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Abstract

We propose algorithms for learning Markov boundaries from data without having to learn a
Bayesian network first. We study their correctness, scalability and data efficiency. The last two prop-
erties are important because we aim to apply the algorithms to identify the minimal set of features that
is needed for probabilistic classification in databases with thousands of features but few instances, e.g.
gene expression databases. We evaluate the algorithms on synthetic and real databases, including one
with 139,351 features.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Probabilistic classification is the process of mapping an assignment of values to some
random variables F, the features, into a probability distribution for a distinguished
random variable C, the class. Feature subset selection (FSS) aims to identify the minimal
subset of F that is needed for probabilistic classification. Solving the FSS problem is
important for two main reasons. First, it provides insight into the domain at hand and,
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second, it reduces the search space if the probabilistic classifier is to be learnt from
data.

In this paper, we are interested in solving the FSS problem as follows. Since a Markov
boundary (MB) of C is defined as any minimal subset of F that renders the rest of F inde-
pendent of C, then a MB of C is a solution to the FSS problem. If the probability distri-
bution of {F, C} can be faithfully represented by a Bayesian network (BN) for {F, C}, then
the MB of C is unique and can easily be obtained because it consists of the union of the
parents and children of C and the parents of the children of C [12]. In this paper, we are
interested in solving the FSS problem for databases with thousands of features but few
instances. Such databases are common in domains like bioinformatics and medicine,
e.g. gene expression databases [16]. Unfortunately, having to learn a BN for {F,C} in
order to learn a MB of C can be painfully time consuming for such high-dimensional dat-
abases [22]. This is particularly true for those algorithms for learning BNs from data that
are (asymptotically) correct under the faithfulness assumption [22], which are the ones we
are interested in. Fortunately, there exists an algorithm for learning a MB of C from data
that scales to high-dimensional databases and that is correct under the faithfulness
assumption, the incremental association Markov boundary algorithm (IAMB) [19]. IAMB
is scalable because it does not learn a BN for {F, C}. However, IAMB is data inefficient
because it may require an unnecessarily large amount of learning data to identify a MB
of C. This raises the first question addressed in this paper: Can we develop an algorithm
for learning MBs from data that is scalable, data efficient, and correct under the faithful-
ness assumption ? The answer is yes. In Section 4, we present such an algorithm, the par-
ents and children based Markov boundary algorithm (PCMB). This leads us to the second
question addressed in this paper: Can we relax the faithfulness assumption and develop an
algorithm that is correct, scalable and data efficient ? We prove that IAMB is still correct
under the composition property assumption, which is weaker than the faithfulness
assumption. The proof also applies to a stochastic variant of IJAMB that we propose
in order to overcome the data inefficiency of IAMB. We call it KIAMB. This algorithm
has the following additional advantage over IAMB. If C has several MBs (something
impossible under the faithfulness assumption but possible under the composition prop-
erty assumption), then KIAMB does not only return a MB of C but any MB of C
with non-zero probability. Therefore, KIAMB can discover different MBs of C when
run repeatedly while IAMB cannot because it is deterministic. We report experiments
showing that PCMB outperforms IAMB and that KIAMB outperforms both IAMB
and PCMB considerably often. To show that these algorithms are scalable, part of the
experiments are run on the Thrombin database which contains 139,351 features [2]. Before
going into the details of our contribution, we review some key concepts in the following
section.

2. Preliminaries

The following definitions can be found in most books on Bayesian networks, e.g.
[12,17,18]. Let U denote a set of discrete random variables. A Bayesian network (BN)
for U is a pair (G, 0), where G is an acyclic directed graph (DAG) whose nodes correspond
to the random variables in U, and 0 are parameters specifying a probability distribution
for each node X given its parents in G, p(X|Pa(X)). A BN (G, ) represents a probability
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distribution for U, p(U), through the factorization p(U) = [[,.yp(X|Pa(X)). In addition
to Pa(X), two other abbreviations that we use are PC(X) for the parents and children
of X in G, and ND(X) for the non-descendants of X in G. Hereinafter, all the probability
distributions and DAGs are defined over U, unless otherwise stated. We call the members
of U interchangeably random variables and nodes.

Let X-LY|Z denote that X is independent of Y given Z in a probability distribution p.
Any probability distribution p that can be represented by a BN with DAG G satisfies
certain independencies between the random variables in U that can be read from G via
the d-separation criterion, i.e. if d-sep(X,Y|Z) then X-LY|Z with X, Y and Z three mutu-
ally disjoint subsets of U. The statement d-sep(X,Y|Z) is true when for every undirected
path in G between a node in X and a node in Y there exists a node Z in the path such that
either (i) Z does not have two parents in the path and Z € Z, or (ii) Z has two parents in
the path and neither Z nor any of its descendants in G is in Z. A probability distribution p
is said to be faithful to a DAG G when XL Y|Z iff d-sep(X,Y|Z). Let p denote a probability
distribution and X € U, any Y C (U\{X}) such that X-L(U\Y\{X})|Y is called a Markov
blanket of X. Any minimal Markov blanket of X is called a Markov boundary (MB) of X,
i.e. no proper subset of a MB of X is a Markov blanket of X. The following three theorems
are proven in [12,17,12], respectively.

Theorem 1. Let X, Y, Z and W denote four mutually disjoint subsets of U. Any probability
distribution p satisfies the following four properties: Symmetry XALY|Z = YLX|Z,
decomposition XAL(Y UW)|Z = XLY|Z, weak union XAL(YUW)| Z = XLY[(ZUW),
and contraction XALY|(Z U W) A XULW|Z = XAL(Y UW)|Z. If p is strictly positive, then p
satisfies the previous four properties plus the intersection property XALY|(Z U W) A XLW]|
(ZUY)= X (YUW)|Z. If p is faithful to a DAG G, then p satisfies the previous five
properties plus the composition property XALY|Z A XA W|Z = XL(Y UW)|Z and the
local Markov property XA1L(ND(X)\ Pa(X))|Pa(X) for each X € U.

Theorem 2. If a probability distribution p is faithful to a DAG G, then (1) for each pair of
nodes X and Y in G, X and Y are adjacent in G iff X L Y|Z for all Z such that X, Y ¢ Z,
and (ii) for each triplet of nodes X, Y and Z in G such that X and Y are adjacent to Z
but X and Y are non-adjacent, X — Z — Y is a subgraph of G iff X L Y|Z for all Z such that
X, Y¢Z and Z € L.

Theorem 3. If a probability distribution p satisfies the intersection property, then each X € U
has a unique MB, MB(X). If p is faithful to a DAG G, then M B(X) is the union of PC(X) and
the parents of the children of X in G.

3. Previous work on scalable learning of MBs

In this section, we review three algorithms for learning MBs from data, namely the
incremental association Markov boundary algorithm (IAMB) [19], the max—min Markov
boundary algorithm (MMMB) [20], and HITON-MB [1]. To our knowledge, these algo-
rithms and some minor variants of them are the only algorithms for learning MBs from
data that have experimentally been shown to scale to databases with thousands of
features. However, we show that TAMB is data inefficient and that MMMB and
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HITON-MB do not guarantee the correct output under the faithfulness assumption. In the
algorithms, X L Y|Z (XL Y|Z) denotes (in)dependence with respect to a learning database
D, and dep(X, Y|Z) is a measure of the strength of the dependence with respect to D. In
particular, the algorithms run a y* independence test with the G statistic in order to decide
on X L Y|Z or XL Y|Z [17], and they use the negative p-value of the test as dep(X, Y|Z).
The three algorithms are based on the assumption that D is faithful to a DAG G, i.e. Disa
sample from a probability distribution p faithful to G, and thus each node has a unique
MB.

3.1. IAMB

Table 1 outlines IAMB. The algorithm receives the target node 7 as input and returns
MB(T) in MB as output. The algorithm works in two steps. First, the nodes in MB(T) are
added to MB (lines 2-6). Since this step is based on the heuristic at line 3, some nodes not
in MB(T) may be added to MB as well. These nodes are removed from M B in the second
step (lines 7-9). Tsamardinos et al. prove in [19] that IAMB is correct under the faithful-
ness assumption.

Theorem 4. Under the assumptions that the independence tests are correct and that the
learning database D is an independent and identically distributed sample from a probability
distribution p faithful to a DAG G, IAMB(T) returns MB(T).

The assumption that the independence tests are correct means that they decide
(in)dependence iff the (in)dependence holds in p. We elaborate further on this assumption
in Section 6. In order to maximize accuracy in practice, IAMB performs a test if it is
reliable and skips it otherwise. Following the approach in [17], IAMB considers a test
to be reliable when the number of instances in D is at least five times the number of
degrees of freedom in the test. This means that the number of instances required by
IAMB to identify MB(T) is at least exponential in the size of MB(T), because the number
of degrees of freedom in a test is exponential in the size of the conditioning set and the
test to add to MB the last node in MB(T) will be conditioned on at least the rest of the
nodes in MB(T). However, depending on the topology of G, it can be the case that
MB(T) can be identified by conditioning on sets much smaller than those used by IJAMB,

Table 1
IAMB

IAMB(T)
/* add true positives to MB */
MB=10
repeat
Y= arg: maXXE(U\MB\{T“dep(T, X|MB)
if T L Y|MB then
MB= MBU{Y}
until MB does not change
/* remove false positives from MB */
for each X € MB do
if 7L X|(MB\{X}) then
MB = MB\{X}
return MB
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e.g. if G is a tree (see Sections 3.2 and 4). Therefore, IAMB is data inefficient because its
data requirements can be unnecessarily high. Tsamardinos et al. are aware of this draw-
back and describe in [19] some variants of IJAMB that alleviate it, though they do not
solve it, while still being scalable and correct under the assumptions in Theorem 4:
The second step can be run after each node addition at line 5, and/or the second step
can be replaced by the PC algorithm [17]. Finally, as Tsamardinos et al. note in [19],
IAMB is similar to the grow-shrink algorithm (GS) [10]. The only difference is that
GS uses a simpler heuristic at line 3: ¥ = argmax ycu\ma\ (1)dep(T, X |0). GS is correct
under the assumptions in Theorem 4, but it is data inefficient for the same reason as
IAMB.

3.2. MMMB

MMMB aims to reduce the data requirements of IAMB while still being scalable
and correct under the faithfulness assumption. MMMB takes a divide-and-conquer
approach that breaks the problem of identifying MB(T) into two subproblems: First,
identifying PC(T) and, second, identifying the rest of the parents of the children of T
in G. MMMB uses the max-min parents and children algorithm (MMPC) to solve the

Table 2
MMPC and MMMB

MMPC(T)

/* add true positives to PC */
PC=0 O D

repeat
for each X € (U\PC\{T}) do
SeplX] = arg: mingc pcdep(T, X|Z) o °
Y = arg: maxye\ro\i1y) dep(T, X|Sep[X])
if 7L Y|Sep|Y] then
PC=PCU(Y) °
until PC does not change
/* remove false positives from PC */
9 for each X € PC do
10 if TULX|Z for some Z C PC\{X} then
11 PC=PC\[X}
12 return PC

R INN AW -

MMMB(T)

(b)
/* add true positives to MB */
1 PC= MMPC(T) °
2 MB=PC
3 CanMB = (PC UyepcMMPCO\{T} o
/* add more true positives to MB#/
4 for each X € CanMB\PC do
5 find any Z such that 7L X|Z and T, X ¢ Z
6 for each Y € PC do ° °
7 if T4 X|Z U {Y} then
8 MB=MBU{X}
9 return MB °
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first subproblem. Table 2 outlines MMPC. The algorithm receives the target node T as
input and returns PC(7) in PC as output. MMPC is similar to [AMB, with the exception
that MMPC considers any subset of the output as the conditioning set for the tests that it
performs and TAMB only considers the output. Tsamardinos et al. prove in [20] that,
under the assumptions in Theorem 4, the output of MMPC is PC(T). However, this is
not always true. The flaw in the proof is the assumption that if X ¢ PC(T), then T X|Z
for some Z C PC(T) and, thus, any node not in PC(T) that enters PC at line 7 is removed
from it at line 11. This is not always true for the descendants of 7. This is illustrated by
running MMPC(T) with D faithful to the DAG (a) in Table 2. Neither P nor R enters PC
at line 7 because T-LP|() and T-LR|(. Q enters PC because 7 L Q|Z for all Z such that
T,0 ¢ Z. S enters PC because T £ S| and T L S|Q. Then, PC = {Q, S} at line 9. Neither
QO nor S leaves PC at line 11. Consequently, the output of MMPC includes S which is not
in PC(T) and, thus, MMPC does not guarantee the correct output under the faithfulness
assumption.

Table 2 outlines MMMB. The algorithm receives the target node 7 as input and returns
MB(T) in MB as output. The algorithm works in two steps. First, PC and MB are initial-
ized with PC(T) and CanMB with (PC(T) Uxepcry PC(X))\{T} by calling MMPC (lines
1-3). CanM B contains the candidates to enter MB. Second, the parents of the children of
T'in G that are not yet in MB are added to it (lines 4-8). This step is based on the following
observation. The parents of the children of T in G that are missing from MB at line 4 are
those that are non-adjacent to 7 in G. These parents are in CanMB\PC. Therefore, if
X € CanMB\PC and Y € PC, then X and T are non-adjacent parents of Y in G iff
Tt X|Z U {Y} for any Z such that TULX|Z and T, X ¢ Z. Tsamardinos et al. prove in
[20] that, under the assumptions in Theorem 4, the output of MMMB is M B(T). However,
this is not always true even if MMPC were correct under the faithfulness assumption. The
flaw in the proof is the observation that motivates the second step of MMMB, which is not
true. This is illustrated by running MMMB(7) with D faithful to the DAG (b) in
Table 2. Let us assume that MMPC is correct under the faithfulness assumption. Then,
MB=PC={0Q,S} and CanMB={P,Q,R,S} at line 4. P enters MB at line 8 if
Z = {Q} at line 5, because P € CanMB\PC, S € PC, TILP|Q and T t P|{Q,S}. Conse-
quently, the output of MMMB can include P which is not in MB(T) and, thus, MMMB
does not guarantee the correct output under the faithfulness assumption even if MMPC
were correct under this assumption.

In practice, MMMB performs a test if it is reliable and skips it otherwise. MMMB fol-
lows the same criterion as TAMB to decide whether a test is reliable or not. MMMB is data
efficient because the number of instances required to identify MB(T) does not depend on
the size of M B(T) but on the topology of G.

In [22], Tsamardinos et al. identify the flaw in MMPC and propose a corrected MMPC
(CMMPC). The output of MMPC must be further processed in order to obtain PC(T),
because it may contain some descendants of 7 in G other than its children. Fortunately,
these nodes can be easily identified: If X is in the output of MMPC(T), then X is a descen-
dant of 7 in G other than one of its children iff T is not in the output of MMPC(X).
CMMPC, which is outlined in Table 3, implements this observation. The algorithm
receives the target node 7T as input and returns PC(7) in PC as output. As shown above,
however, correcting MMPC does not make MMMB correct. Independently of Tsamardi-
nos et al., we identify and fix the flaws in both MMPC and MMMB in [13]. We discuss our
work in Section 4.
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Table 3
CMMPC

CMMPC(T)

1 PC=0

2 for each X € MMPC(T) do
3 if 7€ MMPC(X) then
4

5

PC=PCU{X}
return PC

3.3. HITON-MB

Like MMMB, HITON-MB aims to reduce the data requirements of IAMB while still
being scalable and correct under the faithfulness assumption. Like MMMB, HITON-MB
identifies M B(T) by first identifying PC(T) and, then, identifying the rest of the parents of
the children of 7in G. HITON-MB uses HITON-PC to solve the first subproblem. Table 4
outlines HITON-PC. The algorithm receives the target node 7" as input and returns PC(T)
in PC as output. HITON-PC is similar to MMPC, with the exception that the former
interleaves the addition of the nodes in PC(T) to PC (lines 4-5) and the removal from
PC of the nodes that are not in PC(7) but that have been added to PC by the heuristic
at line 4 (lines 7-9). Note also that this heuristic is simpler than the one used by MMPC,
because the conditioning set is always the empty set. Aliferis et al. prove in [1] that, under
the assumptions in Theorem 4, the output of HITON-PC is PC(T). However, this is not

Table 4
HITON-PC and HITON-MB
HITON-PC(T)
1 PC=0
2 CanPC=U\{T}
3 repeat
I* add the best candidate to PC */
4 Y = arg: maxyecanpcdep(T, X|0)
5 PC=PCU{Y}
6 CanPC = CanPC\{Y}

/* remove false positives from PC */
for each X € PC do
if 7L X|Z for some Z C PC\{X} then
PC=PC\(X}
until CanPC is empty
return PC

HITON-MB(T)
/* add true positives to MB */
1 PC= HITON-PC(T)
MB = (PCU xepcHITON — PCC)\{ T}
/* remove false positives from MB */
for each X € MB do
for each Y € PC do
if T1LX|Z for some Z C { Y} U(U\{T7, X, Y}) then
MB = MB\|X}
return MB

-\
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always true. The flaw in the proof is the same as that in the proof of correctness of MMPC.
Running HITON-PC(T) with D faithful to the DAG (a) in Table 2 can produce the same
incorrect result as MMPC(T). Obviously, the flaw in HITON-PC can be fixed in the
exactly the same way as the flaw in MMPC was fixed above.

Table 4 outlines HITON-MB. The algorithm receives the target node 7" as input and
returns MB(T) in MB as output. HITON-MB is similar to MMMB. The algorithm works
in two steps. First, PC and MB are initialized with PC(T) and (PC(T) Uxepcn
PC(X))\{T}, respectively, by calling HITON-PC (lines 1-2). Second, the nodes in MB
that are neither in PC(7T) nor have a common child with 7 in G are removed from
MB (lines 3-6). This step is based on the following observation. If X € MB and Y € PC,
then X must be removed from MB iff T-L X|Z for some Z such that T, X ¢ Z. Aliferis et al.
prove in [1] that, under the assumptions in Theorem 4, the output of HITON-MB
is MB(T). However, this is not always true even if HITON-PC were correct under
the faithfulness assumption. The flaw in the proof is the observation that motivates the
second step of HITON-MB, which is not true. This is illustrated by running HITON-
MB(T) with D faithful to the DAG (b) in Table 2. Let us assume that HITON-PC is
correct under the faithfulness assumption. Then, PC={Q,S} and MB={P,Q,R,S}
at line 3. P and R are removed from MB at line 6 because Q € PC and T-LP|Q and
T R|Q. Then, MB={Q, S} at line 7. Consequently, the output of HITON-MB does
not include R which is in MB(T) and, thus, HITON-MB does not guarantee the correct
output under the faithfulness assumption even if HITON-PC were correct under this
assumption.

In practice, HITON-MB performs a test if it is reliable and skips it otherwise. HITON-
MB follows the same criterion as IAMB and MMMB to decide whether a test is reliable or
not. HITON-MB is data efficient because the number of instances required to identify
MB(T) does not depend on the size of MB(T) but on the topology of G.

4. Improving data efficiency

This section addresses the same question that motivated MMMB and HITON-MB:
Can we develop an algorithm for learning MBs from data that is scalable, data efficient,
and correct under the faithfulness assumption? The answer is yes. We call this new algo-
rithm the parents and children based Markov boundary algorithm (PCMB) and prove
that, unlike MMMB and HITON-MB, it is correct under the faithfulness assumption.
Like IAMB, MMMB and HITON-MB, PCMB is based on the assumption that the learn-
ing database D is faithful to a DAG G and, thus, each node has a unique MB.

PCMB takes a divide-and-conquer approach that breaks the problem of identifying
MB(T) into two subproblems: First, identifying PC(T) and, second, identifying the rest
of the parents of the children of 7"in G. PCMB uses the functions GetPCD and GetPC
to solve the first subproblem. X L Y|Z, XL Y|Z and dep(X, Y|Z) are the same as in Section
3. Table 5 outlines GetPCD. The algorithm receives the target node 7 as input and returns
a superset of PC(T) in PCD as output. The algorithm tries to minimize the number of
nodes not in PC(T) that are returned in PCD. The algorithm repeats three steps until
PCD does not change. First, some nodes not in PC(7) are removed from CanPCD, which
contains the candidates to enter PCD (lines 4-8). This step is based on the observation that
X e PC(T) iff T k£ X| Z for all Z such that T, X ¢ Z. Second, the candidate most likely to
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Table 5
GetPCD, GetPC and PCMB
GetPCD(T) GetPC(7)
1 PCD=0 1 PC=0
2 CanPCD = U\{T} 2 for each X € GetPCD(T) do
3 repeat 3 if T € GetPCD(X) then
I+ remove false positives from CanPCD */ 4 PC=PCU{X}
4 for each X € CanPCD do 5 return PC
5 Sepl X1 = arg:mingc pcpdep(T, X|Z)
6 for each X € CanPCD do PCMB(T)
7 if 7L X|Sep| X] then /* add true positives to MB */
8 CanPCD = CanPCD\{ X} 1 PC=GetP((1)
/* add the best candidate to PCD */ 2 MB=PC
9 Y = arg: max yc canpcpdep(T, X|Sep[X]) I+ add more true positives to MB */

10 PCD=PCDU{Y} 3  for each Y€ PC do
11 CanPCD = CanPCD\{ Y} 4 for each X € GetPC(Y) do
/* remove false positives from PCD */ 5 if X ¢ PC then
12 for each X € PCD do 6 find Zst TLX|Z and T,X ¢ Z
13 Sep[X] =arg: minzgpcp\{x}dep(T,MZ) 7 if TJL XlZ @] { Y} then
14 for each X € PCD do 8 MB= MBU {X}
15 if 7L X|Sep[X] then 9 return MB
16 PCD = PCD\ (X}

17  until PCD does not change
18 return PCD

be in PC(T) is added to PCD and removed from CanPCD (lines 9-11). Since this step is
based on the heuristic at line 9, some nodes not in PC(7) may be added to PCD as well.
Some of these nodes are removed from PCD in the third step (lines 12-16). This step is
based on the same observation as the first step.

Theorem 5. Under the assumptions that the independence tests are correct and that the
learning database D is an independent and identically distributed sample from a probability
distribution p faithful to a DAG G, GetPCD(T) returns a superset of PC(T) that does not
include any node in ND(T)\ Pa(T).

Proof. First, we prove that the nodes in PC(T) are included in the output PCD. If
X € PC(T), then T t X|Z for all Z such that T, X ¢ Z owing to Theorem 2. Consequently,
X enters PCD at line 10 and does not leave it thereafter.

Second, we prove that the nodes in ND(T)\Pa(T) are not included in the output PCD.
It suffices to study the last time that lines 12-16 are executed. At line 12, Pa(T) C PCD
owing to the paragraph above. Therefore, if PCD still contains some X € ND(T)\ Pa(T),
then T-L X|Z for some Z C PCD\{X} owing to the local Markov property. Consequently,
X is removed from PCD at line 16. [

The output of GetPCD must be further processed in order to obtain PC(T), because it
may contain some descendants of 7 in G other than its children. These nodes can be easily
identified: If X is in the output of GetPCD(T), then X is a descendant of 7' in G other than
one of its children iff T is not in the output of GetPCD(X). GetPC, which is outlined in
Table 5, implements this observation. The algorithm receives the target node 7 as input
and returns PC(T) in PC as output. We prove that GetPC is correct under the faithfulness
assumption.
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Theorem 6. Under the assumptions that the independence tests are correct and that the
learning database D is an independent and identically distributed sample from a probability
distribution p faithful to a DAG G, GetPC(T) returns PC(T).

Proof. First, we prove that the nodes in PC(T) are included in the output PC. If
X e PC(T), then T € PC(X). Therefore, X and T satisfy the conditions at lines 2 and 3,
respectively, owing to Theorem 5. Consequently, X enters PC at line 4.

Second, we prove that the nodes not in PC(T) are not included in the output PC. Let
X & PC(T). If X does not satisfy the condition at line 2, then X does not enter PC at line 4.
On the other hand, if X satisfies the condition at line 2, then X must be a descendant of T’
in G other than one of its children and, thus, 7 does not satisfy the condition at line 3
owing to Theorem 5. Consequently, X does not enter PC at line 4. [

Finally, Table 5 outlines PCMB. The algorithm receives the target node 7 as input and
returns MB(T) in MB as output. The algorithm works in two steps. First, M B is initialized
with PC(T) by calling GetPC (line 2). Second, the parents of the children of 7'in G that are
not yet in MB are added to it (lines 3-8). This step is based on the following observation.
The parents of the children of 7 in G that are missing from M B at line 3 are those that are
non-adjacent to 7'in G. Therefore, if Y € PC(T), X € PC(Y)and X ¢ PC(T), then X and T
are non-adjacent parents of Y in G iff T X X|Z U {Y} for any Z such that Tl X]|Z and
T, X ¢ Z. Note that Z can be efficiently obtained at line 6: GetPCD must have found such
a Z and could have cached it for later retrieval. We prove that PCMB is correct under the
faithfulness assumption.

Theorem 7. Under the assumptions that the independence tests are correct and that the
learning database D is an independent and identically distributed sample from a probability
distribution p faithful to a DAG G, PCMB(T) returns MB(T).

Proof. First, we prove that the nodes in MB(T) are included in the output MB. Let
X € MB(T). Then, either X € PC(T) or X ¢ PC(T) but X and T have a common child Y
in G owing to Theorem 3. If X € PC(T), then X enters MB at line 2 owing to Theorem
6. On the other hand, if X ¢ PC(T) but X and T have a common child Y in G, then X sat-
isfies the conditions at lines 3-5 owing to Theorem 6 and the condition at line 7 owing to
Theorem 2. Consequently, X enters MB at line 8.

Second, we prove that the nodes not in MB(T) are not included in the output MB. Let
X & MB(T). X does not enter MB at line 2 owing to Theorem 6. If X does not satisfy the
conditions at lines 3-5, then X does not enter MB at line 8. On the other hand, if X satisfies
the conditions at lines 3-5, then it must be due to either T— Y — X or T« Y+ X or
T — Y — X. Therefore, X does not satisfy the condition at line 7 owing to the faithfulness
assumption. Consequently, X does not enter MB at line 8. [

In practice, PCMB performs a test if it is reliable and skips it otherwise. PCMB follows
the same criterion as IJAMB, MMMB and HITON-MB to decide whether a test is reliable
or not. PCMB is data efficient because the number of instances required to identify MB(T)
does not depend on the size of M B(T) but on the topology of G. For instance, if G is a tree,
then PCMB does not need to perform any test that is conditioned on more than one node
in order to identify M B(T), no matter how large M B(T) is. PCMB scales to databases with
thousands of features because it does not require learning a complete BN. The experiments
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in the following section confirm it. Like IAMB, MMMB and HITON-MB, if the assump-
tions in Theorem 7 do not hold, then PCMB may not return a MB of T but an approx-
imation. We discuss this issue further in Section 5.

4.1. Experimental evaluation

In this section, we compare the performance of IAMB and PCMB through experiments
on synthetic and real databases. We do not consider GS because IAMB outperforms it
[19]. We do not consider MMMB and HITON-MB because we are not interested in
any algorithm that does not guarantee the correct output under the faithfulness assump-
tion. In order to ensure that IAMB converges to a local optimum, our implementation of
it interleaves the first and second steps until convergence, i.e. if some node removal occurs
at line 9, then IAMB jumps to line 2 after the second step is completed. This does not
invalidate Theorem 4. Our implementation of TAMB and PCMB breaks ties at random.
Both TAMB and PCMB are written in C++ and all the experiments below are run on a
Pentium 2.4 GHz, 512 MB RAM and Windows 2000.

4.1.1. Synthetic data

The experiments in this section focus on the accuracy and data efficiency of the algo-
rithms, whereas the next section addresses their scalability. For this purpose, we consider
databases sampled from two known BNs, the Alarm BN [7] and the Pigs BN [8]. These
BNs have 37 and 441 nodes, respectively, and the largest MB consists of eight and 68
nodes, respectively. We run IAMB and PCMB with each node in each BN as the target
random variable 7 and, then, report the average precision and recall over all the nodes
for each BN. Precision is the number of true positives in the output divided by the number
of nodes in the output. Recall is the number of true positives in the output divided by
the number of true positives in the BN. We also combine precision and recall as

\/ (1 — precision) 4 (1 — recall) to measure the Euclidean distance from perfect precision
and recall. Finally, we also report the running time in seconds. The significance level for
the independence tests is 0.01.

Table 6 summarizes the results of the experiments for different sample sizes. Each entry
in the table shows average and standard deviation values over 10 databases (the same 10
databases for IAMB and PCMB). For the Alarm databases, both algorithms achieve sim-
ilar recall but PCMB scores higher precision and, thus, shorter distance than IAMB.
Therefore, PCMB usually returns fewer false positives than TAMB. The explanation is that
PCMB performs more tests than IAMB and this makes it harder for false positives to
enter the output. Compare, for instance, the heuristic at line 3 in [AMB with the heuristic
at line 9 in GetPCD and the double check at lines 2-3 in GetPC. For the Pigs databases
where larger MBs exist, PCMB outperforms IAMB in terms of precision, recall and dis-
tance. For instance, PCMB correctly identifies the MB of the node 435 of the Pigs BN,
which consists of 68 nodes, with 500 instances while TAMB performs poorly for this node
and sample size (precision = 1.00 £ 0.00, recall = 0.04 £ 0.00 and distance = 0.96 & 0.00).
The explanation is that, unlike IAMB, PCMB does not need to condition on the whole
MB to identify it. Consequently, we can conclude that PCMB is more accurate
than IAMB because it is more data efficient. It is worth mentioning that we expect the
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Table 6

Results of the experiments with the Alarm and Pigs databases

Database Instances Algorithm Precision Recall Distance Time
Alarm 100 IAMB 0.85 +0.06 0.46 +0.03 0.54 +0.06 0+0
Alarm 100 PCMB 0.79 £ 0.04 0.49 £0.05 0.51 £0.04 0+0
Alarm 200 IAMB 0.87 £0.04 0.60 £ 0.03 0.42 £0.04 0+0
Alarm 200 PCMB 0.95+0.03 0.56 +0.05 0.38 £+ 0.06 0+0
Alarm 500 IAMB 0.91 £0.03 0.72 £ 0.04 0.30 +0.04 0+0
Alarm 500 PCMB 0.94 £0.01 0.72 £ 0.04 0.26 £0.03 0+0
Alarm 1000 IAMB 0.93 £0.03 0.80 £0.01 0.22 £0.02 0+0
Alarm 1000 PCMB 0.99 +0.01 0.79 £0.01 0.18 £0.02 0+0
Alarm 2000 IAMB 0.92 +0.04 0.83 +£0.01 0.22 +0.04 0+0
Alarm 2000 PCMB 1.00 + 0.00 0.83 +£0.02 0.14 +0.01 0+0
Alarm 5000 IAMB 0.92 £0.02 0.86 £0.01 0.18 £0.02 0+0
Alarm 5000 PCMB 1.00 + 0.00 0.86 +0.02 0.11 £0.02 1+0
Alarm 10,000 IAMB 0.92 +0.04 0.90 £0.01 0.14 £0.03 0+0
Alarm 10,000 PCMB 1.00 £ 0.00 0.90 £0.02 0.08 £0.02 240
Alarm 20,000 IAMB 0.94 +0.00 0.92 +0.00 0.10 £ 0.00 1+0
Alarm 20,000 PCMB 1.00 + 0.00 0.92 +0.00 0.05 £ 0.00 440
Pigs 100 IAMB 0.82+£0.01 0.59 £0.01 0.48 £0.02 0+0
Pigs 100 PCMB 0.83 £0.01 0.82 +£0.02 0.29 +0.02 0+0
Pigs 200 IAMB 0.80 + 0.00 0.82 +0.00 0.37 £ 0.00 0+0
Pigs 200 PCMB 0.97 £0.01 0.96 £ 0.01 0.07 £0.01 1+0
Pigs 500 IAMB 0.82 £ 0.00 0.84 £ 0.00 0.34 £0.00 0+0
Pigs 500 PCMB 0.98 +0.00 1.00 £ 0.00 0.02 +0.00 1+0

two variants of IAMB mentioned in Section 3.1 to perform better than IAMB, as they
carry out more tests, but worse than PCMB, as they still have to condition on the whole
MB to identify it, e.g. they require a number of instances at least exponential in 68 for per-
fect precision and recall for the node 435 of the Pigs BN.

4.1.2. Real data

The experiments in this section compare the ability of IAMB and PCMB to solve a real-
world FSS problem involving thousands of features. Specifically, we consider the Throm-
bin database which was provided by DuPont Pharmaceuticals for KDD Cup 2001 and it is
exemplary of the real-world drug design environment [2]. The database contains 2543
instances characterized by 139,351 binary features. Each instance represents a drug com-
pound tested for its ability to bind to a target site on thrombin, a key receptor in blood clot-
ting. The features describe the three-dimensional properties of the compounds. Each
compound is labelled with one out of two classes, either it binds to the target site or not.
The task of KDD Cup 2001 was to learn a classifier from 1909 given compounds (learning
data) in order to predict binding affinity and, thus, the potential of a compound as anti-clot-
ting agent. There were 114 classifiers submitted to KDD Cup 2001, whose accuracy was
evaluated by the organizers of the competition on the remaining 634 compounds (testing
data). The accuracy of a classifier was computed as the average of the accuracy on true
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binding compounds and the accuracy on true non-binding compounds. Besides the huge
number of features, the Thrombin database is challenging for two other reasons. First,
the learning data are extremely imbalanced: Only 42 out of the 1909 compounds bind. Sec-
ond, the testing data are not sampled from the same probability distribution as the learning
data, because the compounds in the testing data were synthesized based on the assay results
recorded in the learning data. Scoring higher than 60% accuracy is impressive [2].

To solve the FSS problem for the Thrombin database, we run IAMB and PCMB with
the class random variable as the target random variable 7. Unlike in the previous section,
we cannot now assess the performance of TAMB and PCMB by comparing their outputs
with MB(T) because this is unknown. Instead, we assess the performance of TAMB
(PCMB) as the accuracy on the testing data of a naive Bayesian classifier (NB) trained
on the learning data corresponding to only the features selected by IAMB (PCMB):
The higher the accuracy the better the features selected and, thus, the better the algorithm
used to select them. In order to train the NBs, we use the MLC++ software with the
default parameters, except for the Laplace correction that is switched on [9]. We also
report the number of features selected and the running time in seconds. As in the section
above, the significance level for the independence tests in PCMB is 0.01. For IJAMB, how-
ever, better results are obtained when the significance level for the independence tests is
0.0001. This significance level seems to avoid better than 0.01 the spurious dependencies
that may exist in the learning data due to the large number of features. In the case of
PCMB, it seems that the criterion for a node to enter the output, which is considerably
more stringent than that in IJAMB, suffices to avoid the spurious dependencies.

Table 7 summarizes the results of the experiments. The table shows average and standard
deviation values over 114 runs for IAMB and PCMB because ties, which are broken at ran-
dom, are common due to the high dimensionality of the learning data. Clearly, PCMB
returns smaller and more accurate MBs than TAMB. Specifically, PCMB scores higher than
60% accuracy in all the runs, which is impressive according to [2]. For instance, the MB to
which PCMB converges most often (39 out of the 114 runs) scores 63% accuracy and con-
tains only three features (12,810, 79,651 and 91,839). Regarding running time, PCMB is
slower than TAMB because, as we have discussed in the previous section, it performs more
tests. All in all, our results illustrate that both algorithms are scalable. We note that no exist-
ing algorithm for learning BNs from data can handle such a high-dimensional database as
the Thrombin database. Hence, the importance of developing algorithms for learning MBs
from data that, like IAMB and PCMB, avoid learning a complete BN as an intermediate step.

Table 7 compiles some other results that we now describe further. We do not report the
baseline accuracy of a NB with no FSS because our computer cannot run the MLC++

Table 7

Results of the experiments with the Thrombin database

Algorithm Features Accuracy Time

IAMB 6+0 54+0 2426 £ 72
PCMB 3+1 63+0 7302 + 1012
No FSS 139,351 50 Not available
Winner of KDD Cup 2001 4 68 Not available
NB with the features in the winner of KDD Cup 2001 4 67 Not available
Taking into account the imbalance of the learning data 6 77 Not available

Taking into account the distribution of the testing data 15 83 Not available
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software with all the 139,351 features. This illustrates the importance of FSS. In [23], 50%
accuracy is reported for a support vector machine with no FSS. The winner of KDD Cup
2001 was a tree augmented naive Bayesian classifier with four features scoring 68% accu-
racy. A NB with these four features scores 67% accuracy. In [23], a classifier that takes into
account that the learning data are imbalanced reaches 77% accuracy with six features, and
another classifier that takes into account the distribution of the unlabelled testing data
achieves 83% accuracy with 15 features. Since the features used by these two classifiers
are not reported in [23], we cannot calculate the accuracy of a NB with only those features.
In any case, the 67% accuracy of the NB with only the features in the winner of KDD Cup
2001 suffices to conclude that IAMB and PCMB return suboptimal solutions to the FSS
problem for the Thrombin database. The causes of this suboptimal behavior lie, on one
hand, in the data inefficiency of IAMB and, on the other hand, in the divide-and-conquer
approach that PCMB takes, that is justified if the faithfulness assumption holds but that
may hurt performance otherwise (see more evidence on Section 5.1). We believe that in
order to improve the performance of TAMB and PCMB we have to relax the faithfulness
assumption that underlies PCMB and avoid the data inefficiency of IAMB. We address
this question in the next section.

5. Relaxing the faithfulness assumption

This section studies the following question: Can we relax the faithfulness assumption and
develop an algorithm for learning M Bs from data that is correct, scalable and data efficient ?
We prove that IAMB is still correct under the composition property assumption, which is
weaker than the faithfulness assumption (Theorem 1). We propose a stochastic variant of
IAMB that can overcome the data inefficiency of IAMB while being scalable and correct
under the composition property assumption. We show with experiments on the Thrombin
database that this new algorithm can outperform IAMB and PCMB considerably often.

Theorem 8. Under the assumptions that the independence tests are correct and that the
learning database D is an independent and identically distributed sample from a probability
distribution p satisfying the composition property, IAMB(T) returns a MB of T.

Proof. First, we prove that M B is a Markov blanket of 7" when the loop in lines 2-6 is left.
Let us suppose that this is not the case, i.e. T L (U\MB\{T})|MB when the loop in lines
2-6 is left. Then, there exists X € (U\MB \{T}) such that T £ X|MB due to the composi-
tion property assumption. This contradicts the assumption that the loop in lines 2-6 is left
due to the assumption that the independence tests are correct.

Second, we prove that MB remains a Markov blanket of T after each node removal in
line 9. It suffices to note that the independence tests are assumed to be correct and that
TAL(U\MB\{T})|MB and TLX|(MB\{X}) yield T-L(U\(MB\{X})\{T})|(MB\ {X}) due
to the contraction property.

Third, we prove that MB is a minimal Markov blanket of 7 in line 10. Let us suppose
that this is not the case, i.e. there exists M C MB in line 10 such that M is a Markov
blanket of T. Let X € (MB\M) and Y C (U \M\{7T}\{X}). Then, 7L (U\M\{7})|M and,
thus, 7-L(Y U {X})|M due to the decomposition property and, thus, 7L X|(M U Y) due to
the weak union property. This contradicts the assumption that M C MB, because any
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X € (MB\M) would have been removed from MB in line 9 due to the assumption that the
independence tests are correct. [

The following result, which we borrow from [3], illustrates that the composition property
assumption is much weaker than the faithfulness assumption. If a probability distribution
p(U,H,S) is faithful to a DAG G over {U,H,S}, then p(U) =3 ,p(U H=h,S =5s)
satisfies the composition property, though it may not be faithful to any DAG. In other
words, G can include some hidden nodes H and some selection bias S =s. Moreover, this
result holds not only for DAGs and the d-separation criterion but for any graph and any
criterion that is based on vertex separation.

As mentioned before, false positives may enter MB at line 5 in IAMB because the heu-
ristic at line 3 is greedy. An example, inspired by [21], follows. An integer between 0 and 3 is
sent from a transmitter station 7 to a receiver station R through two intermediary stations
I, and I,. T does not send the integer to /; but only wether it is in {0,1} or in {2,3}. Like-
wise, T only communicates to I, whether the integer is in {0,2} or in {1,3}. Fig. 1 depicts a
BN for this example, where n € (0,1/2) represents the noise in the transmission. Since
p(T, 1, I, R) satisfies the faithfulness assumption, {/, I,} is the unique MB of T. If 5 is posi-
tive but small enough, then R has more information about the integer transmitted by 7" than
I, or I, alone. Thus, owing to the greediness of the heuristic at line 3, we expect [AMB(T) to
first add R, then add I; and I, in any order, and finally remove R. This sequence of node
additions and removals is less data efficient and more prone to errors than directly adding
I, and I, in any order, because the former sequence requires three independence tests to
decide dependence while the latter requires only two. Therefore, the sequence that IAMB
tries may not be the most data efficient and safe sequence available. This leads us to propose
a stochastic variant of IAMB, called KIAMB, that can try different sequences when run

p(T)
T=0 T=1 T=2 T=3
1/6 2/6 2/6 1/6

p(11]T)
T Il = Il = Il = Il =
() 010w/ 002 02 /2
2,3 n/2 n/2 A-n)/2 (1-n)/2
@ (D 40
T I =0 Ib=1 I =2 I =3
0,2 | 1—n)/2 n/2 1-n)/2 n/2
° 1,3 n/2 1-n)/2 n/2 1—mn)/2
p(R|I1, I2)
I Is R = R=1 R = R=3
0,1 0,2 1—n n/3 n/3 n/3
0,1 1,3 n/3 1—n n/3 n/3
2,3 0,2 n/3 n/3 1—n n/3
2,3 1,3 n/3 n/3 n/3 1—n

Fig. 1. BN for the integer transmission example (17 € (0, 1/2)).
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Table 8
KIAMB

KIAMB(T.K)

/* add true positives to MB */
1 MB=0

2 repeat

3 CanMB =)

4 for each X € (U\MB\{T}) do

5 if T L X|MB then

6 CanMB = CanMB U { X}

7 CanMB2= random subset of CanM B with size max(1, |(|CanMB| - K)|)
8 Y = arg: maxyccanp2dep(T, X| M B)

9 MB=MBU{Y)

0  until MB does not change

I+ remove false positives from MB */

11 for each X € MB do

12 if 7L X|(MB\{X}) then

13 MB = MB\{X}

14 return MB

repeatedly. Hopefully, some of these sequences are more data efficient and less prone to
errors than the one used by IAMB, e.g. if they add fewer false positives.

Table 8 outlines KIAMB. KIAMB differs from IAMB in that it allows the user to spec-
ify the trade-off between greediness and randomness in the search through an input param-
eter K € [0,1]. IAMB corresponds to KIAMB with K = 1. Therefore, while IAMB greedily
adds to MB the most dependant node in CanMB which contains the candidates to enter
MB, KIAMB adds to M B the most dependant node in CanM B2 which is a random subset
of CanMB with size max(1,|(|CanMB| - K)|) where |CanMB] is the size of CanMB (lines
7-9). The proof of Theorem 8 is also valid for the following theorem.

Theorem 9. Under the assumptions that the independence tests are correct and that the learning
database D is an independent and identically distributed sample from a probability distribution p
satisfying the composition property, KIAMB(T, K) returns a MB of T for any value of K.

We note that Theorems 8 and 9 say “a MB of 77 and not “the MB of 7"’ because,
unlike the faithfulness assumption, the composition property assumption does not imply
that 7 has an unique MB. A necessary condition for the existence of more than one MB of
T is that p does not satisfy the intersection property (Theorem 3), which implies that p can-
not be strictly positive (Theorem 1). A simple example of a probability distribution p that
satisfies the composition property and has several MBs of T involves two other random
variables X and Y such that 7= X = Y: Both {X} and {Y} are MBs of T. A more elab-
orated example is the integer transmission scenario introduced above with p(7T) uniform
and # = 0: Both {/,,1,} and {R} are MBs of T.' The following theorem extends Theorem
9 with the guarantee that KIAMB with K = 0 can discover any MB of T.

' To show that this modification of the integer transmission example satisfies the composition property, we
reformulate it as follows. Let By and B, be the first and second bits, respectively, of the binary code corresponding
to the integer sent by T. Then, T=R={By,B>}, Iy ={B}, L={B,}, and XLY|Z iff (X\Z)NY=0.
Consequently, XLY|ZAXLIWI|Z=(X\Z)NY=0A(X\Z)NW=0=(X\Z)N(YUW)=0=
X1(Y UW)|Z.



J.M. Pena et al. | Internat. J. Approx. Reason. 45 (2007) 211-232 227

Theorem 10. Under the assumptions that the independence tests are correct and that the
learning database D is an independent and identically distributed sample from a probability
distribution p satisfying the composition property, KIAMB(T,0) returns a MB of T. The M B
of T returned is any MB of T with non-zero probability.

Proof. MB is a MB of T in line 14 due to Theorem 9. Let us assume that 7" has several
MBs. We now prove that MB is any MB of T in line 14 with non-zero probability. Let
M C (U \{T}) be any MB of T. First, we prove that if MB C M before the node addition
in line 9, then MB C M with non-zero probability after the node addition. Let us assume
that MB C M before the node addition in line 9. Then, T L (U\MB\{T})|MB and
TUL(U\M\{T})M. These two statements together yield 7' £ (M\ MB)|MB due to the con-
traction property and, thus, there exists X € (M\ MB) such that T £ X|MB due to the com-
position property assumption. Therefore, X is added to MB in line 9 with non-zero
probability due to K =0 and the assumption that the independence tests are correct.

Second, we prove that MB =M in line 14 with non-zero probability. The paragraph
above guarantees that MB = M with non-zero probability when the loop in lines 2-10 is
left, and the assumption that the independence tests are correct guarantees that none of the
nodes in MB is removed from it in line 13. [

The theorem above does not hold for IAMB, e.g. IAMB always returns { R} in the inte-
ger transmission example with p(7) uniform and n = 0 because the heuristic at line 3 is
greedy. However, in some cases [AMB can return any MB of T by just breaking ties at
random, e.g. in the 7= X = Y example. The theorem above guarantees that KIAMB with
K =0 discovers all the MBs of T if run repeatedly enough times. However, since 7 can
have many MBs, it may be more realistic to say that running KIAMB repeatedly with
K # 1 has the potential to discover, if not all, at least several MBs of T. This ability to
generate alternative hypothesis is important in domains such as bioinformatics and med-
icine [16]. For instance, if the nodes in a MB of T represent genetic markers for a disease 7,
then the more MBs of T are identified the more biological insight into the disease T is
gained.

5.1. Experimental evaluation

In the previous section, we have argued that KIAMB can outperform IAMB because it
can follow a sequence of node additions and removals that is more data efficient and, thus,
less prone to errors. In this section, we confirm it by adding to the 114 runs of TAMB in
Section 4.1.2 the results of 114 runs of KIAMB with K= 0.8. Preliminary experiments
indicated that K € [0.7,0.9] performs best. We run each algorithm 114 times to guarantee
that our results are comparable with those of KDD Cup 2001, which had 114 participants.
Our implementation of KIAMB reuses most of the code of IAMB in Section 4.1.2, includ-
ing the interleaving of the first and second steps until convergence. This does not invalidate
any of the theorems in the previous section. The rest of the experimental setting is the same
as in Section 4.1.2.

The 114 runs of IAMB return 39 different MBs, all of them containing six features: 62
runs corresponding to 19 different MBs score 53% accuracy, and 52 runs corresponding to
20 different MBs score 54% accuracy. The 114 runs of KIAMB return 85 different MBs,
containing from four to seven features. The left histogram in Fig. 2 summarizes the
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Fig. 2. Histograms of the accuracy of the runs of KIAMB (accuracy in the horizontal axis and number of runs in
the vertical axis).

accuracy of the 114 runs of KIAMB, whereas the right histogram in the figure summarizes
the accuracy of the 85 different MBs found in these runs. It is clear from the histograms
that KIAMB is able to identify many MBs that outperform those found by IAMB. To be
exact, 49 of the 114 runs of KIAMB corresponding to 38 different MBs score higher than
54% accuracy, which is the highest accuracy obtained by IAMB. Only 28 of the 114 par-
ticipants in KDD Cup 2001 scored higher than 54% accuracy. Furthermore, 12 of the 114
runs of KIAMB corresponding to 10 different MBs score 69% accuracy, whereas the win-
ner of KDD Cup 2001 scored 68% accuracy. Our 10 MBs scoring 69% accuracy contain
six features. These are 3392, 63,916, 79,651, 135,817, 138,924 and, then, one of the follow-
ing ones: 46,937, 48,386, 49,864, 51,230, 55,132, 63,853, 63,856, 73,697, 103,235 or
108,355. Regarding running time, IAMB takes 2426 +72s per run and KIAMB
2408 + 442. Therefore, our results confirm that KIAMB is scalable and that it can outper-
form TAMB considerably often.

The histograms in Fig. 2 also warn that KIAMB can perform worse than IAMB. To be
exact, 17 of the 114 runs of KIAMB corresponding to 16 different M Bs score lower than 53%
accuracy, which is the lowest accuracy obtained by IAMB. We note that 79 of the 114 par-
ticipants in KDD Cup 2001 scored lower than 53% accuracy. Therefore, KIAMB should be
seen as a tool to generate alternative MBs, each of which should be validated before being
accepted. The validation may resort to expert knowledge of the domain at hand. Or, as we
have done in this paper, it may use some testing data. Obviously, having to hold some data
out of the learning process for testing purposes is a drawback when the data available are
scarce. However, we prefer it to running IAMB on all the data available which, as our exper-
iments show, may produce a rather inaccurate MB. It is necessary warning that selecting the
most accurate MB on some testing data out of the MBs obtained by running KIAMB
repeatedly on some learning data may result in an overfitted MB if the number of repeated
runs is too large [11]. We do not think this is an issue in our experiments because 114 is not
such a large number of runs. In any case, the risk of overfitting in our experiments should be
comparable to that in KDD Cup 2001, because we run KIAMB as many times as there were
participants in KDD Cup 2001. Moreover, we do not simply compare the best MB obtained
via KIAMB with the winner of KDD Cup 2001 but we compare the whole distributions of
results, which makes our conclusions more robust against overfitting.

The histograms in Fig. 2 show that KIAMB can also outperform PCMB considerably
often. As a matter of fact, 16 of the 114 runs of KIAMB corresponding to 14 different
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Fig. 3. Histograms of the accuracy of the runs of KPCMB (accuracy in the horizontal axis and number of runs in
the vertical axis).

MBs score higher than 63% accuracy, which is the accuracy obtained by all the 114 runs of
PCMB in Section 4.1.2. Only five of the 114 participants in KDD Cup 2001 scored higher
than 63% accuracy. Finally, we report 114 runs of a stochastic version of PCMB, called
KPCMB, in which the greedy heuristic at line 9 in GetPCD is modified to trade-off greed-
iness and randomness through an input parameter K € [0, 1] in exactly the same way as
IAMB was modified to develop KIAMB. We use K = 0.8 in the experiments. The left his-
togram in Fig. 3 summarizes the accuracy of the 114 runs of KPCMB, whereas the right
histogram in the figure summarizes the accuracy of the 69 different MBs found in these
runs. Surprisingly, none of the runs of KPCMB scores higher than the 63% accuracy of
PCMB but 53 runs corresponding to 38 different MBs score lower than that. The reason
of such poor performance lies in that KPCMB does not always return a MB of T, because
there may exist some nodes not in the output of KPCMB that are dependent of 7" given the
output. For instance, the worst run of KPCMB scores 26% accuracy and returns the fea-
tures 3392, 79,651 and 135,817, but Tk 46,937|{3392,79,651,135,817}. However, neither
these four features are a MB of T because T £ 63,916/{3392,46,937,79,651,135,817}. Nei-
ther these five features are a MB of T because 7'k 138,924 |{3392,46,937,63,916,79,651,
135,817}. Now, these six features are a MB of 7. Actually, they are one of the 10 MBs
scoring 69% accuracy that are found by KIAMB. The reason why KPCMB may not
return a MB of T lies in the divide-and-conquer approach that it takes, that is justified
if the faithfulness assumption holds but that may hurt performance otherwise. In other
words, the solutions to the subproblems that KPCMB obtains with the help of GetPCD
and GetPC may not combine into a solution to the original problem of learning a MB
of T. This illustrates the importance of developing algorithms for learning MBs from data
that, like KIAMB, avoid the faithfulness assumption while being data efficient.

6. Discussion

In this paper, we have reported the results of our research on learning MBs from data.
We have presented algorithms for such a task, studied the conditions under which they are
correct, scalable and data efficient, and evaluated them on synthetic and real databases.
Specifically, we have introduced PCMB, an algorithm that is scalable, data efficient,
and correct under the faithfulness assumption. Then, we have proven that IAMB is correct
under the composition property assumption. Finally, we have introduced KIAMB, an
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algorithm that aims to overcome the data inefficiency of IAMB while being scalable and
correct under the composition property assumption. The experimental results have shown
that PCMB outperforms IAMB, and that KIAMB can outperform IAMB and PCMB
considerably often. The experimental results have also confirmed that these algorithms
can scale to high-dimensional domains. The reason is that they do not require learning
a BN first, which can be painfully time consuming in high-dimensional domains [22]. This
is particularly true for those algorithms for learning BNs from data that are (asymptoti-
cally) correct under the faithfulness or composition property assumption [22], which are
the ones we are interested in.

It is worth mentioning that the proofs of correctness of the algorithms in this paper
assume that the independence tests are correct. If the tests are simply consistent, then
the proofs of correctness become proofs of consistency, because the algorithms perform
a finite number of tests. Kernel-based independence tests that are consistent for any prob-
ability distribution exist [5,6]. The probability of error for these tests decays exponentially
to zero when the sample size goes to infinity.

It is also worth mentioning that, throughout this paper, we have assumed that all the
random variables are discrete. However, the results in this paper remain valid when all
the random variables except the target node are continuous. Furthermore, they also
remain valid when all the random variables (including the target node) are continuous.
It suffices to replace the %> independence test by an appropriate independence test, e.g. Stu-
dent’s ¢-test or Fisher’s z test. The case where all the random variables (including the target
node) are continuous is particularly interesting if the learning database is assumed to be a
sample from a Gaussian probability distribution, because any Gaussian probability distri-
bution satisfies the composition property, no matter whether it is faithful to some DAG or
not [18]. Therefore, IAMB and KIAMB are correct if the learning database is assumed to
be a sample from a Gaussian probability distribution. Such an assumption is common in
many domains, e.g. when learning genetic regulatory networks from gene expression dat-
abases [15].

We are currently working on a scalable divide-and-conquer algorithm similar to PCMB
that is data efficient as well as correct under the composition property assumption. At the
same time, we are applying the results in this paper to solve the FSS problem for gene
expression databases with thousands of features but hundreds of instances at most. Since
the existing algorithms for learning BNs from data can be painfully time consuming for
such high-dimensional database [22], it is very important to develop algorithms for learn-
ing MBs from data that, like those in this paper, avoid learning a complete BN as an inter-
mediate step. An alternative approach is to reduce the search space so as to reduce the
computational cost of the existing algorithms for learning BNs from data. For instance,
[4,22] propose restricting the search for the parents of each node to a small set of candidate
parents that are selected in advance. According to the experiments in the latter paper, the
algorithm proposed in that paper performs better. However, both algorithms lack a proof
of (asymptotic) correctness under the faithfulness assumption. Moreover, it seems unnec-
essarily time consuming to learn a complete BN to solve the FSS problem, because we are
only interested in a very specific part of it, namely MB(T). Based on this idea and the
results in this paper, we have recently presented in [14] an algorithm that learns a BN
for the nodes in the neighborhood of a given node. This algorithm allows us to cope with
high-dimensional data by learning a local BN around a node of interest rather than a com-
plete BN model of the data.
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