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Topological Evaluation of Methods for
Reconstruction of Genetic Regulatory Networks
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Abstract—Network inference is advancing rapidly, and new
methods are proposed on a regular basis. Understanding the ad-
vantages and limitations of different network inference methods
is key to their effective application in different circumstances. The
common structural properties shared by diverse networks natu-
rally pose a challenge when it comes to devising accurate inference
methods, but surprisingly, there is a paucity of comparison and
evaluation methods. Historically, every new methodology has only
been tested against gold standard purpose-designed synthetic and
real-world (validated) biological networks. In this paper we aim to
assess the impact of taking into consideration topological aspects
on the evaluation of the final accuracy of an inference procedure.
Specifically, we will compare the best inference methods, in
statistical terms, for preserving the topological properties of
synthetic and biological networks. A new method for performance
comparison is introduced by borrowing ideas from gene set
enrichment analysis. Experimental results show that no individual
algorithm stands out among the three inference tasks assessed,
and the challenging nature of network inference is evident in the
struggle of some of the algorithms to turn in a performance that’s
better than random guesswork. Therefore care should be taken
to suit the method used to the specific purpose.

Keywords—Network reconstruction; topological properties; infer-
ence methods evaluation; evaluating measure

Many real-world networks, such as complex technological
and social networks, belong in the category of so called
‘complex networks’, and have a number of the properties that
govern the formation and evolution of complex networks [20],
[1], [2]. The accurate inference of networks from biologi-
cal data is an open challenge. The modelling and inference
of genetic regulatory networks has developed into a broad
field of study in the past few years, with the application
of ever more sophisticated techniques. The recent Dialogue
for Reverse Engineering Assessment and Methods (DREAM)
challenge [29], [30] has resulted in significant progress. The
DREAM challenge aims to fairly compare the strengths and
weaknesses of inference methods. Network inference methods
have complementary pros and cons under different conditions.
Ideally, the validation and interpretation of GRN models must
keep pace with new knowledge and experimental data available
for modelling, and thus it is important to illustrate all aspects
and capacities of a network inference method. For two major
reasons, the assessment of inferred networks is not trivial.
First, our understanding of gene regulatory networks is still
only partial. Second, networks are structured objects and we
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cannot simply evaluate them on a local scale, but also on
intermediate levels, on the level of the whole network, and any
combination thereof [4], [19]. Generally, researchers produce
artificial networks and simulated data for method assessment.
Synthetic data do not usually reflect the complexity of a real
biological system if no biological prior information is intro-
duced. Although the exact details may differ, most methods of
evaluation of network reconstruction consider the sensitivity,
specificity, precision, and in some cases, a receiver operating
characteristic (ROC) curve to illustrate the performance of an
approach. The analysis of biological networks has led to the
realisation that the architecture of these networks shares many
features with other complex networks. They show non-trivial
topological properties such as modular structure and long-
tail degree distribution [26]. The common structural properties
shared by diverse networks naturally pose a challenge when it
comes to devising more accurate inference methods capable of
preserving them. Surprisingly there has been no evaluation or
comparison of different models from this point of view. Un-
derstanding the advantages and limitations of different network
inference methods is necessary for their effective application in
specific circumstances. In this paper we address this question,
evaluating the similarity between the structural features of
a true network and an inferred network. We have chosen 6
different inference algorithms from among the best-performing
algorithms in past DREAM challenges. These methods have
been studied using statistical performance measures such as
the F-score [19] or area under the receiver operator curve
(AUROC) [17], [14]. Some other attempts have been made
to consider aspects related to the overall properties of the
inferred network rather than the specific number of false and
true positive/negative edge inference cases [28]. In this article,
we analyse network inference methods employing topological
measures and indices, in combination with ensemble data,
in order to assess their performance. An effective similarity
metric is needed for scoring network inference methods, one
which, given two complex networks, evaluates the degree
of similarity between their structural features, beyond just
looking at individual numbers. We borrow ideas from gene set
enrichment analysis (GSEA) [31], [18], [5] to formulate an
intelligent method which we offer as a new way to measure
the topological similarity of two complex networks. We bench-
mark them using synthetic transcriptional networks proposed
by Mendes et al. [25]. These networks consist of 100 genes
and are organised either in an Erdos-Rényi (random network),
a small world or a scale-free topology [32], [7], [26]. Mendes
et al. have used these networks with well-defined topologies
to run in-silico experiments simulating real laboratory micro-
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array experiments. We have compared ARACNe [22], CLR
(Context Likelihood of Relatedness [8], GENIE3 [15], INFER-
ELATOR [10], TIGRESS [11] and Correlation on the basis of
diameter, average shortest path length, clustering and centrality
scores.

I.

Six different network inference algorithms are considered
in this study and will be discussed in the following section.
Table I-A summarises the differences between the models
used.

METHODS

A. Network inference methods

Several methods have been proposed for inferring gene reg-
ulatory interactions from measured gene expression levels. Ap-
proaches employed include Bayesian networks, Boolean mod-
els, auto-regressive models, correlation-based models, cluster-
ing techniques and differential equation models, among oth-
ers [9], [23], [6], [17], [21]. Some of them are static, while oth-
ers take into account the dynamic aspects of the dependencies.
Mutual information network inference methods are a class of
network inference methods which infer regulatory interactions
between genes based on pairwise mutual information. The
low computational complexity and the low number of required
samples are the main advantages of mutual information based
inference methods. We have examined two commonly used
state-of-the-art network inference methods based on pairwise
mutual information: Algorithm for the Reconstruction of Accu-
rate Cellular Networks, ARACNe [22] and Context Likelihood
of Relatedness, CLR [8]. ARACNe is based on an information
theoretical approach that uses the concept of Mutual Infor-
mation, MI, a measure of entropy, to determine the pairwise
interaction between nodes by assessing the MI between them.
It then applies a data processing inequality (DPI), to eliminate
indirect interactions. The CLR algorithm is an extension of the
network relevance approach. It is another information theoretic
approach and computes the MI between two nodes, comparing
it to the empirical background distributions of MI. Regression
based network inference methods comprise one of the largest
network inference sub-categories, and we have studied 3 of
the best regression based methods: GENIE3, TIGRESS and
INFERELATOR. GENIE [15] decomposes the prediction of a
regulatory network between p genes into p different regression
problems such that in each, the expression pattern of one
of the genes may be predicted from the expression patterns
of all the other genes, using tree-based ensemble methods—
Random Forests or Extra-Trees. TIGRESS [11] formulates the
inference problem as a sparse linear regression problem. It
uses least angle regression (LARS) and adds an additional
stability selection criterion to assess the significance of nodes
in the regression. INFERELATOR uses regression and variable
selection to identify transcriptional influences on genes based
on the integration of genome annotation and expression data.
In addition to these methods, we have used Correlation to
reconstruct networks. For Correlation, CLR, GENIE, INFER-
ELATOR and TIGRESS, we used the implementations at the
Michigan Institute of Technology’s Broad Institute [27], [12].
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TABLE 1. SUMMARY OF ASSESSED NETWORK INFERENCE MODELS.

Method
ARACNe

Category [ Features ]

Information-theoretic MI estimated using a copula based approach
Use of the DPI to break up fully connected triplets
MI dependencies(Gaussian assumption)
Normalisation of MI
Decomposes into p different regression problems
Prediction using tree-based ensemble methods
Hybrid method
involving differential equations and Regression
Teast angle regression (LARS)
combined with stability selection

CLR Information-theoretic

GENIE3 Tree-Based Methods

INFERELATOR ordinary differential Equations

TIGRESS Regression Methods

Basic Correlation Statistic

We used an ARACNe implementation in GE Workbench 2.5.
1 [13]. Parameters are always default, set by GenePattern 2.0
or GE Workbench, unless otherwise stated.

B. The datasets

Benchmarking is important in order to be able to understand
the reliability of the reconstructed network. Traditionally, the
assessment proceeds by collecting all curated interactions and
considering them as true positives, while treating as false
positives all predicted interactions between two genes that
are not documented in the curated database. Such a method
tends to overestimate the false-positive prediction rate while
ignoring all new interactions. As a result, methods that merely
reproduce current knowledge outperform those that do well at
finding new results. To compensate for this, the gold standard
networks were selected from among synthetic transcriptional
networks proposed by Mendes et al. [24]. These networks
with well-defined topologies have been used by them to run
in-silico experiments simulating real laboratory micro-array
experiments. They consist of 100 genes and are organised
either in an Erdods-Rényi (ER), Smallworld (SW) or a scale-
free (SF) topology. We have chosen 10 networks from each
topology, RNDOO1 to 010, SW001 to 010 and SF001 to 010.
The simulated data from these networks have been used as
input for network inference methods.

C. Assessment method

The performance of network inference methods has tradi-
tionally been evaluated using a confusion matrix with respect
to the gold standard network, GSN, providing the number of
true positives TP, true negatives T'N, false positives F'P and
false negatives F'N. The measures in this confusion matrix
have the following meaning in the context of this paper:
TN refers to an edge that belongs neither to the predicted
network nor to the gold standard network; FP is the number
of predicted edges that do not belong to the gold standard
network; FN is the number of edges in the gold standard that
are missing from the predicted network; and TP is the number
of correct predictions of an edge in the gold standard network.
To quantify network reconstruction performance, we first used
receiver operator characteristic (ROC) and precision recall
(PR) analysis. We have used a threshold § for discretisation
of edge values, where the weight W; ; for a particular edge is
compared with ¢. If |IW; ;| < 4, the edge e; ; is assumed to
be present in the network e; ; € E, and absent otherwise. The
resulting network with edge set E is then compared against the
gold standard network, and sensitivity, specificity and precision



are computed for given ¢. This is then repeated by varying
0, and sensitivity is plotted over specificity for different §
in a ROC plot. Finally, the ROC curve can be summarised
by computing the area under the curve [17]. As our second
approach, we have used the Jaccard coefficient [16]. This
commonly used similarity metric measures the probability that
the two networks, the gold standard and the inferred network,
have common edges, focusing on randomly selected edges in
either of the networks.

JaccardCoefficient(GSN,IN):=
[E(GSN)NE(IN)|/|E(GSN)U E(IN).

1) New assessment procedure:Topological Indices Enrich-
ment Analysis
: We have compared the topological indexes by borrowing
ideas from gene set enrichment analysis (GSEA). We call
our procedure Topological Indices Enrichment Analysis, TIEA.
GSEA is one of the most widely used methods for detecting
differentially expressed gene sets. GSEA [18] is a discreet
version of the weighted Kolmogorov-Smirnov test, which is
applied to a running sum statistic over ranked lists, counting
how often elements are or are not in the list of interest.
Unlike in the analysis of gene expression data, the sets here
were defined not by genes but by nodes from networks, and
ranked not based on expression but on the topological index of
interest. For TIEA, nodes are first ranked by topological score.
Then a ”running sum” statistic is calculated for each network,
based on the ranks of subsets of nodes in the network, relative
to those of non-members. An enrichment score (ES) is defined
to be the maximum of the running sum across all nodes, which
corresponds to a weighted Kolomogorov-Smirnov statistic. The
equation for the calculation of ES for the sorted list was
processed from top to bottom, and two running sums, RSy,
and RSy, , were computed. RSy, was increased by one each
time a node belonged to N, and m]\;k each time a node
belonged to the complementary set Ng:

1
RSN, (1) =2 _—
W) = E e ]
RSy, (i) =% L
Ne(8) = 2Ny T
¢ N IN = Ny

TIESy, = max(|RSn, — RSN, |)

2) Topological indices: A network, graph G, consists of
a set of nodes representing biological entities V(G), while
the edges E(G) denote relationships between node pairs. Its
topological structure is the most basic and direct information
available about a network. The architectural features of bio-
logical networks can be roughly categorised into three classes:
individual, local and global features. Individual features are
topological properties associated with only one node, including
degree and centrality measures; global features involve all the
vertices in networks, while local features are those behaviours
that involve part of the network rather than the whole network
containing motifs [3] and communities. This paper confines
itself to individual features. We focus on the preservation of
diameter, average path length, clustering, centrality and degree
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distributions.

Definition I.1. The diameter of a network is the largest
distance between any two nodes in the network

Definition 1.2. The average path length is the average distance
between any two nodes in the network.

Average path length is bounded from above by the diameter;
in some cases it can be much shorter than the diameter. If the
network is not connected, one often checks the diameter and
the average path length in the largest component.

Definition I1.3. The overall clustering coefficient CI(G) is
given by

3 * number of trianglesinthe network

Cl(g)

where a “connected triple” refers to a node with edges linked
to an unordered pair of nodes.

number of connected triples of nodes

Definition I.4. The individual clustering for a node i is

number of triangles connected tovertex i

Cli(g) =

number of triples centered at i

II. RESULTS

ARACNe, Basic Correlation and GENIE3 successfully in-
ferred networks from inputs. CRL returned empty networks for
all inputs; INFERELATOR broke down due to “’zero variance”
for the subset of SF networks, but worked for the other
sets; TIGRESS returned results only for seven networks in
the ER subset. The AUCROC values for each algorithm and
dataset can be seen in 1A. All models turn in performances
significantly better than random guesswork, except ARACNe.
Despite the significant difference, the magnitude of difference
compared to random guessing is not, in the best case, more
than 10%. Relative to the datasets ER and SF, the best
performer is GENIE, while for SW the best performer is
Correlation, but there is no significant difference between
GENIE and Correlation for SW networks. When we examine
the area under the precision recall curve (AUCPR) of the
models for the same set of networks, we find that GENIE
significantly outperforms Correlation (see 1B). This shows the
higher number of false positives in the network predicted by
Correlation. It has been shown that most biological networks
are scale free networks, yet all methods perform significantly
better for SW topology. All in all, ARACNe turns in the
worst performance on all network categories. This may be
due to the number of arbitrary parameters and the effect of
the cut of parameters on network architecture. Surprisingly,
Basic Correlation turns in a performance comparable to other
methods in all categories when statistical measures are the
parameters being compared.
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Fig. 1. Evaluation of simulated data. Network reconstruction was performed for all networks in all 3 categories. Shown are A: the distribution of the area
under the ROC curve (AUCROC), and B: the area under the precision recall curve (AUCPR) of 30 sets of simulated data, over the different topologies. From
left to right: Correlation, GENIE, Inferelator, TIGRESS and ARACNe. AUC = 0.5 is the expected result for random guessing.
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Fig. 2. The figure shows the performance of all models based on different measures and assessment approaches. Assessment of models’ performance using
Jaccard distance (panel A), Average shortest path (panel B) Clustering coefficient (panelC). The hub enrichment score is shown in panel D.
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\ [ Jacc. dist [ ACC [ ASP [ ADiam |
ARACNe” 0.9550 -0.1547 4.088 3.50
TIGRESS® 0.6225 -0.1562 | -0.844 -6.14

Basic Correlation? 0.7567 -0.2634 4.428 4.37

GENIE3“ 0. 6607 -0.3056 2.045 -3.93

INFERELATOR? 0.7477 -0.3350 4.183 0.95
TABLE II. THE JACCARD DISTANCE, CLUSTERING COEFFICIENT

DIFFERENCE(AC'(C'), SHORTEST PATH DIFFERENCE (ASP) AND
DIAMETER DIFFERENCE (A Diam) BETWEEN ALL GSN AND INFERRED
NETWORKS HAVE BEEN CALCULATED FOR ALL MODELS USING
EUCLIDEAN DISTANCE. AVERAGES OVER ALL 30 NETWORKS ARE SHOWN.
ALL NETWORKS, ®: BASED ON 30 NETWORKS, ?: BASED ON 20
NETWORKS, ¢: BASED ON 7 RND NETWORKS.

Then we assessed the Jaccard distance between each GSN
and its corresponding inferred network. Figure 2A shows the
result. As can be seen, the overall picture remains the same
as AUCROC, the topology of the underlying network signif-
icantly affects the performance of all methods, and GENIE3
outperforms other methods. Then we have used topological
indices to assess all inference methods. We have done this
using both enrichment scores and Euclidean distance. An
overview of the results has been shown in II and in Figures 2B
and C. We found discrepancies in the rankings obtained using
the 3 approaches. As has been mentioned, ARACNe was the
worst performer, but when assessed using a topological index,
it was one of the two most effective methods. As another
example, prediction by GENIE3 outperforms ARACNe, and
it is closest to the GSN if we focus on the shortest path and
measure difference using euclidean distance, but ARACNEe is
better when the clustering coefficient is the parameter being
compared.

We then compared all models using our new approach—
TIEA. First, we considered hub enrichment scores for all
models. For this purpose we selected 10% of the top hub nodes
in the GSN and calculated the enrichment score of this set in
all prediction models. Of all the methods, we found ARACNe
to have the highest median hub enrichment score. GENE3
got the highest score for SF networks; see 2D. We used the
same procedure for the clustering coefficient and diameter of a
network. ARACNe’s ranking improves dramatically when we
use TIEA for evaluation. This shows the power of ARACNe
when it comes to capturing the central section of a network.
On the other hand, GENEI fares better at predicting the totality
of a network. TIEA measures the ability of a model to predict
the most important features of a network, such as euclidean
distance, by giving equal weight to all nodes. The result has
been reported in tables II and II. A comparison of Tables II
and II brings home the importance of picking a model suited
to the specific task at hand.

III. CONCLUSIONS

Current efforts aim to understand the individual strengths
and weaknesses of various network reconstruction methods by
applying them to equal and different data sets. Generally, sensi-
tivity, specificity, precision and the (ROC) curve are calculated
to illustrate the performance of a particular approach. However,
there are more aspects of network construction that should be
taken into consideration. Here we suggest using topological
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HubES | CCES | SPES | DiamES ]

ARACNe” 0.4336 0.4847 | 0.3429 0.4873
GENIE3“ 0.4277 0.4305 | 0.3587 0.4902
INFERELATOR? 0.2187 0.4132 | 0.5362 0.1393
Basic Correlation” 0.3252 0.1342 | 0.2248 0.2042
TIGRESS® 0.1623 0.1230 | 0.1181 0.2362

TABLE III. THE HUB ENRICHMENT SCORE (HUBES), CLUSTERING
COEFFICIENT ENRICHMENT SCORE (CCES), SHORTEST PATH ENRICHMENT
SCORE ( SPES) AND DIAMETER ENRICHMENT SCORE (DIAMES) ARE
SHOWN. CALCULATION WAS DONE BY COMPARING THE TOP 10% OF GSN
WITH THE PREDICTED NETWORKS, WITH DATA WITH DIFFERENT LEVELS
OF NOISE AND MISSING VALUES, WITH THE SN2 DATA, INCLUDING A
NEGATIVE FEEDBACK LOOP, AND THE SN3 (KEGG) DATA SET. VALUES
SHOWN ARE AVERAGE VALUES OVER 30 NETWORKS. ALL NETWORKS, :
BASED ON 30 NETWORKS, ?: BASED ON 20 NETWORKS, ©: BASED ON 7
RND NETWORKS.

indices to evaluate network inferences, and furthermore we
introduce a concept similar to gene set enrichment for network
inference evolution. Depending on the ultimate goal, one can
use Euclidean distances or TIEA to compare models. This
introduces a graph-theoretical perspective on the problem that
allows one to study particular substructures of networks and
not be limited to studying networks in their entirety. In this
paper, several commonly used computational approaches for
constructing gene regulatory networks are compared, using
both topological and statistical indices. We have used data
produced by synthetic networks to address questions such as
the following: Which topologies are best suited for a specific
network inference method. Which models work best for pre-
dicting specific properties of a network? Obviously, synthetic
data cannot reflect the complexity of a real biological system.
However, standards are still unavailable for evaluating different
inference methods using real biological data. Results obtained
using three different datasets show that the overall performance
of the models assessed is poor. There are significant differences
in the results obtained with the datasets (ER, SW and SF). In
general, we observe that when based on statistical measures,
network inference methods could be said to perform better
with small world networks, while when based on topological
measures, they perform better with SF networks. Our new
assessment process revealed a new feature of the models:
we observed that the performance of a model depended on
the topological index. We have measured the performance
of various gene regulatory network construction methodolo-
gies against various sizes of simulated data with different
numbers of samples. A few conclusions can be drawn from
this exercise. First, GENIE and INFERELATOR performed
well in constructing the global network, while ARACNe did
well in identifying a few connections with high specificity.
Surprisingly, Correlation performed well in constructing the
global network, doing better than ARACNe and approaching
GENIE. GENIE performed well in both respects, but it is not
suitable for identifying the hub nodes which can often be of
biological interest. ARACNe performed well in identifying the
hub genes. Since there is no single method that outperforms
other methods in all respects, care should be taken to choose
an appropriate method based on the purpose of the study.
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