with 200 μL of PBS. T cell plates were centrifuged
(450× g, 10 min) and 165 μL of medium was removed and
kept in the incubator as T cell-conditioned medium. T
cells were transduced with 200 μL/well of fresh viral
supernatant with a final concentration of 8 μg/mL of
Polybrene (hexadimethrine bromide, Millipore) by spin in-
fection (900× g, 1 h, 35 °C). T cells were subsequently cul-
tured for 3 h at 37 °C/5% CO2, then centrifuged (500× g,
5 min), and viral supernatants were removed and replaced
by T cell-conditioned medium. At 26 h after transduction,
T cell differentiation was started. Differentiation plates
coated with anti-CD3 antibody were prepared with com-
pounds for iTreg conditions (anti-CD28 + IL-2 + TGF-β1 +
ATRA) or ‘Mock’ stimulation (anti-CD28 + IL-2) as de-
scribed above, with additional supplementation of medium
with 1 μg/mL of puromycin (Gibco) except for controls
without the puromycin resistance gene. Transduced T cells
and controls were centrifuged (500× g, 10 min), the
medium was removed, and cells were washed twice with
200 μL of pre-warmed X-Vivo 15 medium. T cells were re-
suspended in 60 μL of X-Vivo 15 medium, and 50 μL of
the cell suspension were transferred to pre-warmed pre-
pared differentiation plates (one well each for iTreg and
Mock stimulation per targeted gene and donor). The lack
of hindrance of FOXP3 induction by pre-activation, trans-
duction, or puromycin selection had been previously tested.
After 4–5 days of differentiation culture, T cells were
stained for viability and expression of CD25, CD45RA, and
FOXP3, as described above, except for control cells trans-
duced with pLKO3G, which were only stained for viability
and then fixed with 2% paraformaldehyde (methanol-free)
in PBS instead of the FOXP3 buffer set. Samples were ac-
quired on a FACS Canto II cytometer (BD Biosciences)
and compensation was performed with the in-build
compensation tool (BD FACSDiva software) using single
stained samples.

RNA-Seq data analysis
FASTQ files were adapter- and quality-trimmed using
Trim Galore!, and aligned with TopHat2 using hg19 gen-
ome index and GENCODE v19 transcriptome model.
Alignment metrics and statistics were extracted from the
BAM files using Picard tools. Reads were summarized to
the GENCODE v19 genes with the summarizeOverlaps
function of the GenomicAlignments [87] package. Un-
mapped reads were mapped with bowtie2 against an
ERCC index in order to obtain ERCC spike-in counts
and FPKM values and to explore the dynamic range.
Exploratory analysis and visualization (Additional file 1:

Figure S3) was performed using DESeq2 R package [88],
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after removing the genes with zero counts in all samples
and normalization using the DESeq2 size factors. Blind
regularized logarithmic transformation (rlog) was ap-
plied to the count matrix in order to calculate Euclidean
distances and correlations between samples. PCA on
rlog-transformed data and multidimensional scaling
using Poisson distance on counts were also used to
visualize sample-to-sample relationships. To explore the
relative effect of technical and biological factors, a separ-
ate linear model was fitted between each of the PC
scores and a series of explanatory variables and the R2

was calculated for each of them, obtaining a matrix of
R2 values reflecting the association between the PCs and
the explanatory variables.

Classification into LEGs and HEGs
We firstly obtained a threshold to define if a gene was
considered expressed or not in the full dataset. It has
been previously shown [36] that RNA-Seq can classify
the metazoan genes, on the basis of the relative
abundance of their mRNAs, into one group of lowly
expressed and putatively non-functional genes (LEGs) and
another group of HEGs (Additional file 1: Figure S6b).
After verifying that the distribution of protein-coding
genes in our dataset appears bimodal when reported as
log2(FPKM) (fragments per kilobase per million mapped
reads) values, we aggregated the log2(FPKM) values per
group (G02–G06) and fitted a one-dimensional normal
mixture model with two components and variable vari-
ance with mclust [89] to each group separately. After
obtaining classification vectors, the midpoint between the
maximum log2(FPKM) value of the LEGs and the mini-
mum log2(FPKM) value of the HEGs was considered. A
threshold (t = 1.496) was chosen as the average of all
midpoints. Then, we considered a gene expressed in our
samples if log2(FPKM) > t for at least 15 samples,
obtaining 15,910 HEGs. RNA expression levels for
candidate genes were further classified based on the range
of expression considering all samples as follows: + < 100
counts; ++ ~100–1000 counts; +++ ~1000–10,000 counts
(Additional file 1: Figure S7a).

Differential expression analysis
To model the differential expression over time, we used
three methods based on R packages: (1) a DESeq2 [88]
generalized linear model of the negative binomial family
with time as a discrete factor; (2) a DESeq2 generalized
linear model of the negative binomial family with a nat-
ural cubic spline of time; and (3) a maSigPro [90] third
degree polynomial regression. We define the variable
describing the different treatments as ‘group’, with the
following levels: G01, unstimulated cells; G02, Mock-
stimulated cells (control); G03, iTreg TGF-β; G04, iTreg
TGF-β + ATRA; G05, iTreg TGF-β + ATRA + Rapa;

G06, iTreg TGF-β + butyrate; and G07, unstimulated
nTreg. Similarly, we define the following naming con-
ventions for the variable ‘time point’: T01, 0 h; T02, 2 h;
T03, 6 h; T04, 24 h; T05, 48 h; T06, 6 days.
For method (1), the samples for G01 and G07 were

not included and we considered a design formula that
models the group differences at time point 2 h (T02),
the difference over time points, and any group-specific
differences over time points (the interaction term) for
each gene i and sample j:

logμij ¼ β0i þ βGi x
G
j þ βTi x

T
j þ βGTi xGj x

T
j þ ϵ

With DESeq2, the dispersion was estimated and the
model was fitted, and then a Wald test was performed
for individual coefficients to extract log2(Fold Change)
values, p values, and FDRs. Results were considered sig-
nificant if FDR < 0.01. A likelihood ratio test was also
performed comparing the full model with a model with-
out the interaction term. For method (2), we operated
similarly to method (1), but with a change in the design
formula in order to model the gene expression as a
smooth function of time, namely a natural cubic spline.
The group difference and the interaction with the
smooth function were also considered. Results were con-
sidered significant if FDR < 0.01. For method (3), we
used the rlog-transformed data to perform a stepwise
cubic regression and extract the best model for each
gene using maSigPro, with the time and group as ex-
planatory variables. Results were considered significant if
FDR < 0.01 and R2 > 0.7.
To summarize the results, we assigned individual

scores (G) counting the methods that defined a gene as
being significantly differentially expressed. A gene was
called a DEG if it was amongst the significant results of
at least two of the three methods, corresponding to a
score ≥ 2. In particular, we defined five different individ-
ual scores, corresponding to the time and the four differ-
ent iTreg conditions (Gtime, GG03, GG04, GG05, GG06),
plus a binary total score (GSum), annotating if the gene
was overall considered a DEG for at least one individual
score. For the time comparisons, the following require-
ments were considered: for the DESeq2 methods (1) and
(2), FDR < 0.01 for any base coefficient related to time;
for the maSigPro method (3), FDR < 0.01 and R2 > 0.7
for the ‘control’ time series. For the group comparisons,
we considered the following requirements: for methods
(1) and (2), FDR < 0.01 for any coefficient of the
‘coefficient category’, i.e., the coefficient for the base
variable ‘group’ and the all the corresponding interaction
coefficients (‘group’ × ‘time’); for the maSigPro method
(3), FDR < 0.01 and R2 > 0.7 for the time series
corresponding to the ‘group’ variables.
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Proteomics data analysis
TMT ratio sample median normalization (ratio R vs. in-
ternal standard) was performed, using the median PSM
TMT reporter ratio from peptides unique to a gene
symbol. The protein relative quantification values (log2R)
were used for exploratory analysis and visualization
(Additional file 1: Figure S3), only considering the
proteins detected in all samples. To explore sample-to-
sample relationships, we used correlations between sam-
ples and PCA. To investigate the relative effect of
technical and biological variables, a separate linear
model was fitted between each of the PC scores and a
series of explanatory variables and the R2 for each of
them was calculated, obtaining a matrix of R2 values
that was tested for associations between the PCs and the
explanatory variables. To model the differential protein
expression over time, samples for G01 and G07 were
excluded and we used a design in limma R package [91]
that models the group differences at baseline, the
difference over time points, and the group-specific
differences over time points (the interaction term),
similarly to the method (1) for the detection of DEGs,
but restricted to the time points and groups included in
the proteomic experiments. Empirical Bayes statistics,
p values, and FDR results were considered significant
if FDR < 0.05.
To summarize the results, we created individual binary

scores (0/1) to define DEPs. In particular, we defined
three different individual scores, P, corresponding to the
time and the two different iTreg conditions (Ptime, PG03,
PG05), plus a binary total score (PSum), annotating
whether the protein was overall considered a DEP for at
least one individual score. For the time comparisons, we
considered FDR < 0.05 for any base coefficient related to
time as a requirement; for the group comparisons, we
required FDR < 0.05 for any coefficient of the ‘coefficient
category’, i.e., the coefficient for the base variable ‘group’
and all the corresponding interaction coefficients
(‘group’ × ‘time’).
The number of proteins per cell was estimated (for an

average of all samples in which the respective protein
was detected) according to Wiśniewski et al. [37]. Based
on this number, candidate protein expression levels
(Additional file 1: Figure S7a) were classified as fol-
lows: – not detected; + < 10,000/cell; ++ 10,000–
100,000/cell; +++ > 100,000/cell. Similarity of protein
expression profiles to RNA profiles was considered
‘NA’ (not applicable) when the protein was not de-
tected, or only detected in few samples.

SOMs
We created SOMs as implemented in the R package
kohonen [92]. We started from a matrix of gene z-scores
obtained from the RNA-Seq rlog-transformed data and

selected all the DEGs according to the score G above. A
supersom model was trained, considering seven different
layers corresponding to the groups G01 to G07 above
and a 20 × 20 toroidal hexagonal grid. The average code-
book vector for the samples belonging to each group
was plotted at each time point in order to obtain a topo-
logical map of the iTreg polarization over time.

Signature scores
From the MSigDB [93] website (http://software.
broadinstitute.org/gsea/msigdb/) the v5.1 C7 (‘immuno-
logic signatures’) collection was downloaded and filtered
to contain sets matching only ‘TH1’, ‘TH2’, ‘TH17’, ‘Treg’,
‘TCONV’, or ‘CD4’ in their names. We incorporated four
additional gene sets named ‘HUMAN_Treg_signature_
UP’, ‘HUMAN_Treg_signature_DN’, ‘MOUSE_Treg_
signature_UP’, and ‘MOUSE_Treg_signature_DN’, corre-
sponding to the human and mouse up- or down-regulated
genes in Treg versus Tcon as defined in Ferraro et al. [94]
and Hill et al. [95], respectively. The human homologs of
mouse genes were retrieved using the mouse Ensembl
BioMart service. Then, for each pair of gene set (‘UP’ and
‘DN’) we calculated a score similarly to Gaublomme et al.
[96]. Briefly, we started from a matrix of gene z-scores ob-
tained from the rlog-transformed data. For each sample,
we then defined the score as the mean of the genes in ‘UP’
minus the mean of the genes in ‘DN’. In order to quantify
the relevance of each signature in a sample PC space, we
calculated the Pearson correlation coefficient between
each of the first three PC scores and the signature score.
Finally, on a two-dimensional sample PCA plot we repre-
sented selected correlation value pairs (subset of those
with p < 10− 6 in at least one of the three first PCs) as
arrows starting from the origin and pointing to the pair of
correlation values for the corresponding PC scores. We
grouped the selected scores in three categories, i.e., ‘Treg
vs. Tcon’, ‘Tcell activation’, and ‘TGF-β treatment’.

RNA:protein parallel comparison
We compared RNA and protein expression by matching
RNA to the reference proteome, using the Ensembl gene ID
as a key. We averaged log2Rs if multiple proteins mapped
to the same gene. To obtain the heatmap in Fig. 3e, we first
separately the obtained z-scores from the rlog-transformed
RNA-Seq data and the log2R values for proteins, before
combining them by columns. Hierarchical clustering was
applied independently to the four blocks corresponding to
‘DEG and DEP’, ‘DEG not DEP’, ‘DEP not DEG’, and ‘not
DEG and not DEP’. The DEG and DEP features were fur-
ther classified into clusters, by cutting the tree in a number
of partitions showing greater support, as evaluated by the
average silhouette width and the Dunn Index recursively
calculated for a range of 4–10 clusters. A Spearman correl-
ation value was calculated for each gene:protein pair
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separately and values were grouped for each subset
shown in Fig. 3e, where histograms show the corre-
sponding distributions.
The subcellular localization was retrieved from the

Human Protein Atlas [97] (www.proteinatlas.org). Only
localizations with ‘Validated’ or ‘Supportive’ reliability
were considered. The given localizations were classified
in a reduced set, including Nuclear membrane, Nucleoli,
Nucleoplasm, Cytoskeleton, Cytosol, Mitochondria,
ER-Golgi, Plasma membrane, and Vesicles. For each
group in Fig. 3e, the relative fractions of the categories
were calculated. All the compartments for multi-localizing
proteins were considered.

Gene clustering and functional annotation
Gene clusters (Fig. 4) were identified using a model-based
expectation-maximization algorithm, using the R package
mclust [89]. We firstly extracted the genes differentially
expressed in groups G03 and/or G05 (GG03 ≥ 2 and/or
GG05 ≥ 2) from the matrix of the rlog-transformed data for
the samples belonging to groups G02, G03, or G05. We
then aggregated the individual donors by calculating an
average value for each gene. The matrix was then z-score
transformed. We estimated the number of Gaussian
mixture components using the Bayesian Information
Criterion calculated for a range of 2–50 components and
for different parameterizations of the covariance matrix.
We selected the model and the number of components
maximizing the Bayesian Information Criterion. Then,
mixture components were hierarchically combined as ex-
plained in Baudry et al. [98], resulting in the final selection
of 42 clusters. The clusters were tested for functional
enrichment with a hypergeometric test and categories
from Gene Ontology (www.geneontology.org/), KEGG
(http://www.genome.jp/kegg/), and Reactome databases
(http://www.reactome.org/), using the topGO [99] with
a ‘weight01’ algorithm, Category and ReactomePA
libraries, respectively.
The association between the clusters was quantified by

averaging the Spearman correlation coefficient calcu-
lated between all the pairs of genes from each cluster,
and a p value was assigned to each association using a
permutation approach. Briefly, for each combination of
two clusters A and B with na and nb genes and m or-
dered samples, we obtained the vector ρ of Spearman
correlation coefficients between all s = na × nb gene pairs;
then, the correlation (β) between the two sets A and B
was calculated as:

β ¼
Ps

i¼1ρi
s

To obtain a permutation-based p value, we repeated
this procedure (nperm = 10,000 times) by randomly

labelling in each permutation the samples of cluster B.
As a result, we obtained a vector π with nperm elements.
We then calculated a p value as the fraction of the abso-
lute values of π greater than the absolute value of the
original β correlation value. We considered a significant
association between every pair of clusters if p < 0.01.

Transcriptional network reconstruction
To model the dynamics of the system, we reconstructed
two gene networks using the log2(FPKM) values from
‘Early’ and ‘Late’ samples as indicated in Table 1 and
only for the HEGs.
We used ARACNe [100] to infer edges between the

hubs and the expressed genes. Hubs were defined as the
TFs that resulted differentially expressed at the gene
(DEG) and protein (DEP) levels. In detail, we firstly se-
lected the genes with Gtime ≥ 2, GG03 ≥ 2, and/or GG05 ≥ 2,
then from this list we selected the genes with Ptime = 1,
PG03 = 1, and/or PG05 = 1. RNAs and proteins were
matched by the corresponding associated Ensembl gene
ID. Finally, we considered all TF genes identified with ei-
ther or both of two alternative annotations: (1) the human
genes with a symbol annotated with the term ‘GO:
0003700’ in the Gene Ontology Consortium database
(www.geneontology.org) or (2) the Ensembl gene ID re-
trieved by querying the BioMart service (http://grch37.
ensembl.org/) with the Gene Ontology ID ‘GO:0003700’.
This list of 307 hubs was provided as input in the ARA-
CNe run in order to calculate a MI value between a hub
and all the other genes. Overall, 200 bootstrap networks
were generated with a p value threshold of 10− 10 for MI
estimation and a data processing inequality tolerance
of 0.1 only for triplets involving at least one TF. A
consensus network with a p value threshold of 10− 8 was
finally obtained from all bootstrap networks previously
generated. Early and Late consensus networks were
imported into Cytoscape 3.4 (http://www.cytoscape.org/
cy3.html) and they were compared with the DyNet
algorithm [48] in order to identify the most rewired
nodes, by ranking the nodes with a decreasing Dn score.
To select a robust target core subnetwork of iTreg
signature genes in the vicinity of FOXP3 (‘iTreg
subnetwork’), we selected FOXP3 itself and all the nodes
differentially expressed at the mRNA level in all iTreg
conditions (GG03 ≥ 2 AND GG04 ≥ 2 AND GG05 ≥ 2 AND
GG06 ≥ 2).

DNase footprint networks
DNase-Seq data were obtained from ENCODE (http://
hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/
wgEncodeUwDgf, sample ‘wgEncodeUwDgfTregwb7849
5824’) with DNase hypersensitivity (DHS) peaks. Protein-
binding footprints (FP) within the DHS peaks were identi-
fied by scanning the DHS intervals for gaps in the signals
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using Wellington [101], with the parameters: -fp 6,40,2
-sh 4,30,2 -fdrlimit -10. The sequences of the resulting FP
intervals were then scanned for protein binding motifs
using the MatchTM program [102] with TRANSFAC pos-
itional weight matrices database [103], using parameters
that minimize the sum of both positive and negative error
rates. To improve prediction quality, several quality scores
were calculated and examined, including FP p value,
match score of the sequence to the motif, conservation
scores (PhastCons and PhyloP in both glire and placental
mammals), and footprint occupancy scores (FOS) [104],
with a few modifications. First, the length of the flanking
shoulders was optimized to yield the minimal FOS value;
second, FOS was calculated for the predicted TF binding
site within the footprint (termed ‘TFBS FOS’), as well as
for the whole footprint (‘large FOS’). Networks were recon-
structed by drawing an edge from the TF containing the
binding motif to its target genes. A target gene is defined
as such if binding is predicted to occur within its genomic
coordinates, or in its promoter (1300 bp upstream).

Enrichment for GWAS
The GWAS catalog was downloaded (www.ebi.ac.uk/gwas.
Accessed 2016–08-14, version 1.0.1) and disease traits were
grouped according to their parent term in the Experimen-
tal Factor Ontology, resulting in 17 categories. Two
additional categories were added, Ai6 and Ai21, which in-
clude the GWAS genes for six common autoimmune dis-
eases (MS, rheumatoid arthritis, T1D, CD, systemic lupus
erythematous, and psoriasis) or the 21 autoimmune disor-
ders as in Farh et al. [51], respectively. Each SNP was asso-
ciated with the overlapping gene or the upstream and
downstream genes as reported by the GWAS catalog after
the Ensembl mapping pipeline. We tested the iTreg sub-
network for enrichment of the disease categories, with the
full network as background, and ORs were calculated. For
each category, a null distribution of ORs was obtained by
resampling 10,000 sets of nodes with the same size as the
iTreg subnetwork from the full network. The resampled
OR null distribution was used to calculate a FWER
using the step-down minimum p value procedure [105].
Corresponding one-tailed p values were obtained from
the fraction of resampled runs with an OR greater than
the original OR. This resampling-based p value (R) is
similar to that obtained with a hypergeometric distribu-
tion (Additional file 6: Table S5). To test the enrich-
ment for specific diseases, we considered the collection of
diseases and their associated genes from Menche et al. [52].

ORs and p values were calculated with a hypergeo-
metric test.

Open Targets associations
To derive association scores from the Open Targets re-
source (www.opentargets.org) the version from September
2016 was used. A minimum score of 0.25 was used to fil-
ter out weak associations. The enrichment was tested as
above with a hypergeometric test. The categories with a
nominal p value below 0.05 were grouped by their thera-
peutic areas to draw a treemap using the treemap library.
Diseases were included into all the therapeutic areas they
belonged to.

Detection of PPI modules
We considered data from three different public PPI
data repositories (Human Interactome database [106],
STRING v10.0 [107], and iRefIndex [108]), and integrated
them into a large human PPI network with 26,655 nodes
and 334,460 edges, which included both experimentally
validated as well as computationally predicted interac-
tions. We applied a score filter of 0.7 on the STRING
interactions. To obtain an iTreg-specific PPI network
(Treg-PPI), we filtered the integrated PPI network in a
way that at least one end of the interacting nodes or their
first neighbor is a DEP in iTregs (p < 0.05), and the inter-
action is being reported in at least two databases. We then
applied a clustering method based on a simulation of sto-
chastic flows on the graph, MCL [109], to identify topo-
logical modules in the Treg-PPI. We re-executed MCL
with 10 different inflation parameters for detecting the
modules with different sizes. We then mapped the catego-
rized GWAS catalog genes described above and the core
gene list (iTreg subnetwork) onto the Treg-PPI. Finally,
we tested the identified modules for enrichment of core
and disease genes using Fisher’s exact test (categories with
nominal p < 0.05 were considered, and 119 hypotheses
were tested). We did not consider the modules whose
enrichment was exclusively due to core genes. The
above data analysis pipeline was done in MATLAB
and Cytoscape.

Gene Set Enrichment Analysis (GSEA)
GSEA was performed using the package fgsea [110] and
the iTreg subnetwork as gene set. We obtained gene lists
from the Expression Atlas [111], contrasting the expres-
sion levels in controls and disease samples from datasets
including MS and IBD patients (selected experiments:

Table 1 List of samples and corresponding number of genes used to reverse-engineer the early and late network

Time points Groups No. of samples No. of genes

Early T01, T02, T03 G01, G02, G03, G04, G05, G06 33 15,910

Late T04, T05, T06 G02, G03, G04, G05, G06 45 15,910
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E-GEOD-12251, E-GEOD-14580, E-GEOD-16879, E-
GEOD-23205, E-GEOD-4183, E-GEOD-60424, E-GEOD-
6731, E-MEXP-2083, E-MTAB-2973, E-MTAB-69). We
also included data from two recent publications [112, 113]
not available in the Expression Atlas, which were proc-
essed to extract the DEGs between patients and controls.
The genes were ranked by -log10P*sign(logFC) and the sig-
nificance was assessed with 10,000 permutations.

iTreg classification by LDA and RF
LDA [54] was performed to better understand the distribu-
tion of the data regarding different sets of features. LDA eas-
ily handles the case where the within-class frequencies are
unequal. This method maximizes the ratio of between-class
variance to the within-class variance in any particular data-
set, thereby guaranteeing maximal separability. LDA was
run on gene expression (rlog-transformed RNA-Seq) data.
For testing how well Mock-stimulated cells (G02) can

be separated from iTregs generated by any protocol
(G03-G06) by selecting two genes, LDA was run for all
possible gene pairs selected from three different gene
lists (‘37 candidate’ genes, ‘37 known’ Treg regulators, or
‘349 iTreg’, the latter being the 349 nodes in the iTreg
subnetwork); we forced that both Mock-stimulated cells
and iTregs should be presented in the cross-validation
population. For confirmation, the same classifiers (all
possible gene pairs from the three gene lists) were ap-
plied to rlog-transformed RNA data from the corre-
sponding five time points (2, 6, 24, and 48 h, and 5 days)
of the independent RNA-Seq dataset to classify iTregs
(G04 + serum) versus Mock-stimulated cells (G02). We
also defined ‘top classifiers’ as combinations of two can-
didate genes derived from the ‘37 candidate’ gene list,
which separated groups 100% (in both runs per pair) in
the Main dataset, and tested all these top classifier pairs
in the independent dataset to determine the minimal ac-
curacy per classifier pair for iTreg classification in the
independent dataset. All calculations were performed
using the classification tool box of MATLAB, with the
auto regularization and five-fold cross-validation option.
LDA results were further analyzed in GraphPad Prism
(version 7) and Cytoscape.
As an unbiased way of feature (gene) selection to sep-

arate Mock (G02) and iTreg (G03–G06) conditions, we
applied RFs to measure the importance of genes. RF is a
nonparametric method that builds an ensemble model
of decision trees from random subsets of features and
bagged samples of the training data [114]. We ranked all
15,910 HEGs using the property PermutedVarDeltaError
of TreeBagger class in MATLAB. All 37 candidate mole-
cules, and all 37 known Treg regulators, were repre-
sented amongst HEGs. PermutedVarDeltaError returns
the difference in the model error when permuting the
values of a specific variable.

Additional independent RNA-Seq dataset
Cell preparation
Naïve CD4+ T cells were isolated from PBMCs by nega-
tive selection using the naïve CD4+ T cell isolation kit II
(Miltenyi Biotech; > 90% cell purity) from three healthy
donors (male, age 32 years; female, age 28 years; male,
age 28 years). The study was performed according to the
Declaration of Helsinki and was approved by the ethics
committee of the Ärztekammer Westfalen-Lippe and
Medizinische Fakultät der Westfälischen Wilhelms-
Universität Münster (registration number 2010262fS).
The participants provided informed consent. Cells were
stimulated with 0.5 μg/mL of plate-bound anti-human
CD3 (clone UCHT1; Beckman Coulter) and 0.5 μg/mL
of soluble anti-human CD28 antibody (clone CD28.2;
eBioscience). Cells were stimulated in 24-well plates at
2 × 106 cells/mL in 1 mL of X-Vivo 15 medium (Lonza).
For Mock control cells, no further reagents were added,
while for iTregs, 10 ng/mL of IL-2 (Peprotech), 10 ng/mL
of TGF-β1 (R&D Systems), 10 nM ATRA (Sigma-Aldrich),
and 10% (v/v) human serum (Human AB Serum, PAA
Laboratories) were added. Samples were taken after 0.5, 1,
2, 6, 12, 24, 48, 72, 96, and 120 h, and lysates were stored
at −80 °C until RNA extraction. At each time point,
cells were stained by intracellular flow cytometry for
FOXP3 expression.

Suppression assay
To assess the functional suppressive capacity of iTregs,
suppression assays were performed as previously de-
scribed for nTregs [115]. Briefly, PBMCs were isolated
from fresh EDTA blood from a healthy donor and stained
with cell proliferation dye efluor670 (eBioscience) accord-
ing to the manufacturer’s instructions. These cells were
re-suspended in X-Vivo15 (Lonza) and used as effector
cells. iTregs or Mock control cells harvested on day 3,
were washed and re-suspended in X-Vivo15. Effector cells
were co-cultured in the absence or presence of different
ratios of iTregs or Mock control cells (PBMC:iTreg/Mock
cells 1:1 to 1:0.03). Proliferation of effector cells was
stimulated with 0.5 μg/mL of anti-CD3 mAB (OKT3,
Biolegend). On day 4, the proliferation of effector cells
was determined with flow cytometry.

RNA-Seq
RNA was extracted with AllPrep RNA/DNA minikit
(Qiagen) (RNA integrity number mean ± SD 9.1 ± 0.7996),
mRNA was enriched via the poly-A tail using oligo-dT
attached magnetic beads. Libraries were prepared
according to Illumina TruSeq RNA Sample Preparation v2
Guide (part #15026495) and sequenced (paired-end with
2 × 100 bp read length) on an Illumina HiSeq 2500 instru-
ment generating 6 to 37 Mio reads per sample. Paired-end
reads were aligned with Tophat (version 2.0.8b) [116] and
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Bowtie2 (version 2.1.0) [117] to human reference genome
(hg19) and Gencode transcriptome (v19). We estimated
the mean insert size and standard deviation for each
sample by mapping one million reads with Bowtie2. Read
counts were determined using HTSeq-count (version 0.6.1)
[118] with parameters ‘–stranded no –order name’.
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