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Mapping out cellular networks in general and transcriptional net-
works in particular has proved to be a bottle-neck hampering
our understanding of biological processes. Integrative approaches
fusing computational and experimental technologies for decoding
transcriptional networks at a high level of resolution is therefore
of uttermost importance. Yet, this is challenging since the control
of gene expression in eukaryotes is a complex multi-level process
influenced by several epigenetic factors and the fine interplay be-
tween regulatory proteins and the promoter structure governing
the combinatorial regulation of gene expression. In this chapter
we review how the CAGE data can be integrated with other mea-
surements such as expression, physical interactions and computa-
tional prediction of regulatory motifs, which together can provide
a genome-wide picture of eukaryotic transcriptional regulatory
networks at a new level of resolution.
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154 Transcription Regulatory Networks Analysis Using CAGE

12.1 CAGE DATA FOR NETWORK RECONSTRUCTION

Every molecular process occurring in a living cell is a concerted

activity of numerous players. Networks, which are defined by the

interactions between genes and proteins, govern critical cellular

functions such as differentiation and cell death. A great challenge

of modern biology is to elucidate these mechanisms and to deci-

pher the corresponding actors in these molecular networks.20,46

There are, however, numerous layers of interacting molecules

and modern experimental and computational technologies have

opened new possibilities for obtaining deeper insights into the

intrinsic machinery governing the molecular interactions. From

a global point of view, one can consider the plethora of interact-

ing molecules as a network of molecular entities that dynami-

cally form under specific intra- and extra-cellular demands and

execute their programmed actions accordingly. These networks

are characterized not only by the participating molecular entities

and their interactions, but also by the direction and dynamics of

the interactions.31,35,47 From this perspective cellular networks are

complex systems represented by numerous cause-consequence

relationships.

Whole-genome technologies for profiling the molecules

within these networks have been instrumental in generat-

ing cellular fingerprints obtained during different conditions

Monitoring SNPs, mRNA, proteins and metabolites in this

manner produces large amounts of data which requires an

appropriate computational toolbox for the analysis.20,38 In this

context, the invention of CAGE technology8,24 has opened yet

another chapter into the generation of molecular data that can

support biological network reconstruction at a new level of res-

olution. CAGE tags can also be produced massively under spe-

cific cellular and environmental conditions.7,8,35 In contrast to

micro-array gene expression technology monitoring only mRNA

levels,9 CAGE provides unprecedented data on the individual

transcription start sites (TSSs) that are effectively utilized during

the conditions of the experiment, thus linking the biological

process/reaction to the actual control regions of the affected

genes. Secondly, CAGE enables a quantitative measure of the

gene expression level by utilizing the actual counts of the CAGE

tags. In other words, CAGE allows for direct linking the expres-

sion events with the effectively utilized regulatory regions of the
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12.1. CAGE Data for Network Reconstruction 155

gene, as well as the actual consequence of the use of these con-

trol regions through the measure of transcription/expression via

CAGE tags.7,8

Clearly, these two advantages position the CAGE technology

for providing explicit information necessary for building

molecular networks at a new level of resolution as compared

to using regular micro-arrays. It is useful in this context to

observe a broader schema of the events that lead to the forma-

tion and activities of molecular networks.20 We will present this

in a very rough and simplified form. When an external stimulus

occurs, sensors on the cell surface react and transmit the chemical

information to the interior of the cell. Signal receptors, normally

a group of specialized proteins, do activate but could also inter-

act with other down-stream molecules and initiate a set of chain

reactions conducting signals to the nucleus, where transcription

factors (TFs) and their protein-complexes interact with the DNA

initiating transcription of genes. If we pause at this point, we

may refer to the entire set of chemical reactions occurring in this

process as a signaling pathway and the set of molecular reactions

and interactions as a signaling network with the genes being the

terminal entities.46 From the viewpoint of CAGE technology, it

provides us data that associates events at the level of interactions

between TFs to transcription factor binding sites (TFBSs) on the

regulatory regions of affected genes.35,47 These interactions can be

schematically viewed as directed links such as

TF→TFBS→promoter→gene

By considering the gene as a terminal entity in networks we

can apply a bottom-up approach for reconstructing the gene part

of biologically meaningful molecular networks. Thus, we will not

consider the metabolic components in this chapter. In Table 12.1,

we put on view the type of entities we will consider for network

reconstruction and the corresponding major informatics and ge-

nomics resources.

The use of the CAGE tag technology for improving the predic-

tion of TFBSs is discussed in the previous chapter of this mono-

graph. There, it is demonstrated how information provided by

CAGE can be combined with the sequence analysis to produce

improved predictions of TFBSs, thereby detecting more accurate

links of the type.

TF→TFBS→promoter→gene.
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Type of molecules Source of information

DNA-binding TFs Genome annotations

Expression measurements

Cofactors (co-activators/ Genome annotations

repressors; chromatin remodeling) Expression measurements

Regulatory regions CAGE TSS mapping

TFBSs Computational motifs

search and discovery

CAGE TSS mapping

Genes Genome annotations

Expression measurements

Type of interactions

TF-DNA (TF-TFBS; TF- Computational inferences

regulatory region) Genome-wide location data (GWLA)

PPI (TF-TF; TF-Cofactor) Protein-protein interaction databases

What is not transparent from CAGE data is how TFs inter-

act with other proteins in the nucleus. It is well known that fre-

quently TFs require other proteins known as co-factors to interact

with them and form complexes that are capable of direct bind-

ing to DNA. One data-source that can provide such information

is represented by protein-protein interactions (PPIs) repositories.

By investigating all possible interactions between TFs and other

proteins, we obtain a list of putative candidates of proteins that

can operate as co-factors. Since the co-factors interact not only

with TFs, but also with other proteins, we can gradually expand

the network with more distant layers of putative regulatory pro-

teins. Here we aim at the transcription regulatory network (TRN),

extended by additional layers of co-factors and complemented by

other PPIs.

12.2 METHODOLOGY

To make the presentation of the methodology simpler, we

schematically depict it in Fig. 12.1 and describe in detail in the

following sections the datasets required.
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Search for DNA motifs
(Ab initio; Transfac and Jaspar)

System or condition
active promoters definition

TF-TF physical interactions
(PPI and GWLA)

Experimental validation
(ChIP; Gel-shift; iRNA-KO)

Expresison data integration
(qPCR and array)

[Network refinement]
[Network infering]

[CAGE centered data acquisition]

CAGE library

preparation
Tags sequencing

Tag mapping and

clustering

CAGE TSS mapping

Active promoters

mapping

Genomic sequences
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Network infering and visualization

Computational validation
(Functional enrichment;

Gold standards)

TF
TFBS promoter gene

TF

[Integration of CAGE data
with other datases]

[Experimental validation]

1

2
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3

Figure 12.1. Flowchart of the method used to infer CAGE-based tran-

scription regulatory networks (TRN). [Note by the editor: research is in

progress to use CAGE data also for expression analysis to determine the

expression at each promoter level].

12.2.1 Step 1 of the Process

The first step is the production of CAGE libraries for the system

under investigation (see previous chapters). After deep sequenc-

ing of these CAGE libraries, the tags are mapped to the genome to

determine CAGE defined transcription starting sites (CTSS; Chap-

ter 10). This enables the identification of active starting sites, and

hence the promoters for which the genome sequences can be ex-

tracted. Furthermore, the number of tags corresponding to the

CTSS reflects the expression of the gene associated with vicinity

of the CTSS.

12.2.2 Step 2 of the Process

CAGE expression and mapping data are integrated with other

expression data in order to infer all TFs and the regulated genes

which are expressed by the system, representing the nodes of the

network. The promoters of the expressed nodes are then scanned
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for enriched TFBSs using model based or de novo methods. This

defines the promoter architecture of the nodes (see the previous

Chapter 11). Physical interaction data, such as PPI and protein-

DNA interactions, can be also used to increase confidence of the

bioinformatics predictions.

12.2.3 Step 3 of the Process

The global network is then inferred by combining the nodes us-

ing the inferred (TF→TFBS) and physical (PPI and TF-DNA) in-

teractions (edges of the network). The network can be repre-

sented graphically where the nodes are usually illustrated by solid

shapes and edges are denoted by dashed lines for TF-DNA in-

teraction and as blue lines for PPI. See Fig. 12.2 for an example

of the human cerebellum CAGE-derived transcription regulatory

network.

12.2.4 Step 4 of the Process

The inferred network is then validated using bioinformatics and

experimental approaches. The results of validation can be used to

refine the original network model.

12.3 GENE EXPRESSION DATA COMPLEMENTARY

TO CAGE FOR NETWORK RECONSTRUCTION

Although CAGE provides for digital counting of gene expres-

sion, expression profiling using micro-array chips is by far the

most popular genome-wide technology for capturing genomic

reaction of a cell.9,41 Expression micro-array is an RNA based

method that allows the simultaneous measurement of virtually

all the transcripts in a cell. This has been and is still a pow-

erful and wide-spread technique thanks to the relative techni-

cal simplicity, low cost, and short turn-over time, which make

expression micro-arrays a standard molecular biology technique

available to any laboratory. Computational methods used for

the analysis of these large collections of data have also been

improved and standardized, making the interpretation of micro-

array data more accessible to those without a strong compu-

tational background.6,29,38 Although with less throughput than

CAGE and chip-based technologies, quantitative real-time PCR
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Regulation of

neurotransmitter

levels

Regulation of action potential

Biopolymer

metabolic

process

Cell-cell signaling

Phosphorus

metabolic

process

Neuron

differentiation

Nervous

system

evelopment

Calcium

ion

binding

Learning

and/or

memory

Endoplasmic

reticulum

Network legend

Transcription factor Module Protien-protein interaction Protien-DNA interaction

Figure 12.2. A Cerebellar TRN was inferred using CAGE active promot-

ers as described in the text and illustrated in Fig. 12.1 In this particular

view, genes expressed in cerebellum are grouped into functional mod-

ules and represented as single node (squared nodes) whose size is pro-

portional to the number of genes in the module.

(qRT-PCR) is becoming an increasingly important complemen-

tary tool in particular in the construction of TRNs,35,47 due to its

quantitative nature and higher sensitivity which allows for more

accurate measurements of low abundant transcripts such as those

encoding for transcription factors.19

12.4 USING PHYSICAL INTERACTIONS

The edges of a transcriptional regulatory network contain two

types of physical interactions: hidden i.e. those between the

regulatory proteins and their DNA binding sequences (PDIs) and
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those between regulatory proteins (PPIs). In eukaryotes, the reg-

ulation of gene expression often requires more than one TF to

ensure a proper expression of a single gene. TFs interact to form

protein complexes and in many cases this is a requirement for

the binding of DNA regulatory elements.4,13,18,23,27,3 For example,

this is the case for homo-dimers binding palindromic transcrip-

tion factor binding sites (TFBS).49 In the genome, TFBSs tend to

cluster together in specific and conserved regions whereas TFs in-

teract at the protein level forming protein complexes that include

chromatin remodeling factors.2,14,30,48 Last, but no less important,

are the transcriptional initiation complexes, which despite the fact

that they are composed of more than 30 proteins will bind spe-

cific regulatory elements via just a few core components such

as the TATA box Binding Protein (TBP).10,25,26,42 The interplay

between TFs is often referred to as the combinatorial regulation

of gene expression. Therefore capturing all possible combinato-

rial interactions between TFs is an essential step toward the con-

struction of mammalian transcription regulatory networks. For

this purpose the complete maps of PPI are of uttermost value

as a first step to map putative pair-wise interactions. PPIs are

usually generated by two-hybrid technologies (Y2H).21 PPI maps

can also be constructed using co-immunoprecipitation followed

by mass spectrometry.1,5,12,15,17,28 This technology is more specific

than Y2H (less false positive rate) and less scalable. Since the

technology relies on co-immunoprecipitation it is more suitable

to identify protein complexes with indirect interactions, in con-

trast to Y2H which instead measures pair-wise, binary and direct

interactions.

In recent years the number of binary non-redundant human

PPIs has increased dramatically thanks to extensive literature

mining (36,617 in the HPRD database)33,37 and also to large scale

experimentally determined human PPIs such as the work from

Rual and colleagues and Ewing and colleagues.12,40 However, one

of the limitations with the current human PPI maps is the low

coverage of TF interactions because the experimental techniques

generally bias toward large macromolecular complexes (i.e. ribo-

some, splicesosome, membranes channels etc.) and due to a low

abundance of TFs compared to cytosolic proteins. Suzuki and col-

leagues of the RIKEN Genome Science Center in Japan have gen-

erated for the first time nuclear specific PPI maps for mouse44 and

now they are focusing on the human nuclear PPI maps (personal
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communication). Such maps will be very useful resources for the

construction of mammalian TRNs. To regulate gene expression,

either individual TFs or complexes of TFs need to first bind specif-

ically to cis-regulatory DNA sequences, which are usually at the

5’ end of genes. The most common methods to infer TF-DNA

binding events are computational ones (see previous sections).

Technologies have emerged that enable in vivo genome-wide

experimental mapping of TF-DNA binding events. The most

wide-spread of these techniques is the Genome Wide Location

Analysis (GWLA) also known as ChIP-chip or ChIP-PET.11,16,39,51

In GWLA analysis, TF-DNA binding events are captured and

frozen in a specific cellular state by in vivo crosslinking. Then the

genomic DNA is fragmented and the TF of interest is isolated with

a specific antibody, along with those genomic fragments bounded

by the TF. After crosslinking reversal and protein digestion, the

pulled down DNA is labeled in a manner analogous to a cDNA

microarray experiment, but hybridized to an oligo micro-array

chip whose content is directed towards regulatory regions rather

than exons. GWLA are powerful techniques, since they capture in

vivo and in a high-throughput fashion empirical binding events,

thus the TF binding events can be compared across several cellu-

lar conditions (drug stimulation, developmental stage, etc.), but

contrary to CAGE, they are restricted to one TF at a time.

12.5 TRNS RECONSTRUCTION

The reconstruction of TRN is based on combining the edges as

the basic network building blocks. An edge is a link of the

form entity1 — entity2, or entity1→entity2. The first type of

link is non-directional and is characteristic of PPIs. The sec-

ond type of link is directional and several types can be derived

based on CAGE. As discussed earlier, CAGE can help us elu-

cidate links TF→TFBS→promoter→gene. These can be split

into several simpler types, such as TF→TFBS, TF→promoter,

TFBS→promoter, TFBS→gene, etc., depending on what details

of the interaction we are interested exploring. But we can also

expand these by TF→cofactor, TF→protein, cofactor→protein,

protein→protein and TF-DNA (ChIP-chip) physical interactions,

as mentioned earlier. Using these constituents, blocks of complex

TRNs can be reconstructed. Figure 12.2 displays an example of a
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reconstructed mammalian TRN using data from the CAGE tech-

nology (Fig. 12.1).

Clearly the network structure suggests novel mechanistic

hypotheses which must be experimentally tested as a final vali-

dation step. However, before this step is taken it is mandatory

to consider that networks are condition and state-dependent, that

is, different parts of the network will be active during different

conditions.31,35 For example, a cell which is exposed to a particular

compound or a physiological condition such as stress, will pro-

duce two different activity patterns. A network can be generated

without using information from expression, but only from ‘static’

sequence analysis. Such a network we can denote as a static net-

work Therefore, a static network has to be evaluated and projected

onto the specific condition of interest. Such a network projection

can be performed in space (over different organs/tissues) and/or

in time (in response to a stimulation for example) as shown in

Fig. 12.2 for human cerebellum.

12.6 USING PATHWAY INFORMATION

Pathways are nothing else but a collection of molecular reactions

occurring collectively under specific conditions.23 In the context

of TRNs they are very useful as TRNs can be matched to the path-

ways and specific segments of TRNs (nodes) could be found in an

enriched manner in specific pathways.34,43 TRN itself will provide

a broader context of the pathway functioning and it can suggest

possible additional pathway members based on network proper-

ties. Vice versa, TRN can be expanded by the other members of

the significantly hit pathways: these other not been included in

the information from which TRN was reconstructed. On the other

hand can pathways provide for the interpretat of the biological

role of the TRN and its constitutive elements (Fig. 12.2).

12.7 VALIDATION OF THE RECONSTRUCTED

NETWORKS

Since reconstruction of TRNs is a complex process that requires

integration and processing of data originating from a variety of

resources, it is necessary to make an assessment of the quality

of the reconstructed TRNs. At the end, the predictions based
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on the network analysis have to be evaluated experimentally,

but before proceeding to the laboratory there are several useful

computational validation steps that can and should be employed.

These include statistics, benchmarking against current knowl-

edge, and biological relevance of the annotations associated with

the extracted parts lists and pathways.

A proper use of statistics usually goes beyond regular para-

metric testing including a t-test. As an example, it has become

increasingly clear that to evaluate the significance of a particular

network motif such as a feed-forward structure, it is necessary to

compare the occurrence of the feed-forward loop against a null

distribution. Such a statistical randomization procedure can be

adapted to the analysis of other features of the reconstructed net-

work, and basically informs us about the significance of a partic-

ular finding. Next, it is useful to compare the reconstructed TRN

with what is currently known. For example, we can construct a

“gold standard list” which we can use for comparison with the

predicted TRN. Such a gold standard list is composed of a set

of interactions (edges) that have been extensively and experimen-

tally validated and some are available in the literature. A success-

ful validation can be measured using a combined measure of the

number of true positive (TP) gold standard interactions recovered

(present) in the inferred network as well as those not captured

(false negatives, FN) by the predicted TRN. Finally, TRNs can be

also computationally validated by biological context relevance, by

applying Gene Ontology and Pathways enrichment analyses3 in

order to detect those sub-networks of the TRN that “make sense”

in the biology or systems under study. For example, if we are

studying a system resembling the brain development, we expect

to find regions in the network that are enriched in genes which are

involved in processes such as in “nervous systems development”,

“neuron differentiation”, etc.

Although computational validations can be very useful to

increase the confidence of the inferred TRNs, it is necessary to as-

sess the novel predicted interactions or regulatory events through

functional validation by conducting experiments in the labora-

tory. Unfortunately, up to date, such an experimental validation

is only possible for a handful of targets, because the experiments

required to comprehensively assess the biological role and context

of a regulatory event are laborious and therefore not yet scalable

to a larger number of targets.
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